What is the biggest planet in the solar system

Answers

Answer 1

Answer:

Jupiter

Explanation:

Answer 2

Answer:

The answer is Jupiter.

Explanation:

Jupiter is an orange/yellow colored planet.


Related Questions

You walk into a room and you see 4 chickens on a bed 2 cows on the floor and 2 cats in a chair. How many legs are on the ground? (I know this answer just a riddle to see who knows it) (:

Answers

Answer:

18

Explanation:

I'm pretty sure I got it right

You are helping your friend move a new refrigerator into his kitchen. You apply a horizontal force of 275 N in the positive x direction to try and move the 61 kg refrigerator. The coefficient of static friction is 0.58. (a) How much static frictional force does the floor exert on the refrigerator

Answers

Answer:

f = 347.08 N

Explanation:

The frictional force exerted by the floor on the refrigerator is given as follows:

[tex]f = \mu R = \mu W[/tex]

where,

f = frictional force = ?

μ = coefficient of static friction = 0.58

W = Weight of refrigerator = mg

m = mass of refrigerator = 61 kg

g = acceleration due to gravity = 9.81 m/s²

Therefore,

[tex]f = \mu mg\\f = (0.58)(61\ kg)(9.81\ m/s^2)\\[/tex]

f = 347.08 N

The working substance of a certain Carnot engine is 1.50 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 940 J in each cycle. Compute the temperatures of the two reservoirs between which this engine
operates.

Answers

Answer:

The hot temperature is 157.5 K

The cold temperature is 48.8 K

Explanation:

Step 1: Data given

The working substance of a certain Carnot engine is 1.50 mol of an ideal monatomic gas.

The volume increases by a factor of 5.7

The work output of the engine is 940 J in each cycle.

During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles. This means V2 = 2*V1 (and V4 = 2*V3)

Step 2:For a carnot engine:

V2/V1 = V4/V3

Work = nR((T1)ln(V2/V1) - (T2)ln(V4/V3))

⇒with Work = the work done in the cycle = 940J

⇒with n = the number of moles = 1.50 moles

⇒with R = the gas constant = 8.314 J/mol*K

⇒with T1 = the hot temperature

⇒With T2⇒ the cold temperature

where R = 8.31 J/mol K Gas Constant

940J = 1.5moles * 8.314 J/mol*K * (T1*ln(2) - T2*ln(2)))

940 = 1.5 * 8.314 ln(2) * (T1-T2)

(T1-T2) = 940 / (1.5*8.314*ln(2))

(T1-T2) = 108.7K

For the reversible adiabatic expansion: T2 = T1*(V1/V2)^(R/Cv). Where V2/V1 = 5.7 (Because during the adiabatic expansion the volume increases by a factor of 5.7)

For a monatomic ideal gas, Cv = 3/2R

When we combine both, we'll have:

T2 = T1*(1/5.7)^(R/3/2R)

T2 = T1*(1/5.7)^(2/3)

T2= T1 * 0.31

Since we know that (T1-T2) = 108.7K

we have:

T1 - 0.31T1= 108.7K

0.69T1 = 108.7K

T1 = 157.5K

T2 = 157.5*0.31 = 48.8K

del tema de fuerza centripeta

1.- Un chico va en bicicleta a 10m/s por una curva plana de 200m de radio.
a) ¿Cuál es la aceleración?
b) si el chico y la bicicleta tienen una masa total de 70kg, ¿Qué fuerza se necesita para producir esta aceleración?

Answers

Answer:

a. C = 0.5 m/s²

b. F = 35 Newton

Explanation:

Given the following data;

Radius, r = 200 m

Velocity, v = 10 m/s

Mass, m = 70 kg

a. To find the centripetal acceleration;

Mathematically, centripetal acceleration is given by the formula;

C = v²/r

Where:

C is the centripetal acceleration

v is the velocity

r is the radius

Substituting into the formula, we have;

C = 10²/200

C = 100/200

C = 0.5 m/s²

b. To find the force;

F = mv²/r

F = (70*10²)/200

F = (70 * 100)/200

F = 7000/200

F = 35 Newton

The image of the object formed by the lens is real, enlarged and inverted. What is the kind of lens ?​

Answers

Answer:

Converging (convex) lens.

Explanation:

A lens can be defined as a transparent optical instrument that refracts rays of light to produce a real image.

Basically, there are two (2) main types of lens and these includes;

I. Diverging (concave) lens.

II. Converging (convex) lens.

A converging (convex) lens refers to a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image. Thus, this type of lens is usually thin at the lower and upper edges and thick across the middle.

Basically, the image of the object formed by a converging (convex) lens. lens is real, enlarged and inverted.

Which one is the better material to use for an inexpensive compass? hard iron, soft iron, or any conductor ​

Answers

Answer:

Soft iron

Explanation:

The cable lifting an elevator is wrapped around a 1.1m diameter cylinder that is turned by the elevator's motor. The elevator is moving upward at a speed of 2.6 ms. It then slows to a stop, while the cylinder turns one complete revolution. How long does it take for the elevator to stop? Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

t = 2.7 s

Explanation:

This is a kinematics problem.

How the elevator reduces its speed to zero by a distance equal to the length of the cylinder

        y = 2π r = 2 π d / 2

        y = π d

        y = π 1.1

        y = 3,456 m

now we can look for the acceleration of the system

        v² = v₀² - 2 a y

        0 = v₀² - 2 a y

        a = v₀² / 2y

        a = 2.6² / 2 3.456

        a = 0.978 m / s²

now let's calculate the time

        v = v₀ - a t

        0 = v₀ - at

         t = v₀ / a

         t = 2.6 /0.978

         t = 2.658 s

ask for the result with two significant figures

         t = 2.7 s

A car accelerates at 2 meters/s/s. Assuming the car starts from rest how far will it travel in 10 seconds

Answers

Answer:

Distance = velocity x time, so 10 m/s X 10 s = 100 m

Explanation:

If you accelerate at 2 m/s^2 for 10 seconds, at the end of the 10 seconds you are moving at a rate of 20 m/s.

V(f) = V(i) + a*t

Final velocity = initial velocity + acceleration x time

Your average velocity will be half of your final, because you accelerated at a constant rate. So your average velocity is 10 m/s.

Distance = velocity x time, so 10 m/s X 10 s = 100 m

Answer:

100 m

Explanation:

Given,

Initial velocity ( u ) = 0 m/s

Acceleration ( a ) = 2 m/s^2

Time ( t ) = 10 sec s

To find : Displacement ( s ) = ?

By 2nd equation of motion,

s = ut + at^2 / 2

= ( 0 ) ( 10 ) + ( 2 ) ( 10 )^2 / 2

= 0 + ( 2 ) ( 100 ) / 2

= 200 / 2

s = 100 m

Starting with the Ideal Gas Law, show that the relationship between volume and temperature in an adiabatic process is the one given by :

TfVf^γ^-1 = TiVi^γ-1 = Constant

Answers

Answer:

hope it helps

explanation:

PLZ help asap :-/
............................ ​

Answers

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

An electrostatic paint sprayer has a 0.100 m diameter metal sphere at a potential of 30.0 kV that repels paint droplets onto a grounded object. (a) What charge (in C) is on the sphere?(b) What charge must a 0.100-mg drop of paint have to arrive at the object with a speed of 10.0 m/s?

Answers

Answer:

A) q = 1.67 × 10^(-7) C

B) q = 1.67 × 10^(-10) C

Explanation:

We are given;

Potential; V = 30 KV = 30000 V

Radius of sphere; r = diameter/2 = 0.1/2 = 0.05 m

A) To find the charge of the sphere, we will use the formula;

V = kq/r

Where;

q is the charge

k is electric force constant = 9 × 10^(9) N.m²/C²

Thus;

q = Vr/k

q = (30000 × 0.05)/(9 × 10^(9))

q = 1.67 × 10^(-7) C

B) Now, potential energy here is a formula; U = qV

However, for the drop of paint to move, the potential energy will be equal to the kinetic energy. Thus;

qV = ½mv²

q = mv²/2V

Where;

v is speed = 10 m/s

V = 30000 V

m = mass = 0.100 mg = 0.1 × 10^(-6) Thus;

q = (0.1 × 10^(-6) × 10²)/(2 × 30000)

q = 1.67 × 10^(-10) C

A uniform horizontal bar of mass m1 and length L is supported by two identical massless strings. String A Both strings are vertical. String A is attached at a distance d

Answers

Answer:

a)  T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex] ,  b) T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]

c)  x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex],  d)  m₂ = m₁  ( [tex]\frac{ L}{2d} -1[/tex])

Explanation:

After carefully reading your long sentence, I understand your exercise. In the attachment is a diagram of the assembly described. This is a balancing act

a) The tension of string A is requested

The expression for the rotational equilibrium taking the ends of the bar as the turning point, the counterclockwise rotations are positive

      ∑ τ = 0

      T_A d - W₂ x -W₁ L/2 = 0

      T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]

b) the tension in string B

we write the expression of the translational equilibrium

       ∑ F = 0

       T_A - W₂ - W₁ - T_B = 0

       T_B = T_A -W₂ - W₁

       T_ B =   [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]  - g m₂ - g m₁

       T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]

c) The minimum value of x for the system to remain stable, we use the expression for the endowment equilibrium, for this case the axis of rotation is the support point of the chord A, for which we will write the equation for this system

         T_A 0 + W₂ (d-x) - W₁ (L / 2-d) - T_B d = 0

at the point that begins to rotate T_B = 0

          g m₂ (d -x) -  g m₁  (0.5 L -d) + 0 = 0

          m₂ (d-x) = m₁ (0.5 L- d)

          m₂ x = m₂ d - m₁ (0.5 L- d)

          x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex]

 

d) The mass of the block for which it is always in equilibrium

this is the mass for which x = 0

           0 = d - \frac{m_1}{m_2} \  \frac{L}{2d}

         [tex]\frac{m_1}{m_2} \ (0.5L -d) = d[/tex]

          [tex]\frac{m_1}{m_2} = \frac{ d}{0.5L-d}[/tex]

          m₂ = m₁  [tex]\frac{0.5 L -d}{d}[/tex]

          m₂ = m₁  ( [tex]\frac{ L}{2d} -1[/tex])

Drawing a shows a displacement vector (450.0 m along the y axis). In this x, y coordinate system the scalar components are Ax 0 m and Ay 450.0 m. Suppose that the coordinate system is rotated counterclockwise by 35.0, but the magnitude (450.0 m) and direction of vector remain unchanged, as in drawing b. What are the scalar components, Ax and Ay, of the vector in the rotated x, y coordinate system

Answers

Answer:

x ’= 368.61 m,  y ’= 258.11 m

Explanation:

To solve this problem we must find the projections of the point on the new vectors of the rotated system  θ = 35º

            x’= R cos 35

            y’= R sin 35

           

The modulus vector can be found using the Pythagorean theorem

            R² = x² + y²

            R = 450 m

we calculate

            x ’= 450 cos 35

            x ’= 368.61 m

            y ’= 450 sin 35

            y ’= 258.11 m

In Trial II, the same spring is used as in Trial I. Let us use this information to find the suspended mass in Trial II. Use 0.517 ss for the value of the period.
Trial 1 Spring constant is 117N/m, period of oscillations .37s, mass of the block is .400kg .
Trial 2 oscillation period is .52s

Answers

Answer:

[tex]M_2=0.79kg[/tex]

Explanation:

From the question we are told that:

Period [tex]T=0.517s[/tex]

Trial 1

Spring constant [tex]\mu=117N/m[/tex]

Period [tex]T_1=0.37[/tex]

Mass [tex]m=0.400kg[/tex]

Trial 2

Period [tex]T_2=0.52[/tex]

Generally the equation for Spring Constant  is mathematically given by

\mu=\frac{4 \pi^2 M}{T^2}

Since

[tex]\mu _1=\mu_2[/tex]

Therefore

[tex]\frac{4 \pi^2 M_1}{T_1^2}=\frac{4 \pi^2 M_2}{T_2^2}[/tex]

[tex]M_2=M_1*(\frac{T_2}{T_1})^2[/tex]

[tex]M_2=0.400*(\frac{0.52}{0.37}})^2[/tex]

[tex]M_2=0.79kg[/tex]

An electric lamp consumes 60W at 220 volts. How many dry cells of 1.5 V and internal resistance 1 Ohm are required to glow the lamp?

Answers

Answer:

1. Number of dry cells of 1.5 V required is 40.

2. Number of internal resistance of 1 ohm required is 807

Explanation:

We'll begin by calculating the resistance. This can be obtained as follow:

Power (P) = 60 W

Voltage (V) = 220 V

Resistance (R) =?

P = V²/R

60 = 220² / R

Cross multiply

60 × R = 220²

60 × R = 48400

Divide both side by 60

R = 48400 / 60

R ≈ 807 Ohm

1. Determination of the number of dry cells of 1.5 V required.

Voltage (V) = 220

Dry Cells = 1.5 V

Number of dry cells (n) =?

n = Voltage / Dry cells

n = 60 / 1.5

n = 40

2. Determination of the number of internal resistance of 1 ohm required.

Resistance (R) = 807 Ohm

Internal resistance (r) = 1 ohm

Number of internal resistance (n) =?

n = R/r

n = 807 / 1

n = 807

SUMMARY:

1. Number of dry cells of 1.5 V required is 40.

2. Number of internal resistance of 1 ohm required is 807

g A spherical container of inner diameter 0.9 meters contains nuclear waste that generates heat at the rate of 872 W/m3. Estimate the total rate of heat transfer from the container to its surroudings ignoring radiation.

Answers

Answer: The total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.

Explanation:

Given: Inner diameter = 0.9 m

q = 872 [tex]W/m^{3}[/tex]

Now, radii is calculated as follows.

[tex]r = \frac{diameter}{2}\\= \frac{0.9}{2}\\= 0.45 m[/tex]

Hence, the rate of heat transfer is as follows.

[tex]Q = q \times V[/tex]

where,

V = volume of sphere = [tex]\frac{4}{3} \pi r^{3}[/tex]

Substitute the values into above formula as follows.

[tex]Q = q \times \frac{4}{3} \pi r^{3}\\= 872 W/m^{3} \times \frac{4}{3} \times 3.14 \times (0.45 m)^{3}\\= 332.67 W[/tex]

Thus, we can conclude that the total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.

A body initially at rest travels a distance 100 m in 5 s with a constant acceleration. calculate

(i) Acceleration

(ii) Final velocity at the end of 5 s.​

Answers

Answer:

(i)8m/s²(ii)40m/s

Explanation:

according to the formula

½at²=s.

then substituting the data

½a•5²=100

a=8m/s²

v=at=8•5=40m/s

Answer:

(I)

[tex]{ \bf{s = ut + \frac{1}{2} a {t}^{2} }} \\ 100 = (0 \times 5) + \frac{1}{2} \times a \times {5}^{2} \\ 200 = 25a \\ { \tt{acceleration = 8 \: m {s}^{ -2} }}[/tex]

(ii)

[tex]{ \bf{v = u + at}} \\ v = 0 + (8 \times 5) \\ { \tt{final \: velocity = 40 \: m {s}^{ - 1} }}[/tex]

A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.07, its wavelength will be:_________.

Answers

Explanation:

someone to check if the answer is correct

A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium are in the tank? Express your answer in moles.

Answers

Answer:

82.25 moles of He

Explanation:

From the question given above, the following data were obtained:

Volume (V) = 10 L

Mass of He = 0.329 Kg

Temperature (T) = 28.0 °C

Molar mass of He = 4 g/mol

Mole of He =?

Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:

1 Kg = 1000 g

Therefore,

0.329 Kg = 0.329 Kg × 1000 g / 1 Kg

0.329 Kg = 329 g

Thus, 0.329 Kg is equivalent to 329 g.

Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:

Mass of He = 329 g

Molar mass of He = 4 g/mol

Mole of He =?

Mole = mass / molar mass

Mole of He = 329 / 4

Mole of He = 82.25 moles

Therefore, there are 82.25 moles of He in the tank.

In 1.0 second, a battery charger moves 0.50 C of charge from the negative terminal to the positive terminal of a 1.5 V AA battery.
Part A:
How much work does the charger do? Answer is 0.75 J
Part B:
What is the power output of the charger in watts?

Answers

Answer:

W = Q * V     work done on charge Q

A. W = .5 C * 1.5 V = .75 Joules

B. P = W / t = .75 J / 1 sec = .75 Watts

You have two identical beakers A and B. Each beaker is filled with water to the same height. Beaker B has a rock floating at the surface (like a pumice stone). Which beaker, with all its contents, weighs more. Or are they equal?

Answers

Answer:

a) if we assume that the water does not spill, Beaker B weighs more than beaker S, or which in this case Beaker A weighs more

b) If it is spilled in water the weight of the two beakers is the same

Explanation:

The beaker weight is

 beaker A

          W_total = W_ empty + W_water

Beaker B

            W_total = W_ empty + W_water + W_roca

a) if we assume that the water does not spill, Beaker B weighs more than beaker S, or which in this case Beaker A weighs more

b) If it is spilled in water, the weight of the two beakers is the same because the amount of liquid spilled and equal to the weight of the stone, therefore the two beakers weigh the same

Which simple machine is shown in the diagram?
a wedge
a screw
an inclined plane
a wheel and axle

Answers

Answer:

Wheel and axle

Explanation:

Which simple machine is shown in the diagram?

a wheel and axle

From the given diagram, the machine shown is actually a wheel and axle

Description of wheel and axle

The wheel and axle is a machine consisting of a wheel attached to a smaller axle so that these two parts rotate together in which a force is transferred from one to the other.

Answer:

Wheel and axle

Explanation:

Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors

Answers

Answer:

The incoming white light is composed of light of different colors,

Since these different colors have different refractive indices they are refracted at different angles from one another.

The output light is then separated by color creating a color spectrum.

Since n is greater for shorter wavelengths  (violet colors) these wavelengths are refracted thru the larger angles.

Which best describes the relationship between heat,intemal energy, and thermal energy?
Internal energy is heat that flows and heat is the part of thermal energy that can be transferred
Internal energy is thermal energy that flows, and thermal energy is the part of heat that can be transferred,
Thermal energy is heat that flows, and heat is the part of intemal energy that can be transferred
Heat is thermal energy that flows, and hennal energy is the part of internal energy that can be transferred.

Answers

Answer:

It is all a thermodynamic system that is highly related to each other.

Explanation:

Because they are in the physics of thermodynamics it is not wrong to say they follow the same thermodynamic rules and has highly the same properties of energy.

a nano second is what​

Answers

Answer:

one thousand-millionth of a second.

A nanosecond is an SI unit of time equal to one billionth of a second, that is, ​¹⁄₁ ₀₀₀ ₀₀₀ ₀₀₀ of a second, or 10⁻⁹ seconds. The term combines the prefix nano- with the basic unit for one-sixtieth of a minute. A nanosecond is equal to 1000 picoseconds or ​¹⁄₁₀₀₀ microsecond.  

if Petrol diesel etc catches fire one should never try to extinguish in using water why?​

Answers

Answer:

because both petrol and diesel are oil

Explanation:

oil floats on water that's why if we will try to extinguish with water so the fire will float on water

hope u like my answer

please mark methe brainest

Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of 2 m/s, exactly how fast (in m2/s) is the area of the spill increasing when the radius is 39 m?

Answers

Explanation:

The area of a circle of radius r is given by

[tex]A = \pi r^2[/tex]

Taking the derivative of A with respect to time t, we get

[tex]\dfrac{dA}{dt} = 2\pi r \dfrac{dr}{dt}[/tex]

We also know that

[tex]\dfrac{dr}{dt} = 2\:\text{m/s}\:\text{at}\:r = 39\:\text{m}[/tex]

[tex]\dfrac{dA}{dt} = 2\pi (39\:\text{m})(2\:\text{m/s})= 490\:\text{m}^2\text{/s}[/tex]

Two charged particles exert an electric force of 27 N on each other. What will the magnitude of the force be if the distance between the particles is reduced to one-third of the original separation

Answers

Answer:

243 N

Explanation:

The formula for electromagnetic force is F= Kq1q2/r^2

where r is the distance between the charges, if the distance between the charges is reduced by 1/3 then F will increase by 9 [(1/3r)^2 becomes 1/9r which is 9F] so 27*9 is 243N

a baseball is thrown vertically upward with an initial velocity of 20m/s.
A,what maximum height will it attain? B,what time will elapse before it strike the ground?
C,what is the velocity just before it strike the ground?​

Answers

Answer:

Look at explanation

Explanation:

a)Only force acting on the object is gravity, so a=-g (consider up to be positive)

use: v^2=v0^2+2a(y-y0)

plug in givens, at max height v=0

0=400-19.6(H)

Solve for H

H= 20.41m

b) Use: y=y0+v0t+1/2at^2

Plug in givens

0=0+20t-4.9t^2

solve for t

t=4.08 seconds

c) v=v0+at

v=20-39.984= -19.984m/s

A spacecraft on its way to Mars has small rocket engines mounted on its hull; one on its left surface and one on its back surface. At a certain time, both engines turn on. The one on the left gives the spacecraft an acceleration component in the x direction of
ax = 5.10 m/s2,
while the one on the back gives an acceleration component in the y direction of
ay = 7.30 m/s2.
The engines turn off after firing for 670 s, at which point the spacecraft has velocity components of
vx = 3670 m/s and vy = 4378 m/s.
What was the magnitude and the direction of the spacecraft's initial velocity before the engines were turned on? Express the magnitude as m/s and the direction as an angle measured counterclockwise from the +x axis.

magnitude m/s
direction ° counterclockwise from the +x-axis

Answers

Answer:

a)    v = 517.99 m / s,  b) θ = 296.3º

Explanation:

This is an exercise in kinematics, we are going to solve each axis independently

X axis

the acceleration is aₓ = 5.10 1 / S², they are on for t = 670 s and reaches a speed of vₓ=  3670 m / s, let's use the relation

           vₓ = v₀ₓ + aₓ t

           v₀ₓ = vₓ - aₓ t

           v₀ₓ = 3670 - 5.10 670

           v₀ₓ = 253 m / s

Y axis  

the acceleration is ay = 7.30 m / s², with a velocity of 4378 m / s after

t = 670 s

          v_y = v_{oy} + a_y t

          v_{oy} = v_y - a_y t

          v_oy} = 4378 - 7.30 670

          v_{oy}  = -513 m / s

to find the velocity modulus we use the Pythagorean theorem

          v = [tex]\sqrt{v_o_x^2 + v_o_y^2}[/tex]

          v = [tex]\sqrt{253^2 +513^2}[/tex]

          v = 517.99 m / s

to find the direction we use trigonometry

         tan θ ’= [tex]\frac{v_o_y}{v_o_x}[/tex]

         θ'= tan⁻¹  [tex]\frac{voy}{voy}[/tex]  

         θ'= tan⁻¹ (-513/253)

         tea '= -63.7

the negative sign indicates that it is below the ax axis, in the fourth quadrant

to give this angle from the positive side of the axis ax

          θ = 360 -   θ  

          θ = 360 - 63.7

          θ = 296.3º

Other Questions
State newton's universal law of gravitation Answer quick plsssssssssss Nights and DragonsFrom the memoir of author Abigail Prynne1I sit at my desk listening to thunder growl outside my window. Flashes of light burst through the darkness, and wind races past my window. The thrilling combination of sight and sound conjures up visions of dragons roaring proudly, breathing fire, and soaring across the midnight sky. Dragons first fascinated me when I was a little girl. They have followed me ever since. The magnificent creatures appeared in storybooks I read in the library, paintings I saw in museums, movies I watched in the theater, and the dreams I had in my sleep. By the time I was thirteen, one question consumed me. I wanted to know if dragons ever existed, so I set out on a quest for facts.2As I started my research, I discovered many skeptics. Scientists presented evidence to show why dragons could notand did notexist. They explained that it would be impossible for dragons to fly because they would be too big. They laughed at the idea of dragons breathing fire. They pointed out that no other animal has ever done this. They said that if dragons had lived, someone would have found remains somewhere in the world. No bones about it, there were plenty of logical explanations. It would have been easy for me to accept that the only place dragons ever existed was in the imaginations of those who believed.3I could have given up, but I thought about my grandmother. She always told me that "people who believe that science is the answer to everything are missing out on everything else." With her words in mind, I searched some more. There were many facts that hinted that dragons may not be fictional. I noticed that cultures across the world all described dragons in similar ways. This was odd because they had no way to communicate with each other. I found dragons mentioned in more than just stories. They appeared in old legal papers, in the travel logs of Marco Polo, and in the Bible. I saw that the Chinese calendar uses a different animal each year. Dragons are included along with eleven real animals. I began to believe it was a real possibility that all of these people were talking about a creature that actually existed.4With renewed hope that there was some truth to the legends, I looked for new research. I found that some experts disagreed with popular arguments against dragons. They suggested that a dragon could have four stomachs like a cow. If it created stomach gases like birds, it might create enough to lift itself off the ground. This would give it the ability to fly. If it forced out air when diving toward the earth, it might release gases which could ignite into flame. When the animal died, the stomachs would release strong acids that would dissolve its dead body over time. Biologists backed up these ideas with sketches and models based on known animals. Not everyone agreed with these ideas, but many of the things we accept about dinosaurs and other extinct species started the same way.5I doubt we will ever truly know whether dragons existed. There may always be two sides to the fiery debate. Some will say the stories come from active imaginations. Some will believe with all their hearts that the legendary creatures roamed our ancient world. I don't know for certain which side to believe, but the sound and fury of a night like this makes me smile. It rekindles my childhood dreams and keeps the exciting possibility alive.In paragraph 5, the author discusses two sides to the dragon debate. Which statement best summarizes the ideas in the paragraph? The author implicitly states that she believes that dragons once existed. The author explicitly states that she believes that dragons once existed. The author implicitly states that she believes that dragons did not exist. The author explicitly states that she believes that dragons did not exist. Cc yu t no cn c so snh khi tin hnh nh gi cng vic Describe the test of divisibility for:a) 6 b) 4 I cant figure out which formula goes with which sequence. Help. Please???1st sequence:1,3,9,27,. What is the formula?2nd sequence:400,200,100,50,What is the formula?3rd sequence:4,8,16,32,What is the formula?4th sequence:400,100,25,6.25,What is the formula?5th sequence:1,5,25,125,What is the formula?6th sequence:1000,500,250,125,What is the formula?7th sequence:2,10,50,250What is the formula?I need to know the correct geometric sequence formula for each of these sequences. Thanks!!! Read this excerpt from a passage."Her purchase got me thinking about the early days of online shopping, when people were anxious about orderingmerchandise from the Internet. What if the items never arrived? Was putting all my personal information online safe? Should Ireally disclose my credit card information to some unknown entity? Is this online company legitimate? And last but not least,who would buy something without seeing it first? But my grandmother's transaction made it clear: online shopping hasbecome as commonplace as brushing your teeth."As millions of consumers flock to online shopping, I wondered how and why people make the decision to shop online orin person. To get a better understanding of how e-commerce has affected our buying decisions, I decided to gain some insightfrom friends and family. The reviews were varied but insightful."Which of the following subjects will be compared in the rest of the passage?o delivery to a home and delivery to a storeO shopping online and shopping in personO online shopping and brushing your teethO prices of items online and prices of items in storesP Urgent how was kristallnacht carried out ? Hi there :D ! Can someone help me with my english homework please? What is the correct definition of group team sports?O A. Sports which cannot be played by fewer than five people per team.B. Sports which cannot be played by fewer than ten people per team.C. Sports in which only one player per team competes at a time, withindividual scores counting toward the team score.D. Sports consisting of more than one player on the field or court at atime.SUBME sample of 1800 computer chips revealed that 25% of the chips do not fail in the first 1000 hours of their use. The company's promotional literature claimed that 28% do not fail in the first 1000 hours of their use. Is there sufficient evidence at the 0.02 level to dispute the company's claim The diagonals of a rhombus are perpendicular please help me p n ca n l g help me thanks you very much For a certain item, the cost-minimizing order quantity obtained with the basic EOQ model is 350 units, and the total annual inventory (holding and order) cost is $1050. What is the inventory holding cost per unit per year for this item self-proclaimed state IS Sam discovered in his research of high school detention trends, that senior boys got detention more often than senior girls. In his write-up of findings, Sam concludes that in general high school boys are more likely than girls to cause problems, and therefore get detention. This is an example of: -36 = 6(2-8n) please how do you describe philosophy What is "Hi, How was your day doing" In Spanish?Thank you to the people who answer! Provide a therapeutic environment for the delivery of health careA. supportiveB. diagnosticC. biotechnologyD. informatics