Answer:
I have to go get my car from the doctor office today
A university professor asked his class of 42 students when they had studied for his class the previous weekend. There responses were. please answer part a, b and c
ANSWERS:
a) 16 students
b) 25 students
c) 2 students
STEP BY STEP:
There are 42 students in total. This question can be solved by "Principal of Inclusion and Exclusion"
Question a)
The students that studied on Sunday in total with overlaps is 30. To figure out the students that ONLY studied on Sunday you need to first minus the overlaps in the combos:
the combos:
3, 10, 6, 2
Since the last combo included all of the other dates, we need to minus it:
1, 8, 4, 2
Now we can use the total of Sunday and minus the combos that includes Sunday:
30 - (4 + 2 + 8) = 16 students
Question b)
To figure out all the students that only studied on ONE day, not 2 not 3, just one day. We need to figure out the students that studied for Saturday and Friday using the same method before for figuring out Sunday:
Friday: 9 - 4 - 1 -2 = 2 students
Saturday: 18 - 1 - 2- 8 = 7 students
and now add them all together: 2 + 7 + 16 = 25 students
That is the total number of students that studied on one day.
Question c)
Now for the numbers of students that didn't study... We can just use the total to minus everything else!
42 - (25 + 1 + 4 + 8 + 2) = 2 students!!!
And thats all done! If you still don't get it, please ask!
Determine the volume of a sphere with a diameter of 5 inches.Use 3.14 for Pi, and round your answer to the nearest inch.
Answer:
[tex]{ \bf{formular : \: { \tt{volume = \frac{4}{3} \pi {r}^{3} }}}} \\ { \tt{volume = \frac{4}{3} \times 3.14 \times {( \frac{5}{2}) }^{3} }} \\ { \tt{volume = 65.4 \: cubic \: inches}}[/tex]
Answer:
65
Step-by-step explanation:
formula = 4/3 * 3.14* r^3
= 4/3 * 3.14 * 2.5^3 (radius is half of the diameter)
= 65.44985
rounded to 65
The angles in a triangle are represented by x, x+10, and x+50. What is the measure of the largest angle?
A.70 degrees
B.80 degrees
C.100 degrees
D.90 degrees
Given that,
The angles in a triangle are represented by x, x+10, and x+50.
We had to,
find the measure of the largest angle.
Let's start to solve,
→ x + (x+10) + (x+50) = 180°
→ x + x + x = 180° (-50 -10)
→ 3x = 180° -60
→ 3x = 120
→ x = 120/3
→ x = 40°
Then the value of x + 10,
→ x + 10
→ 40 + 10
→ 50°
Then the value of x + 50,
→ x + 50
→ 40 + 50
→ 90°
The measure of the largest angle is,
→ D. 90 degrees
Hence, option (D) is correct answer.
Step-by-step explanation:
good of you and good workings
If x = y, then x – a = y – a represents the ________ property of equality.
Answer:
Subtractive Property of equality
Step-by-step explanation:
Since x = y, When you subtract anything from x, you must do the same to y for them to stay equal.
Answer:
Subtraction property of equality
Can someone please help me with this.
Find an equation of the line that is the perpendicular bisector of the line segment joining the points (6,2) and (18,6)
Answer:
y= -3x +40
Step-by-step explanation:
Properties of perpendicular bisector:
• perpendicular to the given line
• cuts through the center of the given line
The equation of a line can be written in the form of y=mx +c, where m is the gradient and c is the y -intercept.
Let's find the gradient of the given line first.
[tex]\boxed{gradient = \frac{y1 - y2}{x1 - x2} }[/tex]
Gradient of given line
[tex] = \frac{6 - 2}{18 - 6} [/tex]
[tex] = \frac{4}{12} [/tex]
[tex] = \frac{1}{3} [/tex]
The product of the gradients of perpendicular lines is -1.
m(⅓)= -1
m= -1(3)
m= -3
Substitute m= -3 into the equation:
y= -3x +c
To find the value of c, substitute a pair of coordinates in which the perpendicular bisector passes through into the equation. Since perpendicular bisectors passes through the center of the segment, we can find the point in which the perpendicular bisector passes through using the mid- point formula.
[tex]\boxed{midpoint = ( \frac{x1 + x2}{2} , \frac{y1 + y2}{2} )}[/tex]
Midpoint
[tex] = ( \frac{6 + 18}{2} , \frac{6 + 2}{2} )[/tex]
[tex] = ( \frac{24}{2} , \frac{8}{2} )[/tex]
[tex] = (12,4)[/tex]
y= -3x +c
when x= 12, y= 4,
4= -3(12) +c
4= -36 +c
c= 4 +36
c= 40
Thus, the equation of the perpendicular bisector is y= -3x +40.
Find the area of the triangle which the line 2x – 3y +6=0 forms with the coordinate axis.
2x-3y+6=0 has an x intercept of 2 and a y intercept of -3.
That means the 2 sides of the right triangle are 2 and -3
Area of triangle= 1/2×base×height
= 1/2×-3×2
=-3
∴ Area of the triangle=-3
The area of the asked triangle is 3 sq units.
What is area?Area is defined as the total space taken up by a flat (2-D) surface or shape of an object.
Given that, a triangle is formed by the line 2x – 3y +6=0 and the coordinate axis.
When we plot the graph of the line, we get, y-intercept = 2 and x-intercept = -3
Hence, the height and base of the triangle will be 2 and 3 respectively.
Area of a triangle = 1/2 (base) (height)
Area = 1/2 (2)(3)
Area = 3
Hence, the area of the asked triangle is 3 sq units.
Learn more about areas, click;
https://brainly.com/question/27683633
#SPJ2
Answer by any chance?❤️
Step-by-step explanation:
Question 2.[tex] \frac{ \frac{6}{7} }{ \frac{9}{14} } [/tex]
[tex] = \frac{6}{7} \times \frac{14}{9} [/tex]
[tex] = \frac{2}{1} \times \frac{2}{3} [/tex]
[tex] = \frac{4}{3} = 1 \frac{1}{3} (Ans) [/tex]
Question 3.[tex] \frac{18}{x} = \frac{6}{10} [/tex]
[By cross multiplication]
=> 18 × 10 = 6 × x
[tex] = > \frac{18 \times 10}{6} = x[/tex]
=> 3 × 10 = x
=> x = 30 (Ans)
Certify Completion Icon Tries remaining:2 A town recently dismissed 10 employees in order to meet their new budget reductions. The town had 7 employees over 50 years of age and 18 under 50. If the dismissed employees were selected at random, what is the probability that exactly 5 employees were over 50
Answer:
0.055 = 5.5% probability that exactly 5 employees were over 50.
Step-by-step explanation:
The employees are removed from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
7 + 18 = 25 employees, which means that [tex]N = 25[/tex]
7 over 50, which means that [tex]k = 7[/tex]
10 dismissed, which means that [tex]n = 10[/tex]
What is the probability that exactly 5 employees were over 50?
This is P(X = 5). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 5) = h(5,25,10,7) = \frac{C_{7,5}*C_{18,5}}{C_{25,10}} = 0.055[/tex]
0.055 = 5.5% probability that exactly 5 employees were over 50.
write the equation of a line of a line passing through the points (3,1) and (6,3).
Answer:
i think its 2 1
Step-by-step explanation:
Answer:
y =2/3x-1
Step-by-step explanation:
First find the slope
m = ( y2-y1)/(x2-x1)
= ( 3-1)/ (6-3)
= 2/3
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 2/3x +b
Using a point
3 = 2/3(6)+b
3 = 4+b
3-4 =b
-1=b
y =2/3x-1
pleaseee i need help!
2 questions in one pleasee 90 points!
Answer:
A the answer is A if you look at it .
Answer:
The first one is B) point D
The second one is D) (0,0)
Hope this helps!
btw, coordinates are in (x,y) form, so the other answer above me is wrong.
Ms. Patel has 24 students in her class. When she collected yesterday's homework, Ms. Patel found that 16 students completed the homework in
pencil and 8 students used a pen.
What is the probability that the first two assignments Ms. Patel collected were completed in pencil?
Answer:
Maybe
1/8 is the probability that the first two assignments Ms.patel collected were completed in pencil
Given the functions below, find f(x) - g(x) f(x) = 3x^2 + 2x + 1 g(x) = x^2 - 6x + 3
Answer:
Here is your answer.....
Hope it helps....
The value of given function f(x) - g(x) is 2x² + 2x + 1.
What is function?A relation between a collection of inputs and outputs is known as a function. A function is, to put it simply, a relationship between inputs in which each input is connected to precisely one output. Each function has a range, codomain, and domain.The characteristic that every input is associated to exactly one output defines a function as a relationship between a set of inputs and a set of allowable outputs.Given,
f(x) =3x² + 2x + 1
g(x) = x² - 6x + 3
f(x) - g(x) = ( 3x² + 2x + 1) - ( x²- 6x + 3)
= 3x² + 2x +1 - x² + 6x - 3
= 2x² +8x - 2
Therefore , the value of given function f(x) - g(x) is 2x² + 2x + 1.
Learn more about function brainly.com/question/11963913
#SPJ2
a rectangle has an area of 186m2
one of the sides is 3m in length
work out the perimeter of the rectangle
seriously need help
Step-by-step explanation:
here is the ans
the perimeter= 130m
hope so this might help you
What is the average
number of 4th graders per
class from the table above?
Answer:
29
Step-by-step explanation:
You need to find the average number of students
Add up all the students
27+31+28+33+26
145
Divide by the number of classes
145/5
29
The average is 29
32
Step-by-step explanation:
answer of number 30 is 32
21. Gabe Amodeo, a nuclear physicist, needs 80 liters of a 30% acid solution. He currently has a 20% solution and a 60%
solution. How many liters of each does he need make the needed 80 liters of 30% acid solution?
Gabe needs
liters of the 20% solution.
He also needs
liters of the 60% solution.
Let x be the amount (in liters) of 20% solution that Gabe uses, and y the amount (also in L) of the 60% solution.
He needs 80 L of 30% solution, so that
x + y = 80
0.20x + 0.60y = 0.30 (80) = 24
Solve for y in terms of x :
y = 80 - x
Substitute this into the second equation and solve for x :
0.20x + 0.60 (80 - x) = 24
0.20x + 48 - 0.60x = 24
24 = 0.40x
x = 60
Solve for y :
y = 80 - 60
y = 20
If a concrete mix contains 1-1/2 cubic feet of gravel, 1/2 cubic foot of water,
1 cubic foot of cement, and 2 cubic feet of sand, what percentage of the mix is
sand?
Answer:
The correct answer is "50%".
Step-by-step explanation:
The given values are:
Gravel,
= [tex](1-\frac{1}{2} )[/tex]
Water,
= [tex]\frac{1}{2}[/tex]
Cement,
= 1
Sand,
= 2
Now,
The total mixture will be:
= [tex]Gravel+Water+Cement+Sand[/tex]
By substituting the values, we get
= [tex](1-\frac{1}{2} )+\frac{1}{2} +1+2[/tex]
= [tex]\frac{1}{2} +\frac{1}{2} +1+2[/tex]
= [tex]4 \ cubic \ feet[/tex]
hence,
The percentage of sand will be:
= [tex]\frac{Sand}{Total}\times 100[/tex]
= [tex]\frac{2}{4}\times 100[/tex]
= [tex]50[/tex]%
Two long jumpers competed in a world-class track meet. The first athlete jumped a distance of 28.65 feet, and the second athlete reached a distance of 24.25 feet.
Answer:
Step-by-step explanation:
first athlete =28.65
second athlete=24.25
the first athlete jump - second athlete jump
28.65-24.25
= 4.40
the first athlete long jump then the second athlete
Which of the following phrases should not be expressed using a negative number?
Answer:
its 1900 Bc. Because BC stand for before chirst
Step-by-step explanation:
degree and classification of 4x^2+32x+63?
nvm its quadratic trinomial
Answer:
Pertaining to the mathematical expression conveyed, the answer to such proposed interrogate is acknowledged as the following:
Degree: 2nd degree term.
Classification: Quadratic trionomial.
Step-by-step explanation:
Evaluating the Degree:
The degree is acknowledged as the predominating term adjacent to a base of a peculiar value that denotes the particular allocation within a polynomial.
4x^2 has the highest degree of 2.
32x has the degree of one, being that x individually is x^1.
Since polynomials are defined by the term in which obtains the greatest degree, ^2 is referred to as quadratic, whereas ^3 is cubic, ^4…
Classification Evaluation:
Such could be determined by evaluating for the quantity of terms present within the mathematical expression or statement.
4x^2 is the first term.
32x is the second term.
63 is the third term (considered a constant).
Thus, the correct answer is a quadratic trinomial.
*I hope this helps.
Solve for X. Round to the nearest tenth, if necessary. Please help
Answer:
X=1.2/1.3
answérica is 1.25, depends on how you want to round
Step-by-step explanation:
Match each shape to the number of lines of reflection that will reflect the shape onto itself. Drag the items on the left to the correct location on the right.
Answer:
rectangle- 2 lines of reflection
trapezoid- 0 lines of reflection
regular pentagon- 5 lines of reflection
square- 4 lines of reflection
Step-by-step explanation:
(9,2) and (5,-4) find the slope of the line containing the pair of points
Answer:
3/2
Step-by-step explanation:
We can use the slope formula
m = (y2-y1)/(x2-x1)
= ( -4-2)/(5-9)
= -6/-4
=3/2
7(x-9y) need an answer
Answer:
7x - 63y
Step-by-step explanation:
Given
7(x - 9y) ← multiply each term in the parenthesis by 7
= 7x - 63y
Surds see attached 20 points
Answer:
[tex]5\sqrt{2} \\45[/tex]
Step-by-step explanation:
just multiply
Answer:
a) 5√2
b) 135
Step-by-step explanation:
√5·√10 is equivalent to √50, which in turn is equivalent to √25·√2, or 5√2.
√27·√75 can be simplified by factoring:
√3·√9·√3√25, or (because √3·√3 = 3):
(3)(9)(5) = 135
SAT scores are normally distributed with a mean of 1,500 and a standard deviation of 300. An administrator at a college is interested in estimating the average SAT score of first-year students. If the administrator would like to limit the margin of error of the 82% confidence interval to 25 points, how many students should the administrator sample
Answer:
The appropriate solution is "259".
Step-by-step explanation:
According to the question,
[tex]\sigma = 300[/tex]
[tex]M.E=25[/tex]
At 82% CI,
[tex]\alpha = 0.18[/tex]
Critical value,
[tex]Z_c=1.341[/tex]
Now,
The sample size will be:
⇒ [tex]n=(Z_c\times \frac{\sigma}{E} )^2[/tex]
By substituting the values, we get
[tex]=(1.341\times \frac{300}{25} )^2[/tex]
[tex]=(1.341\times 12)^2[/tex]
[tex]=259[/tex]
What is y-3=3/4(x-5) in standard form?
Answer:
[tex]y-3=\frac{3}{4} (x-5)\\\\y-3=\frac{3}{4}x-\frac{3}{4}(5)\\\\y=\frac{3}{4} x+3-\frac{15}{4} \\\\y=\frac{3}{4} x+\frac{12}{4} -\frac{15}{4} \\\\y=\frac{3}{4} x-\frac{3}{4}[/tex]
Is this standard form? :\
Answer:
3x-4y=3
Step-by-step explanation:
Hi there!
We are given the equation y-3=[tex]\frac{3}{4}(x-5)[/tex], and we want to write it in standard form
Standard form is given as ax+by=c, where a, b, and c are integer coefficients, a CANNOT be 0 and CANNOT be negative, and b also CANNOT be 0
So let's expand the parentheses in the equation
Do the distributive property
y-3=[tex]\frac{3}{4}x-\frac{15}{4}[/tex]
Add 3 to both sides
y=[tex]\frac{3}{4}x-\frac{3}{4}[/tex]
We expanded the parentheses, but the equation is now in slope-intercept form (y=mx+b, where m is the slope and b is the y intercept)
Remember that we want it in standard form, which is ax+by=c
Subtract [tex]\frac{3}{4}x[/tex] from both sides
[tex]\frac{-3}{4}x+y=\frac{-3}{4}[/tex]
Remember that the coefficients of a, b, and c need to be integers, and also that a (the coefficient in front of x) CANNOT be negative
So multiply both sides by -4
[tex]-4(\frac{-3}{4}x+y)=-4(\frac{-3}{4})[/tex]
Distribute -4 to every number
[tex]-4(\frac{-3}{4}x)+-4(y)=-4(\frac{-3}{4})[/tex]
Multiply
[tex]\frac{12}{4}x-4y=\frac{12}{4}[/tex]
Simplify
3x-4y=3
There's the equation in standard form
Hope this helps!
Paul baked 208 brown loaves. If the ratio of white loaves to brown loaves is 3:2, how many loaves did he bake in total?
Paul baked 520
loaves.
The owner of a restaurant is placing an order for bread.
On Friday there were 300 customers in the restaurant and 100 bread rolls were served.
On Saturday he is expecting 540 customers.
What would be a good estimate of how many bread rolls should he order? I
Os 2021
A Exit
Back
✓ Mark Question
172.000
13 :
O atv
N
MacBook Air
Answer:
A. Total=520 loaves
B. Estimate= 180 rolls
Step-by-step explanation:
A formula for the normal systolic blood pressure for a man age A, measured in mmHg, is given as P=0.006A2−0.02A+120. Find the age of a man whose normal blood pressure measures 126 mmHg.
Round your answer to the nearest year.
Answer:
33 years
Step-by-step explanation:
Given the quadratic model :
P=0.006A2−0.02A+120
P = blood pressure ; A = Age
Given a blood pressure value of 126 mmHg ; the age, A will be ;
The equation becomes :
126 = 0.006A2−0.02A+120
0.006A² - 0.02A + 120 - 126 = 0
0.006A² - 0.02A - 6 = 0
Using the quadratic formula :
-b ± (√b²-4ac) / 2a
a = 0.006 ; b = - 0.02 ; c = - 6
Using calculator :
The roots are :
a = 33.333 or a = - 30
Age cannot be negative, hence, the age, A will be 33.333
Total the nearest year ; Age = 33 years
Find z such that 4.8% of the standard normal curve lies to the left of z. (Round your answer to two decimal places)
Answer:
The correct answer will be "-1.66".
Step-by-step explanation:
Let z₀ be,
[tex]P(z<z_0)=4.8 \ percent[/tex]
[tex]=0.048[/tex]
⇒ [tex]\Phi (z_0)=0.048[/tex]
Now,
⇒ [tex]\Phi (-1.6646)=0.048[/tex]
[tex]z_0=-1.6646[/tex]
[tex]\simeq -1.66[/tex]
Thus the above is the right answer.