[tex] \Large{ \boxed{ \rm{ \red{Refer \: to \: the \: attachment}}}}[/tex]
It is a quadrilateral in which two pairs of adjacent sides are equal in measure.➤ Like Here, AB = BC and AD = CD
The diagonals intersect at right angles. Here, OA = OC and angle A = angle CDiagonals bisect the touching angles. Like here, Diagonal BD intersects angle B and angle D.Diagonal BD divides the kite into two congurent triangles of equal area. So, these triangles can overlap each other.━━━━━━━━━━━━━━━━━━━━
Which geometric figure has 120 rotational symmetry?
Answer:
Triangle
Step-by-step explanation:
Has 120° degrees of rotation and measure of the central angle and has 3-fold rotational symmetry
The house Trevor's family lives in has 6 people (including Trevor) and 3 bathrooms. In the past month, each person showered for an average of 480 minutes and used an average 72 liters of shower water (over the entire month). Water costs 0.20 dollars per liter.
Answer:
$86.40
Step-by-step explanation:
The house Trevor's family lives in has 6 people (including Trevor) and 3 bathrooms. In the past month, each person showered for an average of 480 minutes and used an average 72 liters of shower water (over the
entire month). Water costs 0.20 dollars per liter.
How much did Trevor's family pay per minute on shower water
Average person=72 liters of water
6 people=72*6= 432 liters
Each person = 480 minutes
6 people=480*6= 2,880 minutes
Water=$0.20 per liter
Total cost of water= 432 * 0.20
= $86.40
Answer:
o.o3
Step-by-step explanation:
What is the value of x?
7
7 square root 2
14
14 square root 2
Answer:
14
Step-by-step explanation:
Using the sine ratio in the right triangle and the exact value
sin45° = [tex]\frac{1}{\sqrt{2} }[/tex] , thus
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{7\sqrt{2} }{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )
x = 7[tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 7 × 2 = 14
Answer:
x = 14i hope it helps :)Step-by-step explanation:
[tex]Hypotenuse = x \\Opposite = 7\sqrt{2} \\\alpha = 45\\\\\Using \: SOHCAHTOA\\Sin \alpha = \frac{Opposite}{Hypotenuse}\\ \\Sin 45 = \frac{7\sqrt{2} }{x} \\\\\frac{\sqrt{2} }{2} = \frac{7\sqrt{2} }{x} \\\\\sqrt{2x} = 14\sqrt{2} \\\\\frac{\sqrt{2x} }{2} = \frac{14\sqrt{2} }{2} \\x = 14[/tex]
1) UN MOVIL A SE MUEVE DESDE UN PUNTO CON VELOCIDAD CONSTANTE DE 20m/s EN EL MISMO INSTANTE A UNA DISTANCIA DE 1200m, OTRO MOVIL B SALE Y PERSIGUE AL MOVIL A CON VELOCIDAD CONSTANTE DE 40m/s.¿ EN QUE TIEMPO Y A QUE DISTANCIA B ALCANZA a
Answer:
El móvil B necesita 60 segundos para alcanzar al móvil A y le alcanza una distancia de 2400 metros con respecto al punto de referencia.
Step-by-step explanation:
Supóngase que cada movil viaja en el mismo plano y que el móvil B se localiza inicialmente en la posición [tex]x = 0\,m[/tex], mientras que el móvil A se encuentra en la posición [tex]x = 1200\,m[/tex]. Ambos móviles viajan a rapidez constante. Si el móvil B alcanza al móvil A después de cierto tiempo, el sistema de ecuaciones cinemáticas es el siguiente:
Móvil A
[tex]x_{A} = 1200\,m+\left(20\,\frac{m}{s} \right)\cdot t[/tex]
Móvil B
[tex]x_{B} = \left(40\,\frac{m}{s} \right)\cdot t[/tex]
Donde:
[tex]x_{A}[/tex], [tex]x_{B}[/tex] - Posiciones finales de cada móvil, medidas en metros.
[tex]t[/tex] - Tiempo, medido en segundos.
Si [tex]x_{A} = x_{B}[/tex], el tiempo requerido por el móvil B para alcanzar al móvil A es:
[tex]1200\,m+\left(20\,\frac{m}{s} \right)\cdot t = \left(40\,\frac{m}{s} \right)t[/tex]
[tex]1200\,m = \left(20\,\frac{m}{s} \right)\cdot t[/tex]
[tex]t = \frac{1200\,m}{20\,\frac{m}{s} }[/tex]
[tex]t = 60\,s[/tex]
El móvil B necesita 60 segundos para alcanzar al móvil A.
Ahora, la distancia se obtiene por sustitución directa en cualquiera de las ecuaciones cinemáticas:
[tex]x_{B} = \left(40\,\frac{m}{s} \right)\cdot (60\,s)[/tex]
[tex]x_{B} = 2400\,m[/tex]
El móvil B alcanza al móvil A a una distancia de 2400 metros con respecto al punto de referencia.
The width of a rectangle measures (2.3a + 9.9) centimeters, and its length
measures (6.3a - 2.6) centimeters. Which expression represents the perimeter, in
centimeters, of the rectangle?
12.2a +3.7
O 7.3 + 8.60
O 17.2a + 14.6
O 7.4 +24.4a
Answer:
17.2a+14.6
Step-by-step explanation:
Please answer these 3 questions for 70 points 1 thanks 5 stars and brainiest
Answer:
Step-by-step explanation:
Problem 14: Mean 5.5, Range: 5.8
Problem 15: question #1 4, mode: 63
Probelm 16: Median 63, Range: 8.3
Answer:
14: Mean is 5.5 Hours
Range is 7.9 Hours
15: 4 Numbers
Mode is 6.3
16: Median is 6.3
Range is 8.3
Step-by-step explanation:
(I'll edit in the explanations momentarily)
Compare the slopes of the linear functions f(x) and g(x) and choose the answer that best describes them.
A. The slope of f(x) is greater than the slope of g(x).
B. The slope of f(x) is less than the slope of g(x).
C. The slope of f(x) is equal to the slope of g(x).
D. The slope of g(x) is undefined
Answer:
The slope of f(x) is equal to the slope of g(x).
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Compare the slopes of the linear functions f(x) and g(x) and choose the answer that best describes them.
a graph of a line labeled f of x passing through 0, negative 1 and 3, 1
x g(x)
0 2
3 4
6 6
Slope is defined as the change of the y axis to the z axis of a plane.
Slope = ∆y/∆x
Slope = y2-y1/x2-x1
For f(x) with coordinates (0, -1) and (3,1)
x1 = 0, y1 = -1, x2 = 3 and y2 = 1
Slope of f(x) = 1-(-1)/3-0
Slope = 1+1/3
Slope = 2/3
For g(x), we will choose any two of the coordinates from the table. Using the coordinates (3,4) and (6,6)
x1 = 3, y1 = 4, x2 = 6 and y2 = 6
Slope of g(x) = 6-4/6-3
Slope of g(x) = 2/3
It can be seen that the value of both slopes are equal. Hence, the slope of f(x) is equal to the slope of g(x) is the correct option.
Answer:
The answer is C. The slope of f(x) is equal to the slope of g(x).
Step-by-step explanation:
Did the test.
A pair of opposite vertices of a square is (1, 2) and (3,4). Find the coordinates of the remaining
vertices of the square.
Answer:
(3, 2) and (1, 4)
Step-by-step explanation:
Plot the two points on a graph.
The other two points are (3, 2) and (1, 4).
To do this with algebra, it takes a few steps.
The diagonals of a square are perpendicular and bisect each other. You are given opposite vertices, so first, find the midpoint of that diagonal.
((1 + 3)/2, (2 + 4)/2) = (2, 3)
The midpoint of the diagonal is (2, 3).
This diagonal has slope 1 and y-intercept 1, so its equation is
y = x + 1
The perpendicular bisector has equation
y = -x + 5
The two vertices we are looking for, lie in a circle whose center is the midpoint of the diagonals, (2, 3), and whose radius is half of the diagonal.
Use Pythagoras to find the diagonal's length.
2^2 + 2^2 = c^2
c^2 = 8
c = sqrt(8) = 2sqrt(2)
Half of the diagonal is sqrt(2). This is the radius if the circle.
The equation of the circle is
(x - 2)^2 + (y - 3)^2 = (sqrt(2))^2
(x - 2)^2 + (y - 3)^2 = 2
The points of intersection of this circle and the second diagonal are the two vertices you are looking for.
System of equations:
(x - 2)^2 + (y - 3)^2 = 2
y = -x + 5
Use substitution and substitute y with -x + 5 in the equation of the circle.
(x - 2)^2 + (-x + 5 - 3)^2 = 2
(x - 2)^2 + (-x + 2)^2 - 2 = 0
x^2 - 4x + 4 + x^2 - 4x + 4 - 2= 0
2x^2 - 8x + 6 = 0
x^2 - 4x + 3 = 0
(x - 3)(x - 1) = 0
x - 3 = 0 or x - 1 = 0
x = 3 or x = 1
Now we find corresponding y values.
y = -x + 5
x = 3
y = -3 + 5 = 2
This gives us (3, 2).
y = -x + 5
x = 1
y = -1 + 5 = 4
This gives us (1, 4).
Answer: (1, 4) and (3, 2)
Recall the equation that modeled the average number of non-defective refrigerators produced per hour in terms of x, the number of hours of production per day: Now, open the graphing tool and graph the equation. Use the pointer to determine how many hours of production there are in a day if the average number of non-defective refrigerators produced per hour is 15.
Answer:
The graph representing the above equation is attached below.
Step-by-step explanation:
The equation that modeled the average number of non-defective refrigerators produced per hour in terms of x, the number of hours of production per day is:
[tex]y=\frac{196-3x}{x}[/tex]
Simplify the expression as follows:
[tex]y=\frac{196-3x}{x}[/tex]
[tex]y=\frac{196}{x}-3[/tex]
The graph representing the above equation is attached below.
On moving the pointer to y = 15, it was determined that the value of x was 10.89.
The point is also plotted on the graph
Answer:
There would be 11 hours of production in a day.
Step-by-step explanation:
Solve for x. This is for my math class, and I’ve been stuck on this for a while. Please help!
Answer:
Hey there!
Angles in a triangle add to 180 degrees.
24+134+2x=180
158+2x=180
2x=22
x=11
Let me know if this helps :)
Tell me the answer
69:?::89:36
?????????????????????????????????????
Which of the following describes a change in a shape's position or size?
A. reflection symmetry
B. image
O C. transformation
D. rotational symmetry
Answer:
The correct option is;
C. Transformation
Step-by-step explanation:
In mathematics, transformation refers to the relocation of an object called the pre-image from initial position to another new location at which point the object will be known as the image whereby there is a one to one mapping from each point on the pre-image to the image
The types of transformation includes reflection, rotation, and translation which involve changes in position and dilation, which involves changes in the size of the pre-image.
if "f" varies directly with "m," and f = -19 when m = 14, what is "f" when m = 2
Answer:
f = - [tex]\frac{19}{7}[/tex]
Step-by-step explanation:
Given f varies directly with m then the equation relating them is
f = km ← k is the constant of variation
To find k use the condition f = - 19 when m = 14, thus
- 19 = 14k ( divide both sides by 14 )
- [tex]\frac{19}{14}[/tex] = k
f = - [tex]\frac{19}{14}[/tex] m ← equation of variation
When m = 2, then
f = - [tex]\frac{19}{14}[/tex] × 2 = - [tex]\frac{19}{7}[/tex]
P(x) =2x3 -11x2 -4x +1 g(x) =2x +1
Answer:
see explanation
Step-by-step explanation:
If (2x + 1) is a factor then x = - [tex]\frac{1}{2}[/tex] is a root and P(- [tex]\frac{1}{2}[/tex] ) = 0 ← Factor theorem
P(- [tex]\frac{1}{2}[/tex] )
= 2(- [tex]\frac{1}{2}[/tex] )³ - 11(- [tex]\frac{1}{2}[/tex] )² - 4(- [tex]\frac{1}{2}[/tex] ) + 1
= - [tex]\frac{1}{4}[/tex] - [tex]\frac{11}{4}[/tex] + 2 + 1
= - [tex]\frac{12}{4}[/tex] + 3
= - 3 + 3
= 0
Since P(- [tex]\frac{1}{2}[/tex] ) = 0 then g(x) is a factor of P(x)
How do you solve
n= (2s-1)+(s-1)
Answer:
n=3s-2
Step-by-step explanation:
Step 1: Remove unnecessary parentheses (2s-1)
Step 2: Collect "Like Terms" (2s+s= 3s)
Last Step: Put them all together (n=3s - 2)
PLZ HELP! please answer both if you can!!
1. What is the area of the following triangle in square meters? Do not round your answer. A = a0 m 2
2.What is the average of the two bases in the following trapezoid in feet? 18 ft 11 ft 14.75 ft 22 ft
Answer:
0.324m^2 ; 18 ft
Step-by-step explanation:
Given the triangle :
Base (b) of triangle = 54cm
Height (h) of triangle = 1.2m
Area(A) of a triangle is given by:
0.5 * base * height
Base = 54cm = 54/100 = 0.54 m
Therefore,
A = 0.5 * 0.54m * 1.2m
A = 0.324m^2
2.) Average of the two bases in the trapezoid :
From the trapezium Given :
Base 1 = 15 feets
Base 2 = 7 yards
1 yard = 3 Feets
Therefore, base 2 in Feets = 7 * 3 = 21 Feets
Average of the two bases :
(21 Feets + 15 Feets) / 2
= 36 Feets / 2
= 18 Feets
Simplify 2√28 - 3√63. I will give BRAINLIEST!
[tex]2\sqrt{28}-3\sqrt{63}=2\sqrt{4\cdot7}-3\sqrt{9\cdot7}=4\sqrt7-9\sqrt7=-5\sqrt7[/tex]
X+2/x-2 - x+3/x-1 solve
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]x+\frac{2}{x} -2-x+\frac{3}{x} -1[/tex]
[tex]= \frac{-3x + 5}{x}[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
how many seconds are there in a month of 30 days express it in scientific notation
PLS HELP I REALLY NEED IT
Answer:
x=9
Step-by-step explanation:
<B = <E from the concurrency statement
5x = 45
Divide by 5
5x/5 = 45/5
x = 9
Answer:
Hey there!
These are similar triangles, and similar triangles have congruent angles.
Thus, we have 5x=45
Simplifying, we have x=9
Let me know if this helps :)
there are 400 pages-to be read from a book.yesterday you read 1/4 of the pages. today you read 2/3 of the remains pages from the book.how many pages are left in the book
Answer:
100 pages
Step-by-step explanation:
Yesterday, there were 400 pages left unread so you read 1/4 * 400 = 100 pages yesterday. Today, there are 400 - 100 = 300 pages left unread so today, you read 2/3 * 300 = 200 pages. This means that there are 300 - 200 = 100 pages left in the book.
Convert to slope-intercept from: y-4=9(x-7)
Answer:
y = 9x - 59
Step-by-step explanation:
y - 4= 9(x-7)
y - 4 = 9x - 63
y - 4 + 4 = 9x - 63 + 4
y = 9x - 59
Answer:
Below
Step-by-step explanation:
● y-4 = 9(x-7)
Multiply 9 by (x-7)
● y-4 = 9x - 63
Add 4 to both sides
● y-4+4 = 9x-63 +4
● y = 9x - 59
PLEASE ANSWER!!! Select the correct answer from each drop-down menu. Consider the function f(x) = 3x + 1 and the graph of the function g(x) shown below.
Function transformation involves changing the position of a function.
The graph of g(x) is the graph of f(x) translated 2 units right, and [tex]\mathbf{g(x) = 3(x -2) + 1}[/tex]
The function is given as:
[tex]\mathbf{f(x)=3x + 1}[/tex]
The graph of g(x) passes through (2,1) and (0,-5).
Start by calculating the slope (m)
[tex]\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}[/tex]
So, we have:
[tex]\mathbf{m = \frac{-5-1}{0-2}}[/tex]
[tex]\mathbf{m = \frac{-6}{-2}}[/tex]
[tex]\mathbf{m = 3}[/tex]
The equation is then calculated as:
[tex]\mathbf{g(x) = m(x -x_1) + y_1}[/tex]
So, we have:
[tex]\mathbf{g(x) = 3(x -2) + 1}[/tex]
By comparing [tex]\mathbf{f(x)=3x + 1}[/tex] and [tex]\mathbf{g(x) = 3(x -2) + 1}[/tex]
The graph of f(x) is shifted 2 units to the right
Read more about function transformation at:
https://brainly.com/question/13810353
Pete earns graduated commission on his sales each month. He earns 7% commission on the first $35,000 in sales and 9% on anything over that. If Pete had $43,000 in sales this month, how much commission did he earn?
a. $2,610
b. $3,170
c. $3,870
d. $6,880
Please select the best answer from the choices provided A B C D
Answer:
b.$3170
Step-by-step explanation:
43,000-35,000=8,000
SO you would find 9% commission on 8,000
8,000x.09=720
then, you would find his normal commission if he only made 35,000
so you would do 35,000x.07=2450
you would, then, add the two together to get his entire commission, which is $3170
Answer:
b
Step-by-step explanation:
Factorise : x^2-9x-70 Step by Step
Answer:
Step-by-step explanation:
x^2 - 9x - 70
we need to find two numbers whose sum is -9 and product id -17
The numbers are -14 and 5
By splitting the middle term,
x^2 - 14x + 5x - 70
= x ( x - 14 ) + 5 ( x - 14 )
( x + 5 ) ( x - 14 )
Hope this helps
Plz mark as brainliest!!!!!
Answer:
Step-by-step explanation:
Sum = -9
Product = -70
Factors = -14 , 5
x² - 9x - 70 = x² + 5x - 14x + (-14) * 5
=x(x + 5) - 14(x + 5)
= (x + 5)(x - 14)
please help me
Expand ( p + 6 )( p - 3 )
Answer:
(p^2) + 3p - 18
Step-by-step explanation:
Have a nice day!
Answer:
2p+3
Step-by-step explanation:
(p+6)(p-3)
you have to open the brackets i.e
p+p+6-3
add p+p and you get 2p then you subtract positive 6 from 3 and you get 3
so your answer will be 2p+3
multiple choice
a. 126 pie cm^3
b. 84 pie cm^3
c. 504 pie cm*3
Answer:
a. 126 pie cm^3
Step-by-step explanation:
Area of a circle = pi*r²
Volume = area*height
(pi*r²)*14
Since your answers are with Pi omit the Pi and times 3² * 14 = 126 pie cm³
Answer:
A. 126pi cm^3
Step-by-step explanation:
The volume of a cylinder can be found using the following formula.
[tex]v=\pi r^2 h[/tex]
First, we must find the radius. The radius is half of the diameter.
[tex]r=\frac{d}{2}[/tex]
The diameter of the cylinder is 6 cm.
[tex]r=\frac{6cm}{2}[/tex]
[tex]r= 3cm[/tex]
The radius is 3 cm.
Now, we can substitute values into the formula.
[tex]v=\pi r^2 h[/tex]
[tex]r= 3cm\\h=14 cm[/tex]
[tex]v=\pi (3cm)^2*14 cm[/tex]
Evaluate the exponent.
[tex](3cm)^2=3cm*3cm=9cm^2[/tex]
[tex]v=\pi*9cm^2*14cm[/tex]
Multiply 9 cm^2 and 14 cm
[tex]9 cm^2*14cm=126cm^3[/tex]
[tex]v=\pi*126cm^3[/tex]
The answer choices are in terms of pi, so we can simply rearrange our answer:
[tex]v=126\pi cm^3[/tex]
The volume of the cylinder is 126pi cubic centimeters and A is the correct answer.
How to find the area of the shaded region
Answer:
61 cm^2.
See below.
Step-by-step explanation:
Please Help!!! What is 2x = 40?
Answer:
Friend your answer is 20
Step-by-step explanation:
You divide 40 by the co-efficient of 2=20
[tex]\boxed{x = 20}[/tex]
There is only one step to this equation. We use inverse operations to isolate the x by dividing 2 on both sides; because 2 is being multiplied by x, and the inverse operation for multiplication is division.
2x/2 = x
40/2 = 20
The equation now looks like:
x = 20
This is your answer.
I need helpp!! match the building block of geometry to the statement that defines it.
1)DIAGRAM
A)a formal statement declaring the meaning of
a word
2)DEFINITION
B)a visual tool representing mathematical
ideas to be interpreted
3)THEOREM
C)a mathematical statement proven using
postulates and definitions
4)POSTULATE
D)a mathematical statement taken as a fact
Answer:
1) [tex]DIAGRAM \mapsto B[/tex]
2) DEFINITION [tex]\mapsto A[/tex]
3) THEOREM [tex]\mapsto C[/tex]
4) POSTULATE [tex]\mapsto D[/tex]
Step-by-step explanation:
1) DIAGRAM B) A visual tool representing mathematical ideas to be interpreted
A diagram is the depiction or representation of information using symbols
2) DEFINITION A) A formal statement declaring the meaning of a word
A definition is a statement that outlines the meaning of a word or a group of words or a diagram, or a symbol or sign
3) THEOREM C) A mathematical statement proven using postulates and definitions
A general statement of a proposition that is by itself not evident, but given proof by a combination of postulates
4) POSTULATE D) A mathematical statement taken as a fact
An assumed truth taken as the foundation for further reasoning