Explanation:
hbyndbnn☝️
Explain the LWD process why is it important in drilling operations?
Answer:
Logging while drilling (LWD) is a technique of conveying well logging tools into the well borehole downhole as part of the bottom hole assembly (BHA). ... In these situations, the LWD measurement ensures that some measurement of the subsurface is captured in the event that wireline operations are not possible.
Explanation:
pls mark brainliest
What are three types of land reform
Answer:
Abolition of intermediaries (rent collectors under the pre-Independence land revenue system); Tenancy regulation (to improve the contractual terms including the security of tenure); A ceiling on landholdings (to redistributing surplus land to the landless);
Types of Land Reform
Abolition of Intermediaries
The first step taken by the Indian government under land reforms post-independence was passing the Zamindari Abolition Act. The primary reason of a backward agrarian economy was the presence of intermediate entities like, jagirdars and zamindar who primarily focussed on collecting sky-rocketing rents catering to their personal benefits, without paying attention to the disposition of farms and farmers. Abolition of such intermediaries not only improved conditions of farmers by establishing their direct connection with the government but also improved agricultural production.
Regulation of Rents
This was in direct response to the unimaginably high rents which were charged by intermediaries during British rule, which resulted in a never-ending cycle of poverty and misery for tenants. Indian government implemented these regulations to protect farmers and labourers from exploitation by placing a maximum limit on the rent that could be charged for land.
Tenure Security
Legislations were passed in all states of the country to grant tenants with permanent ownership of lands and protection from unlawful evictions on expiry of the lease. This law protects tenants from having to vacate a property immediately after their tenure is over unless ordered by law. Even in that case, ownership can be regained by tenants with the excuse of personal cultivation.
Different metabolic control systems have different characteristic time scales for a control response to be achieved. Match the time scale with the control system.
a. Covalent modification
b. Allosteric control
c. Gene expression
1. Seconds to minutes
2. Milliseconds
3. Hours
Answer:
a. Covalent modification = Seconds to minutes
b. Allosteric control = Milliseconds
c. Gene expression = Hours
Explanation:
Covalent modifications refer to the addition and/or removal of chemical groups by the action of particular enzymes such as methylases, acetylases, phosphorylases, phosphatases, etc. For example, histones are chromatin-associated proteins covalently modified by enzymes that add methyl groups (histone methylation), acetyl groups (histone acetylation), phosphate groups (histone phosphorylation), etc. Moreover, allosteric control, also known as allosteric regulation, is a type of regulation of the enzyme activity by binding an effector molecule (allosteric modulator) at a different site than the enzyme's active site, thereby triggering a conformational change on the enzyme upon binding of an effector. Finally, gene expression encompasses the cellular processes by which genetic information flows from genes to proteins (i.e., transcription >> translation). In metabolic pathways, enzymes that are able to catalyze irreversible reactions represent sites of control (for example, during glycolysis, pyruvate kinase is an enzyme that catalyzes an irreversible reaction, thereby serving as a control site). In turn, enzymatic activity is modulated by covalent modifications or reversible binding of allosteric effectors. Finally, metabolic pathways are also modulated by gene regulatory mechanisms that control the transcription of specific enzymes required for such pathways. During these processes, the times required for allosteric regulation, covalent modification (e.g., phosphorylation) and transcriptional control can be counted in milliseconds, seconds, and hours, respectively.
1) (30 pts ) Oxygen (O2) flows through a pipe, entering at at 4 m/sec at 10000 kPa, 227oC. For a pipe inside diameter of 3.0 cm, find the volumetric flow rate (m3/sec) and the mass flow rate of the gas (kg/sec) assuming you have an ideal gas
Complete Question
Nitrogen (N2) flows through a pipe, entering at at 4 m/sec at 1000 kPa, 2270C. For a pipe inside diameter of 3 cm, find the volumetric flow rate (m3/sec) and the mass flow rate of the gas (kg/sec) assuming you have an ideal gas Then using your ideal gas mass flow rate find the rate at which enthalpy enters the pipe (kJ/sec) NO Cp, Cv, k permitted
Answer:
[tex]H=9.91kJ/sec[/tex]
Explanation:
From the question we are told that:
Velocity [tex]v=4 m/sec[/tex]
Pressure [tex]P=1000kPa[/tex]
Temperature [tex]T=227 \textdegree C[/tex]
Diameter [tex]d=3cm=>0.03m[/tex]
Generally the equation for volumetric Flow Rate is mathematically given by
[tex]V_r=(\frac{\pi*d^2}{4}v)[/tex]
[tex]V_r=(\frac{\pi*(0.03)^2}{4} *4)[/tex]
[tex]V_r=0.002827m^3/s[/tex]
Generally the equation for mass Flow Rate is mathematically given by
[tex]m_r=\frac{PV_r}{RT}[/tex]
[tex]m_r=\frac{1000*0.002827}{0.297*(227+273)}[/tex]
[tex]m_r=0.019kg/sec[/tex]
Generally the equation for mass Flow Rate is mathematically given by
Using gas Table for enthalpy Value
[tex]T=500K=>h=520.75kg[/tex]
Therefore
[tex]H=mh[/tex]
[tex]H=0.019*520.75[/tex]
[tex]H=9.91kJ/sec[/tex]
what is the term Self-induced EMF (Induction)
Self induction and Mutual induction
If the current through the coil changes, the flux through the coil changes and an emf is induced. Since the emf is induced in the coil due to its own field, it is called self–induced emf and the phenomenon is called self–induction.
Answer:
Self induced EMF is the electro-motive force that is generated due to change in flux in the coil caused by the change in current in the same coil.
once scientist has asked a question conducted an investigation and analyzed the data his or hwr goalis to
Answer:
hola
Explanation:
Explanation:
so its an question?..........
Use a truth table to verify the first De Morgan law ¬(p ∧ q) ≡ ¬p ∨ ¬q.
Answer:
p q output ¬(p ∧ q)
0 0 1
0 1 1
1 0 1
0 0 0
p q output ¬p ∨ ¬q
0 0 1
0 1 1
1 0 1
0 0 0
Explanation:
We'll create two separate truth tables for both sides of the equation, and see if they match.
The expressions in the question use AND, OR and NOT operators.
The AND operation needs both inputs to be 1 to return a 1.The OR operation needs at least 1 of the inputs to be 1 to return a 1. The NOT operation takes a 1 and turns it into a 0, or takes a 0 and turns it into a 1.Let's start with ¬(p ∧ q)
NOT (0 AND 0) = NOT (0) = 1NOT (0 AND 1) = NOT (0) = 1NOT (1 AND 0) = NOT (0) = 1NOT (1 AND 1) = NOT (1) = 0Now let's move on to the second expression ¬p ∨ ¬q
NOT(0) OR NOT(0) = 1 OR 1 = 1NOT(0) OR NOT(1) = 1 OR 0 = 1NOT(1) OR NOT(0) = 0 OR 1 = 1NOT(0) OR NOT(0) = 0 OR 0 = 0Therefore we can say the two expressions are equivalent.
Attached the truth table to verify the first De Morgan's law ¬(p ∧ q) ≡ ¬p ∨ ¬q:
What is the explanation of the truth table?As you can see from the attached truth table, the truth values for ¬(p ∧ q) and ¬p ∨ ¬q are the same for all combinations of p and q, confirming the validity of the first De Morgan's law.
De Morgan's law is a fundamental principle in propositional logic.
It states that the negation of a conjunction (AND) is equivalent to the disjunction (OR) of the negations of the individual propositions.
Learn more about truth table at:
https://brainly.com/question/28605215
#SPJ3
Question 1 of 8.
What should you do to drive safely in the station?
Turn on your hazard lights
Roll your windows down and turn off the radio
Maintain idle speed (below 5mph)
All of the above
Mark for follow up
Answer: all of the above
Explanation:
To drive safely in the station, the correct option is D. All of the above.
It should be noted that when a person is driving, it's essential for the person to drive carefully in a station.
One should not smoke in a station. Also, it's important that the driver should turn on their hazard lights
Furthermore, it's important for one to roll their windows down, turn off the radio and also maintain idle speed.
In conclusion, the correct option is D.
Read related link on:
https://brainly.com/question/18889428
“Snow Cover Area change Analysis for Kabul Basin”
Summarize how GIS & Remote Sensing is incorporated in this study.
GIS
The full for GIS is : Geographic Information System.
The GIS is a system of mapping that is used to create, analyze, manage and map all the types of data.
It is a method capturing, checking as well as displaying all the data that is related to the position of the surface of earth.
Remote Sensing
Remote sensing is defined as a process where the various physical characteristics of an area are constantly monitored and detected by a process of measuring the reflection of the emitted radiations at ta distance.
The snow covered areas of the Kabul basin can be monitored and analyzed by using the process of GIS and remote sensing.
They provide a continuous source of information and data about snow covered peaks, the amount of snow to the authorities.
Learn More :
https://brainly.in/question/1556256?__cf_chl_captcha_tk__=pmd_2d2d9994422ca43d3cbbcf6322e6c34da175405a-1628654009-0-gqNtZGzNAvijcnBszQ3i
Question # 1
Fill in the Blank
Complete the following sentence.
Mobility refers to the ability to _____.
to move or walk freely and easly
What is working fluid and mention five example of working fluid.
Answer:
For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. ... Examples without phase change include air or hydrogen in hot air engines such as the Stirling engine, air or gases in gas-cycle heat pumps, etc.
Explanation:
Answer:
A working fluid is a gas or liquid that primarily transfers force, motion or mechanical energy
Examples:Air, pentane, chlorofluorocarbons, butane, propane and ammonia
A one electron species, Xm, where m is the charge of the one electron species and X is the element symbol, loses its one electron from its ground state when it absorbs 7.84×10−17 J of energy. Using the prior information, the charge of the one electron species is?
Answer:
c +5
Explanation:
we have difference in energy =
2.18x10⁻¹⁸ x z² / n²
now n = 1
amount of energy absorbed Δdelta = 7.84×10−17 J
7.84×10⁻¹⁷ = 2.18x10⁻¹⁸ x z²
we divide through by 2.18x10⁻¹⁸
z² = 7.84×10⁻¹⁷ / 2.18x10⁻¹⁸
z² = 35.9633
z = √35.9633
z = 5.9969
≈ 6
charge = atomic number 6 - number of electrons available in the element 1
= 6-1 = 5
from the calculations above, the charge of the one electron specie would be c +5
Question in Statistics and Probability 2
Petrol samples were taken at three different stations along a national highway to determine whether the octane rating varied from one station to another. Six petrol specimens of the same category were randomly selected at each station in different days. We are interested to know if there is sufficient evidence to indicate a difference in the mean octane rating at the different stations.
State the Null and the Alternative Hypotheses.
If OSHA determines that an employer's response to a non-formal complaint is adequate, what options does the employee filing the non-formal complaint have?
Biết op-amp có Vsat = 12V, R1=R2=R3=R4=R, dạng sóng điện áp Vi(t) được cho như
hình 2.16b
a. Tính V0 theo Vi, độ lợi áp AV
b. Vẽ lại dạng sóng điện áp V0(t) khi Vm= 3
8 V
c. Vẽ lại dạng sóng điện áp V0(t) khi Vm = 5V
Answer:
Hello bro
Explanation:
I think i can help you something but can you translate it on english plzz
A resistor has code 104 printed on it .What is the resistive value of this resistor
Answer:
X = 1 (1st digit in the code)
Y = 0 (2nd digit)
Z = 4 (3rd multiplier digit)
104 → 10 × 10^4 Ω
→ 10 × 10000Ω
→ 100 kΩ
resistors are marked 104, 105, 205, 751, and 754. The resistor marked with 104 should be 100kΩ (10x10^4), 105 would be 1MΩ (10x10^5), and 205 is 2MΩ (20x10^5). 751 is 750Ω (75x10^1), and 754 is 750kΩ (75x10^4).
Here we need to understand how a code in a resistor gives us information on the resistor. Here we will see that the code means that the resistance is 100,000 Ω.
When we use numbers, let's assume that we have 3 single-digit numbers abc.
So if the code in our resistor is abc, this will mean that the resistance of the resistor is:
ab×10^c Ω
Using this general rule we can see that if the code is 104, then the resistance will be:
r = 10×10^4 Ω
= 100,000 Ω
Then we can conclude that the resistive value of this resistor is 100,000 Ω
If you want to learn more, you can read:
https://brainly.com/question/74415
Explain moment of inertia
Answer:
The moment of inertia is basically a physical quantity which describes how easy it is for a body to rotate itself around a given axis.
In easier wording: Moment of Inertia is a body and when it starts rotating or moving, it will keep doing so until we stop it by force.
Explanation:
For example, a car that is moving and active will continue to move even if you were to switch the engine off.
Race cars at the Indianapolis Speedway average speeds of 185 mi/h. After determining the altitude of Indianapolis, find the Mach number of these cars and estimate whether compressibility might affect their aerodynamics.
Answer:
- the Mach number is 0.24.
- Compressibility becomes effective when Mach number is greater than 0.3, the Mach number of the race cars is less than 0.3, hence, compressibility will not affect their aerodynamics.
Explanation:
Given the data in the question;
Average speed V = 185 miles per hour = ( 185 /2.237 ) m/s = 82.7 m/s
From Almanac, we can find that Indianapolis is at 220 m altitude.
So from table, at that altitude, the standard speed of sound will be 339.4 m/s .
Mach number of the race car will be;
Mach Number = Velocity / sound speed
we substitute
Mach Number = ( 82.7 m/s ) / ( 339.4 m/s )
Mach Number = 0.24
Therefore the Mach number is 0.24.
We know that, compressibility becomes effective when the Mach number is greater than 0.3.
Since the Mach number of the race cars is less than 0.3, compressibility will not affect their aerodynamics.
The secondary coil of a step-up transformer provides the voltage that operates an electrostatic air filter. The turns ratio of the transformer is 41:1. The primary coil is plugged into a standard 120-V outlet. The current in the secondary coil is 1.2 x 10-3 A. Find the power consumed by the air filter.
Answer:
5.9 watts
Explanation:
The secondary voltage is the primary voltage multiplied by the turns ratio:
(120 V)(41) = 4920 V
The power is the product of voltage and current:
(4920 V)(1.2·10^-3 A) = (4.92)(1.2) W = 5.904 W
The power consumed is about 5.9 watts.
The load on a bolt consists of an axial pull of 10 KN together with a transverse shear force of 5 KN. Find the diameter of bolt required according to I. Maximum principal stress theory; 2. Maximum shear stress theory; 3. Maximum principal strain theory, 4. Maximum strain energy theory, and 5 Maximum distortion energy theory. Take permissible tensile stress at elastic limit = 100 MPa and poisson's ratio = 0.3
Answer:
hey. its a big question. solved from *c hegg
Explanation:
The host at the end of the video claims that ___________ is crucial to his success as a driver. A. Reaction time B. A safe space C. His seat belt
Answer:
answer is C. his seat belt
định khoản nghiệp vụ sau : tạm ứng cho nhân viên A đi công tác bằng tiền mặt 50.000
Answer:
report on a fight you have witnessed
I want to explain what 2000 feet looks like to young children so that they can imagine it in class
Answer:
maybe take a really common toy kids play with or often see, find the average height for the toy and do the math to see how many of those toys stacked ontop of eachother would make up 2000 feet. For example (this isn't accurate btw just an idea of what it would sound like but) "Have you ever seen a barbie doll? well if you stack 400 barbie dolls ontop of their head it would be equal to 2000 feet."
Explanation:
sometimes taking common or beloved objects children have into your examples makes them have a better image of how small or how big something is.
Solve using Matlab the problems:
One using the permutation of n objects formula
One using the permutation of r objects out of n objects
You can pick these problems from the textbook or you can make up your own questions.
Help me pleaseeeee
Answer:
Explanation:
% Clears variables and screen
clear; clc
% Asks user for input
n = input('Total number of objects: ');
r = input('Size of subgroup: ');
% Computes and displays permutation according to basic formulas
p = 1;
for i = n - r + 1 : n
p = p*i;
end
str1 = [num2str(p) ' permutations'];
disp(str1)
% Computes and displays combinations according to basic formulas
str2 = [num2str(p/factorial(r)) ' combinations'];
disp(str2)
=================================================================================
Example: check
How many permutations and combinations can be made of the 15 alphabets, taking four at a time?
The answer is:
32760 permutations
1365 combinations
==================================================================================
A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium
at temperature T. The overall mole fraction of species 1 in the system is z1 = 0.65. At
temperature T, lnγ1 = 0.67 x2
2; lnγ2 = 0.67 x1
2; P1
sat = 32.27 kPa; and P2
sat = 73.14 kPa.
Assuming the validity of Eq. (13.19),
Final PDF to printer
13.10. Problems 511
smi96529_ch13_450-523.indd 511 01/06/17 03:27 PM
(a) Over what range of pressures can this system exist as two phases at the given T and z1?
(b) For a liquid-phase mole fraction x1 = 0.75, what is the pressure P and what molar
fraction of the system is vapor?
(c) Show whether or not the system exhibits an azeotrope
Question in Probability and Statistics 2
How many numbers multiple of 3 are in the range [2,2000]?
Flat plate collector can provide temperature upto_____
Answer:
80⁰C
Explanation:
80°C.
Normal flat plate collectors can deliver heat at temperatures up to 80°C. Deficiency rates for normal flat plate collectors can be classified as visual losses, which produce with cumulative angles of the incident sunshine, and thermal losses, which upsurge fast with the working temperature intensities
A steel component with ultimate tensile strength of 800 MPa and plane strain fracture toughness of 20 MPam is known to contain a tunnel (internal) crack of length 1.4 mm. This alloy is being considered for use in a cyclic loading application for which the design stresses vary from 0 to 410 MPa. Would you recommend this alloy for this application
Complete question:
A steel component with a tensile strength of 800 MPa and fracture toughness Kic=20 MPa Nm is known to contain internal cracks (also called tunnel cracks) with the maximum length of 1.4 mm. This steel is being considered for use in a cyclic loading application for which the designed stresses vary from 0 to 420 MPa. Would you recommend using this steel in this application?
a. Not sure. Because cyclic loading is applied. Fatigue test is needed in order to make the recommendation.
b. Yes, this because the tensile strength of steel is much higher than the applied highest stress of 420 MPa.
c. Yes, this because the calculated critical stress to fracture for the cracks is higher than the highest applied stress of 420 MPa and the steel can withstand the stress of 420 MPa.
d. No. Although the calculated critical stress to fracture for the cracks is slightly higher than the highest applied stress of 420 MPa and the steel may withstand the static stress of 420 MPa, the cyclic loading may cause rapid fatigue fracture.
Answer:
A. Not sure. Because cyclic loading is applied. Fatigue test is needed in order to make the recommendation.
Explanation:
we are not sure if to recommend this alloy for this application given that this material has already been left to experience fatigue degradation. the cyclic load application brings about a growth in the crack. We know that cyclic loading is continuous loading that is useful for the testing of fatigue. Therefore the answer to this question is option a. We cannot make recommendations except fatigue testing has been carried out.
thank you!
Tech A says that the voltage regulator controls the strength of the rotor s magnetic field. Tech B says that the voltage regulator is installed between the output terminal of the alternator and the positive terminal of the battery. Who is correct?
Answer:
Voltage Regulator
Technician A is correct.
Explanation:
Technician B is not correct. The voltage regulator is not installed between the output terminal of the alternator and the positive terminal of the battery as claimed by Technician B. Technician A's opinion that the voltage regulator controls the strength of the rotor's magnetic field is correct. The computer can also be used to control the output of the alternator by controlling the field current.