What is the amount of solute required if the solution is 50 ml and the solvent is 35 ml. Solve and explain

I don’t know what to do

Answers

Answer 1

Answer:

15 mL of the solute

Explanation:

From the question given above, the following data were obtained:

Solution = 50 mL

Solvent = 35 mL

Solute =?

Solution is simply defined as:

Solution = solute + solvent

With the above formula, we can easily obtain the solute in the solution as follow:

Solution = 50 mL

Solvent = 35 mL

Solute =?

Solution = solute + solvent.

50 = solute + 35

Collect like terms

50 – 35 = solute

15 = solute

Solute = 15 mL

Therefore, 15 mL of the solute is required.


Related Questions

Question 4 of 30
Scientific research shows that Earth's climate is changing due to human
activities. How can scientific research on climate change help society?
A. It can help us stop storms before they occur.
B. It can help us find a new way to make more water.
C. It can help us track how quickly elements of the climate are
changing
D. It can help us reverse the effects of climate change.
th

Answers

C. It can help us track how quickly element of the climate are changing

Using the balanced equation for the combustion of ethane: 2C2H6 + 7O2 → 4CO2 + 6H2O, how many moles of O2 needed to produce 12 moles of H2O?

Answers

Answer:

14 moles of oxygen needed to produce 12 moles of H2O.

Explanation:

We are given that balance eqaution

[tex]2C_2H_6+7O_2\rightarrow 4CO_2+6H_2O[/tex]

We have to find number of moles of O2 needed  to produce 12 moles of H2O.

From given equation

We can see that

6 moles of   H2O produced by Oxygen =7 moles

1 mole of   H2O produced by Oxygen=[tex]\frac{7}{6}[/tex]moles

12 moles of H2O produced by Oxygen=[tex]\frac{7}{6}\times 12[/tex]moles

12 moles of H2O produced by Oxygen=[tex]7\times 2[/tex]moles

12 moles of H2O produced by Oxygen=14 moles

Hence, 14 moles of oxygen needed to produce 12 moles of H2O.

The amount of oxygen required for the combustion of ethane to produce 12 moles of water is 14 moles.

How are the moles produced in reaction calculated?

The moles of oxygen produced in the reaction can be given from the stoichiometric law of the balanced chemical equation.

The balanced chemical equation for the combustion of ethane is:

[tex]\rm 2\;C_2H_6\;+\;7\;O_2\;\rightarrow\;4\;CO_2\;+\;6\;H_2O[/tex]

The 6 moles of water are produced from 7 moles of oxygen. The moles of oxygen required to produce 12 moles of water are:

[tex]\rm 6\;mol\;H_2O=7\;mol\;Oxygen\\12\;mol\;H_2O=\dfrac{7}{6}\;\times\;12\;mol\;O_2\\ 12\;mol\;H_2O=14\;mol\;O_2[/tex]

The moles of oxygen required to produce 12 moles of water are 14 moles.

Learn more about moles produces, here:

https://brainly.com/question/10606802

Na2CO3 reacts with dil.HCl to produce NaCl, H2O and CO2. If 21.2 g of pure Na2CO3 are added in a solution containing 21.9g HCl , a. Find the limiting reagent. (2) b. Calculate the number of moles of excess reagent left over.(2) c. Calculate the number of molecules of H2O formed.(1) d. Calculate volume of CO2 gas produced at 270C and 760mm Hg pressure.(2) e. Write significance of limiting reagent​

Answers

Answer:

See explanation

Explanation:

Equation of the reaction;

Na2CO3(aq) + 2HCl(aq) -------> 2NaCl(aq) + H2O(l) + CO2(g)

Number of moles of Na2CO3 = 21.2g/106g/mol = 0.2 moles Na2CO3

Number of moles of HCl = 21.9g/36.5g/mol = 0.6 moles of HCl

1 mole of Na2CO3 reacts with 2 moles of HCl

0.2 moles of Na2CO3 reacts with 0.2 × 2/1 = 0.4 moles of HCl

Hence Na2CO3 is the limiting reactant

Since there is 0.6 moles of HCl present, the number of moles of excess reagent=

0.6 moles - 0.4 moles = 0.2 moles of HCl

1 mole of Na2CO3 forms 1 mole of water

0.2 moles of Na2CO3 forms 0.2 moles of water

Number of molecules of water formed = 0.2 moles × 6.02 × 10^23 = 1.2 × 10^23 molecules of water

1 mole of Na2CO3 yields 1 mole of CO2

0.2 moles of Na2CO3 yields 0.2 moles of CO2

1 mole of CO2 occupies 22.4 L

0.2 moles of CO2 occupies 0.2 × 22.4 = 4.48 L at STP

Hence;

V1=4.48 L

T1 = 273 K

P1= 760 mmHg

T2 = 27°C + 273 = 300 K

P2 = 760 mmHg

V2 =

P1V1/T1 = P2V2/T2

P1V1T2 = P2V2T1

V2 = P1V1T2/P2T1

V2 = 760 × 4.48 × 300/760 × 273

V2= 4.9 L

The limiting reactant is the reactant that determines the amount of product formed in a reaction. When the limiting reactant is exhausted, the reaction stops.

A student dropped a piece of nickel metal into a solution of HCl(aq). He observed the formation of gas bubbles and collected the gas into another test tube. The student performed a splint test and observed that the splint flared up when he placed the splint into the test tube of the gas. What can be said about the results of this students experiment?

a. The student performed the splint test incorrectly. He should of observed a popping sound when the splint was placed in the test tube.
b. The experiment was performed incorrectly. Nickel doesn't react with HCl. Therefore, the student picked up the wrong metal when conducting the experiment.
c. The student completed the experiment correctly and there were no errors in the experiment.
d. The student performed the splint test incorrectly. He should of observed the flame being extinguished when the splint was placed in the test tube.

Answers

Answer:

a. The student performed the splint test incorrectly. He should of observed a popping sound when the splint was placed in the test tube.

Explanation:

It is given that a student performed an experiment where he dropped a nickel metal in to HCl solution. He observed the reaction and performed a splint test in the test tube that is filled with a gas which is formed while Nickle is dropped into the solution of HCl.

But the experiment that the student performed was incorrect. He must have observed the popping sound when the splint was placed in the test tube.

When the splint was added to the gas splint flared up. The hydrogen gas pops out when exposed to the flame.

[tex]$Ni + HCl(aq) = NiCl + H_2$[/tex]

Thus the correct option is (a).

14 protons,14 electrons and 14 neutrons

Answers

The answer is silicon.

the answer is silicon!!

1. Calculate the number of moles of aluminum, sulfur, and oxygen atoms in 8.00 moles of aluminum sulfate, Al2(SO4)3. 2. Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 6.10 moles of magnesium perchlorate, (Mg(CIO4)2.3. A sample of propane, C3H8, contains 13.8 moles of carbon atoms. How many total moles of atoms does the sample contain?4. A rare gold coin (24 karat, or 100% gold) has a mass of 25.54 g. How many atoms of gold are present in this coin?

Answers

Answer:

1) 16.0 moles Al

24.0 moles S

96.0 moles O

2)In 6.10 moles magnesium perchlorate, (Mg(CIO4)2 we have:

6.10 moles Mg

12.2 moles Cl

48.8 moles O

3)4.6 moles of propane (total) contains 13.8 moles of carbon and 36.8 moles of hydrogen atoms

4)The gold coin contains 7.8 *10^22 atoms

Explanation:

Step 1: Data given

Number of moles of aluminum sulfate, Al2(SO4)3 = 8.00 moles

Step 2: Calculate the number of moles

In 1 mol of aluminum sulfate, Al2(SO4)3 we have:

2 moles of Al

3 moles of S

12 moles of O

This means that in 8.00 moles of aluminum sulfate, Al2(SO4)3 we have:

2*8.00 = 16.0 moles Al

3*8.00 = 24.0 moles S

12*8 = 96.0 moles O

2. Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 6.10 moles of magnesium perchlorate, (Mg(CIO4)2

1 mol of magnesium perchlorate, (Mg(CIO4)2 has:

1 Mol of Mg

2 moles of Cl

8 moles of O

In 6.10 moles magnesium perchlorate, (Mg(CIO4)2 we have:

1 * 6.10 moles = 6.10 moles Mg

2*6.10 = 12.2 moles Cl

8*6.10 = 48.8 moles O

3. A sample of propane, C3H8, contains 13.8 moles of carbon atoms. How many total moles of atoms does the sample contain?

In 1 mol of propane, C3H8 we have:

3 moles of C and 8 moles of H

This means if we have 13.8 moles of carbon, we have 13.8/3 = 4.6 moles of propane, C3H8 and 4.6 *8 = 36.8 moles of H

So 4.6 moles of propane contains 13.8 moles of carbon and 36.8 moles of hydrogen atoms

4. A rare gold coin (24 karat, or 100% gold) has a mass of 25.54 g. How many atoms of gold are present in this coin?

Calculate moles of gold:

Moles = mass of gold / molar mass gold

Moles = 25.54 grams / 196.97 g/mol

Moles = 0.1297 moles

Calculate atoms:

Number of atoms = moles * number of Avogadro

0.1297 * 6.022 *10^23 = 7.8 *10^22 atoms

The gold coin contains 7.8 *10^22 atoms

The pKa of an acid can be determined through _____ (reduction, titration, filtration) with a strong base.
Gradually increase the volume of the base, stopping _____ (before, as, after) the equivalence point is reached.
The pKa of the acid is equal to the pH at the _____ (equivalence point, midway volume to the equivalence point, maximum volume).

Answers

Answer:

The pKa of an acid can be determined through titration with a strong base.

Gradually increase the volume of the base, stopping before the equivalence point is reached.

The pKa of the acid is equal to the pH at the midway volume to the equivalence point.

Explanation:

An acid HA dissociates in water as follows:

HA ⇄ H⁺ + A⁻      Ka

So, it produces hydrogen ions (H⁺) and a conjugate base (A⁻). The concentrations of HA, H⁺ and A⁻ at equilibrium determine the constant Ka. The pKa is calculated as:

pKa = -log Ka

The relationship between the pH of the solution and the pKa of the acid is described by the Henderson-Hasselbalch equation:

pH = pKa + log ([A⁻]/[HA])

The pKa can be experimentally determined by acid-base titration, in which a strong base is added to the acid solution. As the base is added, the acid HA is neutralized and the conjugate base A⁻ is formed. Thus, the concentration of the acid ([HA]) increases and the concentration of the conjugate base ([A⁻] decreases. The equivalence point is reached when the total amount of acid is neutralized with the added base. Before reaching the equivalence point, at the halfway point, half of the acid is neutralized and converted into the conjugate base. Thus:

[A-] = [HA] ⇒ log [A-]/[HA] = log 1 = 0 ⇒ pH = pKa

We measure the pH at that point and it is equal to the pKa of the acid.

Predict the products from reaction of 2-hexyne with the following reagents: (a) 2 equiv Br2 (b) 1 equiv HBr (c) Excess HBr (d) Li in NH3 (e) H2O, H2SO4, HgSO4

Answers

Answer:

See explanation and image attached

Explanation:

The reactions of the alkynes involved are shown in the image attached to this answer.

First of all, the reaction of two equivalents of bromine with the alkyne converts it to a saturated compound as shown. One equivalent of HBr converts the alkyne to alkene while excess HBr completely reduces the compound to a saturated compound.

Li/NH3 reduces the alkyne to an alkeneby anti addition to the triple bond.

Reaction of the alkyne with H2O, H2SO4, HgSO4 converts it to an aldehyde as shown.

Be sure to answer all parts.
Calculate the molarity of each of the following solutions:
(a) 28.5 g of ethanol (C2H5OH) in 4.50 x 102 mL of solution
M M
es
(b) 21.6 g of sucrose (C12H22011) in 67.0 mL of solution
M
(c) 6.65 g of sodium chloride (NaCl) in 96.2 mL of solution
M

Answers

Answer: The molarity of each of the given solutions is:

(a) 1.38 M

(b) 0.94 M

(c) 1.182 M

Explanation:

Molarity is the number of moles of a substance present in liter of a solution.

And, moles is the mass of a substance divided by its molar mass.

(a) Moles of ethanol (molar mass = 46 g/mol) is as follows.

[tex]Moles = \frac{mass}{molar mass}\\= \frac{28.5 g}{46 g/mol}\\= 0.619 mol[/tex]

Now, molarity of ethanol solution is as follows.

[tex]Molarity = \frac{moles}{Volume (in L)}\\= \frac{0.619 mol}{4.50 \times 10^{2} \times 10^{-3}L}\\= 1.38 M[/tex]

(b) Moles of sucrose (molar mass = 342.3 g/mol) is as follows.

[tex]Moles = \frac{mass}{molar mass}\\= \frac{21.6 g}{342.3 g/mol}\\= 0.063 mol[/tex]

Now, molarity of sucrose solution is as follows.

[tex]Molarity = \frac{moles}{Volume (in L)}\\= \frac{0.063 mol}{0.067 L} (1 mL = 0.001 L)\\= 0.94 M[/tex]

(c) Moles of sodium chloride (molar mass = 58.44 g/mol) are as follows.

[tex]Moles = \frac{mass}{molar mass}\\= \frac{6.65 g}{58.44 g/mol}\\= 0.114 mol[/tex]

Now, molarity of sodium chloride solution is as follows.

[tex]Molarity = \frac{moles}{Volume (in L)}\\= \frac{0.114 mol}{0.0962 L}\\= 1.182 M[/tex]

Thus, we can conclude that the molarity of each of the given solutions is:

(a) 1.38 M

(b) 0.94 M

(c) 1.182 M

Does Every Chemical Have a formula?

Answers

Yes, each chemical substance has their own chemical composition so a formula is used to show this.

Yes.

Each chemical substance has a specific chemical composition, so these chemical substances have their own chemical formula.

I hope this helps!

What quantity of heat is transferred when a 150.0g block of iron metal is heated from 25.0°C to 73.3°C? What is the direction of the heat flow?​

Answers

The direction of heat flow is increased which means blocks temperature is higher and hotter than it was before

Define mass number of an atom.​

Answers

the mass number of an atom is basically the total number of protons and neutrons.

define a fluid very sort answer ​

Answers

Answer:

A fluid is a medium that has a defined mass and volume, but no fixed shape, at a constant temperature and pressure. This may include gases, liquids, plasmas, and to some extent plastic solids. A fluid can flow and deform, preventing it from carrying loads in a static equilibrium.  A fluid is always compressible and internal frictional forces always occur due to the viscosity of the fluid.

How much energy is required to melt 2 kg of gold? Use the table below and this equation.
a. 125.6 kJ
b. 1729 kJ
c. 10.4 kJ
d. 3440kJ

Answers

The equation for the energy required to melt 2 kg of gold is 3440 kJ.

What is energy?

Energy is the ability to do work or cause change. It is an essential part of everyday life and is present in many forms, such as thermal energy, electrical energy, chemical energy, and mechanical energy. Energy can be converted from one form to another in order to do work.


The equation for calculating the energy required to melt a certain mass of material is Q = m x Lf, where Q is the energy required (in joules), m is the mass of the material (in kilograms), and Lf is the latent heat of fusion (in joules per kilogram).
Using the table below, we can see that the latent heat of fusion for gold is 1760 kJ/kg. Therefore, the equation for the energy required to melt 2 kg of gold is: Q = 2 kg x 1760 kJ/kg = 3440 kJ.

To learn more about energy
https://brainly.com/question/19666326
#SPJ1

1. Which of the combinations in the lab activity had indications that a chemical change occured? Defend your argument with evidence.
2. Which of the combinations in the lab activity had indications that a physical change occured? Defend your argument with evidence.
3. Are all physical changes reversible? Explain your answer using an example you've observed in your everyday life.
4. Give an example of something you've observed in your everyday life that is a chemical reaction. How did you know it was a chemical reaction?

Answers

Answer:The green growing on the penny of copper and the rust forming on the nail of iron are chemical changes. Boiling away salt water, scraping iron filings from a mixture of sand with a magnet, and breaking a rock with a hammer, are physical changes.

Explanation:

4. If matter goes through a chemical change, are the physical properties likely to stay the same?

Please say yes or no and explain why.​

Answers

Answer: If matter goes through a chemical change then the physical properties are not likely to stay the same.

Explanation:

When chemical composition of a substance changes during a chemical reaction then it is called a chemical change.

Chemical change always leads to the formation of new substances. Properties like chemical reactivity, combustion, rusting etc are chemical changes.

For example, [tex]N_{2} + 3H_{2} \rightarrow 2NH_{3}[/tex]

Here, [tex]NH_{3}[/tex] will have different chemical as well as physical properties as compared to [tex]N_{2}[/tex] and [tex]H_{2}[/tex].

As physical properties are the properties that cause change in state of a substance.

Properties like boiling point, state of substance etc are physical properties.

Thus, we can conclude that if matter goes through a chemical change then the physical properties are not likely to stay the same.

If 0.21J of heat cause a 0.308 degree C temperature change, what mass of water is present?
a 0.0702 g
b 0.00540 g
c 0.163 g
d 18.4 g

Answers

Answer:

The correct answer is Option c (0.163 g).

Explanation:

Given:

Heat energy,

Q = 0.21 J

Specific heat,

c = 4.184 J/g°c

Change in temperature,

ΔT = 0.308°C

As we know,

⇒ [tex]Q=mc \Delta T[/tex]

By substituting the values, we get

 [tex]0.21=m\times 4.184\times 0.308[/tex]

     [tex]m=\frac{0.21}{0.308\times 4.184}[/tex]

         [tex]=\frac{0.21}{1.28867}[/tex]

         [tex]=0.163 \ g[/tex]

Please can someone please help me !!

Answers

Answer:

False

Explanation:

7.23 One equivalent of sodium methanethiolate is added to an electrophile that has two leaving groups. Which product will be major

Answers

The question is incomplete, the complete question is shown in the image attached to this answer

Answer:

A

Explanation:

We can see from the conditions of the reaction that the incoming nucleophile is -SCH3 and there are two possible leaving groups in the substrate.

First of all, we have to look at the conditions of the reaction. We can see that the reaction is taking place in DMF, a polar aprotoc solvent. This condition favours the SN2 synchronous mechanism over the SN1 ionic mechanism.

Hence, the nucleophile at the 1-position is preferentially substituted owing to the conditions of the reaction.

Thus, option A is the major product of the reaction.

Determine the theoretical yield and the percent yield if 21.8 g of K2CO3 is produced from reacting 27.9 g KO2 with 57.0 g CO2. The molar mass of KO2

Answers

Answer:

26.9 g

81%

Explanation:

The equation of the reaction is;

4 KO2(s) + 2 CO2(g) → 3 O2(g) + 2 K2CO3(s)

Number of moles of KO2= 27.9g/71.1 g/mol = 0.39 moles

4 moles of KO2 yields 2 moles of K2CO3

0.39 moles of KO2 yields 0.39 × 2/4 = 0.195 moles of K2CO3

Number of moles of CO2 = 57g/ 44.01 g/mol = 1.295 moles

2 moles of CO2 yields 2 moles of K2CO3

1.295 moles of CO2 yields 1.295 × 2/2 = 1.295 moles of K2CO3

Hence the limiting reactant is KO2

Theoretical yield = 0.195 moles of K2CO3 × 138.205 g/mol = 26.9 g

Percent yield = actual yield/theoretical yield × 100

Percent yield = 21.8/26.9 × 100

Percent yield = 81%

Calculate the average atomic mass for X

Answers

Answer:

39.0229 amu

Explanation:

Hello there!

In this case, according to given information, the idea here is to multiply the percent abundance by the mass number of each isotope and then add them all together as shown below:

[tex]=0.0967*38+0.7868*39+0.1134*40+0.0031*41\\\\=3.6746+30.6852+4.536+0.1271\\\\=39.0229amu[/tex]

Regards!

Consider the titration of 30 mL of 0.030 M NH3 with 0.025 M HCl. Calculate the pH after the following volumes of titrant have been added: a) 0 mL; b) 10 mL; c) 20 mL; d)35 mL; e) 36 mL; f) 37 mL.

Answers

Answer:

a)10.87

b)9.66

c)9.15

d)7.71

e) 5.56

f) 3.43

Explanation:

tep 1: Data given

Volume of 0.030 M NH3 solution = 30 mL = 0.030 L

Molarity of the HCl solution = 0.025 M

Step 2: Adding 0 mL of HCl

The reaction:    NH3 + H2O ⇔ NH4+ + OH-

The initial concentration:  

[NH3] = 0.030M    [NH4+] = 0M    [OH-] = OM

The concentration at the equilibrium:

[NH3] = 0.030 - XM

[NH4+] = [OH-] = XM

Kb = ([NH4+][OH-])/[NH3]

1.8*10^-5 = x² / 0.030-x

1.8*10^-5 = x² / 0.030

x = 7.35 * 10^-4 = [OH-]

pOH = -log [7.35 * 10^-4]

pOH = 3.13

pH = 14-3.13 = 10.87

Step 3: After adding 10 mL of HCl

The reaction:

NH3 + HCl ⇔ NH4+ + Cl-

NH3 + H3O+ ⇔ NH4+ + H2O

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.010 L = 0.00025 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.00025 =0.00065 moles

Moles HCl = 0

Moles NH4+ = 0.00025 moles

Concentration at the equilibrium:

[NH3]= 0.00065 moles / 0.040 L = 0.01625M

[NH4+] = 0.00625 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.00625/0.01625)

pOH = 4.34

pH = 9.66

Step 3: Adding 20 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.020 L = 0.00050 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.00050 =0.00040 moles

Moles HCl = 0

Moles NH4+ = 0.00050 moles

Concentration at the equilibrium:

[NH3]= 0.00040 moles / 0.050 L = 0.008M

[NH4+] = 0.01 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.01/0.008)

pOH = 4.85

pH = 14 - 4.85 = 9.15

Step 4: Adding 35 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.035 L = 0.000875 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.000875 =0.000025 moles

Moles HCl = 0

Moles NH4+ = 0.000875 moles

Concentration at the equilibrium:

[NH3]= 0.000025 moles / 0.065 L = 3.85*10^-4M

[NH4+] = 0.000875 M / 0.065 L = 0.0135 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.0135/3.85*10^-4)

pOH = 6.29

pH = 14 - 6.29 = 7.71

Step 5: adding 36 mL HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.036 L = 0.0009 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.0009 =0 moles

Moles HCl = 0

Moles NH4+ = 0.0009 moles

[NH4+] = 0.0009 moles / 0.066 L = 0.0136 M

Kw = Ka * Kb

Ka = 10^-14 / 1.8*10^-5

Ka = 5.6 * 10^-10

Ka = [NH3][H3O+] / [NH4+]

Ka =5.6 * 10^-10 =  x² / 0.0136

x = 2.76 * 10^-6 = [H3O+]

pH = -log(2.76 * 10^-6)

pH = 5.56

Step 6: Adding 37 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.037 L = 0.000925 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.000925 =0 moles

Moles HCl = 0.000025 moles

Concentration of HCl = 0.000025 moles / 0.067 L = 3.73 * 10^-4 M

pH = -log 3.73*10^-4= 3.43

The pH of the solution in the titration of 30 mL of 0.030 M NH₃ with 0.025 M HCl, is:

a) pH = 10.86

b) pH = 9.66

c) pH = 9.15

d) pH = 7.70

e) pH = 5.56

f) pH = 3.43          

     

Calculating the pH a) 0 mL        

Initially, the pH of the solution is given by the dissociation of NH₃ in water.  

NH₃ + H₂O ⇄ NH₄⁺ + OH⁻     (1)

The constant of the above reaction is:

[tex] Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = 1.76\cdot 10^{-5} [/tex]   (2)

At the equilibrium, we have:  

   NH₃    +    H₂O   ⇄   NH₄⁺    +    OH⁻     (3)  

0.030 M - x                      x               x

[tex] 1.76\cdot 10^{-5}*(0.030 - x) - x^{2} = 0 [/tex]

After solving for x and taking the positive value:

x = 7.18x10⁻⁴ = [OH⁻]  

Now, we can calculate the pH of the solution as follows:

[tex] pH = 14 - pOH = 14 + log(7.18\cdot 10^{-4}) = 10.86 [/tex]

Hence, the initial pH is 10.86.

   

b) 10 mL

After the addition of HCl, the following reaction takes place:

NH₃ + HCl ⇄ NH₄⁺ + Cl⁻  (4)  

We can calculate the pH of the solution from the equilibrium reaction (3).            

[tex] 1.76\cdot 10^{-5}(Cb - x) - (Ca + x)*x = 0 [/tex] (5)  

Finding the number of moles of NH₃ and NH₄⁺

The number of moles of NH₃ (nb) and NH₄⁺ (na) are given by:

[tex] n_{b} = n_{i} - n_{HCl} [/tex]     (6)

[tex] n_{b} = 0.030 mol/L*0.030 L - 0.025 mol/L*0.010 L = 6.5\cdot 10^{-4} moles [/tex]          

[tex] n_{a} = n_{HCl} [/tex]   (7)

[tex] n_{a} = 0.025 mol/L*0.010 L = 2.5 \cdot 10^{-4} moles [/tex]

Calculating the concentrations of NH₃ and NH₄⁺

The concentrations are given by:

[tex] Cb = \frac{6.5\cdot 10^{-4} moles}{(0.030 L + 0.010 L)} = 0.0163 M [/tex]   (8)

[tex] Ca = \frac{2.5 \cdot 10^{-4} mole}{(0.030 L + 0.010 L)} = 6.25 \cdot 10^{-3} M [/tex]      (9)

Calculating the pH

After entering the values of Ca and Cb into equation (5) and solving for x, we have:  

[tex] 1.76\cdot 10^{-5}(0.0163 - x) - (6.25 \cdot 10^{-3} + x)*x = 0 [/tex]

x = 4.54x10⁻⁵ = [OH⁻]

Then, the pH is:

[tex] pH = 14 + log(4.54\cdot 10^{-5}) = 9.66 [/tex]

Hence, the pH is 9.66.

c) 20 mL  

We can find the pH of the solution from the reaction of equilibrium (3).

 Calculating the concentrations of NH₃ and NH₄⁺

The concentrations are (eq 8 and 9):

[tex] Cb = \frac{0.030 mol/L*0.030 L - 0.025 mol/L*0.020 L}{(0.030 L + 0.020 L)} = 8.0\cdot 10^{-3} M [/tex]    

[tex] Ca = \frac{0.025 mol/L*0.020 L}{(0.030 L + 0.020 L)} = 0.01 M [/tex]    

Calculating the pH  

After solving the equation (5) for x, we have:

[tex] 1.76\cdot 10^{-5}(8.0\cdot 10^{-3} - x) - (0.01 + x)*x = 0 [/tex]

x = 1.40x10⁻⁵ = [OH⁻]

Then, the pH is:  

[tex] pH = 14 + log(1.40\cdot 10^{-5}) = 9.15 [/tex]

So, the pH is 9.15.

d) 35 mL

We can find the pH of the solution from reaction (3).

  Calculating the concentrations of NH₃ and NH₄⁺

[tex] Cb = \frac{0.030 mol/L*0.030 L - 0.025 mol/L*0.035 L}{(0.030 L + 0.035 L)} = 3.85\cdot 10^{-4} M [/tex]      

[tex] Ca = \frac{0.025 mol/L*0.035 L}{(0.030 L + 0.035 L)} = 0.0135 M [/tex]      

Calculating the pH  

After solving the equation (5) for x, we have:

[tex] 1.76\cdot 10^{-5}(3.85\cdot 10^{-4} - x) - (0.0135 + x)*x = 0 [/tex]

x = 5.013x10⁻⁷ = [OH⁻]      

Then, the pH is:  

[tex] pH = 14 + log(5.013\cdot 10^{-7}) = 7.70 [/tex]  

So, the pH is 7.70.

e) 36 mL  Finding the number of moles of NH₃ and NH₄⁺

[tex] n_{b} = 0.030 mol/L*0.030 L - 0.025 mol/L*0.036 L = 0 [/tex]    

[tex] n_{a} = 0.025 mol/L*0.036 L = 9.0 \cdot 10^{-4} moles [/tex]

                                   

Since all the NH₃ reacts with the HCl added, the pH of the solution is given by the dissociation reaction of the NH₄⁺ produced in water.

At the equilibrium, we have:                

NH₄⁺    +    H₂O   ⇄   NH₃    +    H₃O⁺

Ca - x                             x               x

[tex] Ka = \frac{x^{2}}{Ca - x} [/tex]  

[tex] Ka(Ca - x) - x^{2} = 0 [/tex]   (10)          

 

Calculating the acid constant of NH₄⁺

We can find the acid constant as follows:

[tex] Kw = Ka*Kb [/tex]

Where Kw is the constant of water = 10⁻¹⁴

[tex] Ka = \frac{1\cdot 10^{-14}}{1.76 \cdot 10^{-5}} = 5.68 \cdot 10^{-10} [/tex]  

Calculating the pH  

The concentration of NH₄⁺ is:

[tex] Ca = \frac{9.0 \cdot 10^{-4} moles}{(0.030 L + 0.036 L)} = 0.0136 M [/tex]      

After solving the equation (10) for x, we have:

x = 2.78x10⁻⁶ = [H₃O⁺]

Then, the pH is:  

[tex] pH = -log(H_{3}O^{+}) = -log(2.78\cdot 10^{-6}) = 5.56 [/tex]

Hence, the pH is 5.56.

f) 37 mL

Now, the pH is given by the concentration of HCl that remain in solution after reacting with NH₃ (HCl is in excess).

Calculating the concentration of HCl  

[tex] C_{HCl} = \frac{0.025 mol/L*0.037 L - 0.030 mol/L*0.030 L}{(0.030 L + 0.037 L)} = 3.73 \cdot 10^{-4} M = [H_{3}O^{+}] [/tex]      

Calculating the pH  

[tex] pH = -log(H_{3}O^{+}) = -log(3.73 \cdot 10^{-4}) = 3.43 [/tex]

Therefore, the pH is 3.43.

   

Find more about pH here:

brainly.com/question/491373

 

I hope it helps you!  

A chemist fills a reaction vessel with 9.47 atm nitrogen monoxide (NO) gas, 2.61 atm chlorine (C12) gas, and 8.64 atm nitrosyl chloride (NOCI) gas at a temperature of 25.0°C. Under these conditions, calculate the reaction free energy AG for the following chemical reaction:
2NO(g) + Cl2(g) = 2NOCI (g)
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.

Answers

Answer: The Gibbs free energy change of the reaction is 2.832 kJ.

Explanation:

The relationship between Gibbs free energy change and reaction quotient of the reaction is:

[tex]\Delta G^o=-RT\ln Q_p[/tex]

where,

[tex]\Delta G^o[/tex] = Gibbs free energy change

R =  Gas constant = 8.314 J/mol.K

T = temperature = [tex]25^oC=298K[/tex]

[tex]Q_p[/tex] = reaction quotient = [tex]\frac{p_{NOCl}^2}{(p_{NO}^2)\times (p_{Cl_2})}[/tex]

We are given:

[tex]p_{NOCl}=8.64atm\\p_{NO}=9.47atm\\p_{Cl_2}=2.61atm[/tex]

Putting values in above equation, we get:

[tex]\Delta G^o=-(8.314)\times 298K\times \ln (\frac{(8.64)^2}{(9.47)^2\times (2.61)})\\\\\Delta G^o=-8.314\times 298\times (-1.143)[/tex]

[tex]\Delta G^o=2831.86J=2.832kJ[/tex]            (Conversion factor: 1 kJ = 1000 J)

Hence, the Gibbs free energy change of the reaction is 2.832 kJ.

Suppose that you move from a Suppose that you move from a town near the ocean to a town in the mountains. To what atmospheric changes would your body need to adjust? town near the ocean to a town in the mountains. To what atmospheric changes would your body need to adjust?

Answers

Answer:

all I can say is town near the ocean atmospheric changes will be cooler, warm, sea breeze, and fresh healthy air. Then when it comes to the mountain lot of change firstly there's a dry air

After standardizing a NaOH solution, you use it to titrate an HCl solution known to have a concentration of 0.203 M. You perform five titrations and obtain the following results: 0.210, 0.204, 0.201, 0.202, and 0.197 M. a) What is the mean

Answers

Answer:

0.203 is the mean of the concentration of the HCl solution

Explanation:

You have 5 concentrations. The most appropiate result is the mean of those results. The mean is a statistical defined as the sum of each result divided by the total amount of results. For the results of the problem, the mean is:

0.210 + 0.204 + 0.201 + 0.202 + 0.197 = 1.014 / 5 =

0.203 is the mean of the concentration of the HCl solution

(S)-Pentan-2-ol was treated sequentially with methanesulfonyl chloride (CH3SO2Cl) and then potassium iodide. What is the final product that forms

Answers

Answer:

(S)-Pentan-2-ol was treated sequentially with methanesulfonyl chloride (CH3SO2Cl) and then potassium iodide. What is the final product that forms

Explanation:

Alcohols are poor leaving groups.

To make -OH group a better-leaving group, it should be treated with sulfonyl chlorides.

Then, methane sulfonyl group makes will be substituted on the -OH group and forms sulfonyl esters and makes it a better leaving group.

After that treating with KI proceeds through nucleophilic bimolecular substitution and the final product formed is shown below:.

In a closed system, If a gas is transported to a container with double the volume of the previous container, the gas was held in, what is the gases' new volume?

The volume of the gas is fixed and will not change.
The volume of the gas will be half the original volume.
The volume of the gas will be the original volume squared.
The volume of the gas will be double the original volume.

Answers

Answer:

The volume of the gas is fixed and will not change.

Explanation:

The volume of the gas will not change because there is no change in temperature. Temperature increases the volume of gases enclosed in a container.

EXTRACTION OF CAFFEINE 1.Explain the reason each step of the separation is performed with three portions of the solvent rather than with a single portion of solvent. (e.g. Done in triplicate.) (0.5 pt) 2.Why should a separatory funnel not be vigorously shaken

Answers

Answer:

Throughout the explanations section below you will find a description of the question.

Explanation:

(1)

Whether a solution would be positioned inside a separative funnel, combined water, as well as solvent, disintegrate particulate caffeine. In every stage, the caffeine content incorporated relies upon the coefficient of caffeine partitioning throughout the combination of water as well as fluid.Thus, increasingly caffeine is taken from the solvent whenever the moment you bring additional solvent. Consequently, we separate the solvent from the single component.

(2)

For compounds to be mixed thoroughly and separated into different layers, a shuddering mixture within the dividing funnel would be essential.However, it vibrates the separation funnel forcefully, restricts airflow within the funnel, which can also induce the fluid under it to burst or causing fluid to fire.

Perform the following operation and express the answer in scientific notation.
7.296×10² ÷ 9.6×10^-9

Answers

Answer:

7.6×10¹⁰

Explanation:

7.296×10²÷9.6×10⁻⁹

To solve such problem,

We group the whole number ans solved seperately and also group the indices and solve the seperately

Step1 : 7.296/9.6 = 0.76

Step 2: applying the law of indices,

10²÷10⁻⁹ = 10⁽²⁺⁹⁾ = 10¹¹

Therefore,

7.296×10²÷9.6×10⁻⁹ = 0.76×10¹¹ = 7.6×10¹⁰

Methyl orange can change color by transitioning from one chromophore to another. When added to a clear solution and the solution turns red, it is determined to be a(n) __________ in its __________ stable form.

Answers

Answer:

acidic titration in its stable form

Explanation:

Methyl orange can change its color in titration solution. The yellow color is towards alkaline solution and red color is towards acidic solution. The Ph value of solution will change during this chemical process.

Other Questions
While Amazon has become a very powerful e-commerce firm here in the US, Alibaba, the Chinese company is very powerful in many parts of the world. Go to Wikipedia and read about the different type of businesses that Alibaba operates. Then write a short outline of these businesses. Which change to Example 1 would help the sentences flow more smoothly and read more coherently? A) We are all too ashamed to admit it, and my friends and I all enjoy this one children's TV show. B) My friends and I all enjoy this one children's TV show, we however are all too ashamed to admit it. C) My friends and I all enjoy this one children's TV show, but we are all too ashamed to admit it. D) We are all too ashamed to admit it, but anyway my friends and I all enjoy this one children's TV show. en el diagrama de venn donde van ubicados estos numeros?0,88888....1 sobre 7 pi-6 sobre 3 4E 55 sobre 056 sobre 9 -0,65999999 It has been determined that 60% of the people in a certain midwest city who are responsible for preparing the evening meal have no idea what they are going to prepare as late as 4PM in the afternoon. A recent survey was conducted from 1000 of these individuals. For the sampling distribution of the sample proportion to be reasonably Normal, the sample must have been obtained in the right way (ideally, a simple random sample) and the sample size must be large (so that at least 10 or more successes and failures). Are these conditions met Which of the following makes up social context? Select all that applycircumstances relating to income taxescircumstances relating to gendercircumstances relating to race or ethnicitycircumstances relating to a geological era How does the current organizational and operational structure, including the system of corporate governance, benefit the firm Vicki and Tamra are working on their math homework together. Vicki has worked p problems, and Tamra has worked 4 times as many problems as Vicki. The expression shows how many problems they have worked altogether. one of the functions of auditors in the risk management process is to Amy worked 37.5 hours last week.She is paid 11.50 per hour.Her total deductions last week were 116.30.What was Amys net pay last week? What is the role of the spindle fibers in mitosis? Which is the most viewed vdo in YT ever? The HCF and LCM of two numbers x and 126 are 24 and 840 respectively. Find the value of x. Darnell, who had a natural ____ for science, enjoyed ____ new theories to the other staff in the department. Aptitude, positing Disposition; disfiguring Aptitude; reforming Disposition; prefiguring For each of the following changes at equilibrium, indicate whether the equilibrium shifts in the direction of products, reactants, or does not change: CaCO3(s)+heatCaO(s)+CO2(g)1) increasing the temperatureshifts equilibrium in the direction of the reactantsdoes not changeshifts equilibrium in the direction of the products2) decreasing the volume of the containershifts equilibrium in the direction of the reactantsshifts equilibrium in the direction of the productsdoes not change3) adding a catalystshifts equilibrium in the direction of the reactantsshifts equilibrium in the direction of the productsdoes not change4) adding more CaO(s)does not changeshifts equilibrium in the direction of the reactantsshifts equilibrium in the direction of the products In industrial and commercial installations, where large motors are often found, how is it necessary to power each motor? Using DC, Using AC, with a separate circuit, all on the same circuit Identify the symmetry. O Reflection symmetryO Rotational symmetryO BothO None of the above 130 and 14C are isotopes of 12C, which has 6 electrons, 6 protons, and 6 neutrons. What is the arrangement of subatomic particles in 14c?A. 6 electrons, 7 protons, and 6 neutrons. Summarize the five levels in Maslow's hierarchy of needs. write a linear equation that passes through the point (2,-9) and has a slope of -5 Find the measure of Angle B