Answer:
A. StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction
Step-by-step explanation:
Given:
(2x + 5) / (x² - 3x) - (3x + 5) / (x³ - 9x) - (x + 1) / x² - 9
Factor the denominators
(2x + 5) / x(x - 3) - (3x + 5) / x(x - 3)(x + 3) - (x + 1) / (x - 3)(x + 3)
Lowest common multiple of the 3 fractions is x(x - 3)(x + 3)
= (2x+5)(x+3) - (3x + 5) - (x + 1)x / x(x - 3)(x + 3)
= (2x²+6x+5x+15) - (3x + 5) - (x² + x) / x(x - 3)(x + 3)
= 2x² + 11x + 15 - 3x - 5 - x² - x / x(x - 3)(x + 3)
= x² + 7x + 10 / x(x - 3)(x + 3)
Solve the numerator.
Solve the quadratic expression by finding two numbers whose product is 10 and sum is 7
The numbers are 5 and 2
= x² + 5x + 2x + 10 / x(x - 3)(x + 3)
= x(x + 5) + 2(x + 5) / x(x - 3)(x + 3)
= (x + 5)(x + 2) / x(x - 3)(x + 3)
A. StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction
Recall,
x(x - 3)(x + 3) is a factor of x³ - 8x
A. StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction
(x + 5)(x + 2) / x³ - 9x
B. StartFraction (x + 5) (x + 4) Over x cubed minus 9 x EndFraction
(x + 5)(x + 4) / x³ - 9x
C. StartFraction negative 2 x + 11 Over x cubed minus 12 x minus 9 EndFraction
2x + 11 / x³ - 12x - 9
D. StartFraction 3 (x + 2) Over x squared minus 3 x EndFraction
3(x + 2) / x² - 3x
A simple random sample of 49 8th graders at a large suburban middle school indicated that 88% of them are involved with some type of after school activity. Find the margin of error associated with a 90% confidence interval that estimates the proportion of them that are involved in an after school activity.
Answer:
The margin of error associated with a 90% confidence interval that estimates the proportion of them that are involved in an after school activity is 0.0764.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
A simple random sample of 49 8th graders at a large suburban middle school indicated that 88% of them are involved with some type of after school activity.
This means that [tex]n = 49, \pi = 0.88[/tex]
Margin of error:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]M = 1.645\sqrt{\frac{0.88*0.12}{49}}[/tex]
[tex]M = 0.0764[/tex]
The margin of error associated with a 90% confidence interval that estimates the proportion of them that are involved in an after school activity is 0.0764.
please explain this to me.
Answer:
Equation of line:- y=2x-7
slope(m)=2
slope of parallel line (m)=2
∴ Equation of parallel line:- y=2x+b
it passes through the point (-3,6)
6=2(-3)+b 6+6=b
b=12
∴ y=2x+12
OAmalOHopeO
The median house price in Waterloo Region increased by 3.6% from Jan 1, 2018 to Jan 1, 2019. A home
was purchased in Waterloo Region on April 1, 2019 for $600,000.
(a) Assume this trend continues, write an exponential equation that models the Resale Value of this
home over time.
(b) At this rate, determine the date of the resale price of the home would reach $1 million (Show your
work to accurate to the nearest month)
(c) Use your exponential equation to determine the expected resale value of the home on April 1, 2020.
Answer:
The right answer is:
(a) [tex]P(t) = P_o \ e^{0.03536t}[/tex]
(b) [tex]t = 14 \ years \ 6 \ months[/tex]
(c) [tex]P(t) = =621,595.6[/tex] ($)
Step-by-step explanation:
Given:
House price increment rate,
= 3.6% annually
(a)
Let the exponential equation will be:
⇒ [tex]P(t) = P_o e^{Kt}[/tex]
here,
t = 0
P = P₀
t = 1 yr
then,
[tex]P(1) = P_o +3.6 \ persent \ P_o[/tex]
[tex]=1.036 \ P_o[/tex]
now,
⇒ [tex]1.036 P_o = P_o \ e^{K.1}[/tex]
[tex]ln(1.036) = K[/tex]
[tex]K = 0.03536[/tex]
Thus, the exponential equation will be "[tex]P(t) = P_o \ e^{0.03536t}[/tex]".
(b)
We know,
[tex]P_o = 600,000[/tex] ($)
[tex]P(t) = 10,00,000[/tex] ($)
∵ [tex]P(t) = P_o \ e^{0.03536t}[/tex]
[tex]1000000=600000 \ e^{0.03536 t}[/tex]
[tex]\frac{5}{3}= e^{0.03536 t}[/tex]
[tex]ln(\frac{5}{3} )=0.03536 t[/tex]
[tex]\frac{\frac{0.5}{0825} }{0.03536} =t[/tex]
[tex]t = 14.45 \ years[/tex]
or,
[tex]t = 14 \ years \ 6 \ months[/tex]
(c)
[tex]P_o=600,000[/tex] ($)
[tex]t = 1 year[/tex]
Now,
⇒ [tex]P(t) = P_o \ e^{0.03536 t}[/tex]
[tex]=600000 \ e^{ 0.03536\times 1}[/tex]
[tex]=621,595.6[/tex] ($)
The measure of BAC is 240. What is the ratio of the measure of the major arc to the measure of the minor arc?
Instructions: Find the missing side lengths. Leave your answers as radicals in simplest
form.
Answer:
x = 40
y= 20
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
sin theta = opp / hyp
sin 60 = 20 sqrt(3)/ x
x sin 60 = 20 sqrt(3)
x = 20 sqrt(3)/ sin 60
x = 20 sqrt(3)/ sqrt(3)/2
x = 20 *2
x = 40
tan theta = opp /adj
tan 60 = 20 sqrt(3)/y
y = 20 sqrt(3)/ tan 60
y = 20 sqrt(3) / sqrt(3)
y = 20
Find the gradient of the curve y= x^2 - 5x + 6 at x=1
Answer:
Gradient or slope at x=1 is -3
Step-by-step explanation:
[tex]y=x^2-5x+6\\\frac{dy}{dx} =2x-5\\at ~x=1\\\frac{dy}{dx} =2(1)-5=-3[/tex]
Type the correct answer in each box. Given AB is perpendicular to CD
help please i procrastinated
Answer:
24 + 28 + 21 + 23 = 96
step by step follow
You are riding your bike. At 8:00am you have ridden your bike 23 miles. By 9:00pm you have ridden 179 miles. Find the rate of change in miles per hour. If needed, round your answer to the nearest whole number.
Answer:
12 miles/hour
Step-by-step explanation:
8am to 9pm = 13 hours
in that time we were driving 179-23 = 156 miles.
so, our speed was 156 miles / 13 hours.
now simplify it to our standard miles/hour format :
156/13 = 12
therefore, or standardized speed was
12 miles/hour
Which expression is equivalent to ((2x²) (3x) (4x)??
A.24x7
B.48x?
C.9677
D.576x12
Answer:
24x^4
Step-by-step explanation:
((2x²) (3x) (4x)
Add the exponents when multiplying
2*3*4 x^(2+1+1)
24x^4
Find P(blue and even).
A. 3/5
B. 1/10
c. 7/10
Answer: A. 3/5
Step-by-step explanation:
Assuming that they are colorful blocks,
There are in total 10 blocksThere are in total 2 blue blocksThere are in total 5 even blocksBlue blocks: 1, 2
Even blocks: 2, 4, 6, 8, 10
The net total of blue and even blocks:
2 + 5 = 7 blocksHowever, as we can see from above, the number [2] is repeated in both cases, thus we shall subtract one of them from the total number.
7 - 1 = 6 blocksWe analyzed at the beginning where there are 10 blocks in total. Then, utilizing the probability formula below:
6/10 = 3/5Hope this helps!! :)
Please let me know if you have any questions
please answer all the questions above.
Answer:
hope it was helpful!! You are welcome to ask any question
Answer:
Step-by-step explanation:
1) 7 - ( 3+4) = 7 + [- (3+ 4)] = 7 + (-3) + (-4)
(-) is distributed to 3 and 4
A
2) C
I (-3) - 4 I
3) 5 + 3 = 8 miles
B
What is the area of polygon
Bob placed a 17- foot ramp against the side of a house so the ramp rested on a ledge that is 8 feet above the ground. How far was the base of the ramp from the house?
A circle has a radius of 3. An arc in this circle has a central angle of 20°. What is the length of the arc? Either enter an exact answer in terms of or use 3.14 for 1 and enter your answer as a decimal.
Answer:
[tex]\frac{\pi }{3}[/tex]
[tex]2 * \pi * 3 * \frac{20}{360}[/tex]
120[tex]\pi[/tex]/360 = [tex]\frac{\pi }{3}[/tex]
Step-by-step explanation:
Which expressions are equivalent to the given expression?
Answer:
The answers are option B and E.
If ℓ ∥ k and k ∥ m, then _____
Answer:
E ||M
Step-by-step explanation:
This is based upon the postulate if A=B and B=C then A=C. picture it like this, you have 3 lines. The top and middle are parallel. The bottom and middle are parallel. so obviously the top and bottom are too
Answer:
l || m
Step-by-step explanation:
What is the product of the polynomials below?
(5x2 - x-3)(2x+6)
[tex]\bf \rightarrow \:(5 {x}^{2} - x - 3) \: \: (2x + 6) \\ \\ \bf \small \rightarrow \:10 {x}^{3} - 2 {x}^{2} - 6x + 30 {x}^{2} - 6x - 18 \\ \\ \bf \rightarrow \:10 {x}^{3} + 28 {x}^{2} - 12x - 18[/tex]
༆ Option D is the correct answer༆
For what value of k are the roots of the quadratic
equation kx²+ 4x+ 1=0 equals and reals."
Answer:
k ≥ 4
Step-by-step explanation:
A Quadratic equation is given to us and we need to find out the value of k for which the equation has real roots. The given equation is ,
[tex]\rm\implies kx^2 +4x +1=0[/tex]
With respect to Standard form of Quadratic equation :-
[tex]\rm\implies ax^+bx+c=0[/tex]
For real roots ,
[tex]\rm\implies Discriminant = b^2-4ac\geq 0[/tex]
Substitute the respective values ,
[tex]\rm\implies b^2-4ac \geq 0\\[/tex]
[tex]\rm\implies 4^2 - 4(k)(1) \geq 0 \\[/tex]
Simplify the LHS ,
[tex]\rm\implies 16 - 4k \geq 0 \\[/tex]
Add 4k both sides ,
[tex]\rm\implies 4k\geq 16 [/tex]
Divide both sides by 4 ,
[tex]\rm\implies \boxed{\blue{\rm k \geq 4}}[/tex]
Find the height of a rectangular prism with a 3 in by 4 in base and a volume of 20 cubic inches
Answer:
1 2/3 inches.
Step-by-step explanation:
Volume = area of the base * height so:
20 = 3*4 * h
h = 20/12
h = 1 2/3 inches.
Which set of ordered pairs could be generated by an exponential function?
(negative 1, negative one-half), (0, 0), (1, one-half), (2, 1)
(–1, –1), (0, 0), (1, 1), (2, 8)
(negative 1, one-half), (0, 1), (1, 2), (2, 4)
(–1, 1), (0, 0), (1, 1), (2, 4)
Answer:
(–1, –1), (0, 0), (1, 1), (2, 8) (y = x^2)
(–1, 1), (0, 0), (1, 1), (2, 4) (y = x^3)
Answer:
C
Step-by-step explanation:
Student Council members are designing a large poster that will tell people who each member is and what position each person holds. Each member gets a triangle piece of paper to decorate, then all the pieces will be fitted together to form the final display. The triangles are identical and fit together to form a regular polygon. It will look similar to the shape below:
A) If there are 8 council members, what type of polygon will be formed?
B) To achieve this shape, what type of triangles will the individual pieces be? What will be the measures of each of the three angles in each of the triangles?
C) What will be the sum of the measures of the internal angles of the final shape?
D) Redo parts (b) and (c) if the Council decides to include triangles for the two staff advisors, assuming the poster will still form a regular polygon, but now with 10 triangles.
A) With 8 council members, the polygon formed with the triangles will be an octagon.
A polygon formed with a set of isosceles triangles will have as many sides as triangles you are using. An octagon is a geometric figure that has 8 equal sides to it.The final shape should look just like the one you posted with your question.
B) The individual pieces should be isosceles triangles. The three angles of each triangle should measure 45°, 67.5° and 67.5°.
An isosceles triangle is the one that has two sides of the same length and one side with a different length.We need two sides of the triangles to be the same. The base of the triangle's length will depend on the number of triangles we are using to form the final polygon.
The number of triangles will define the angle between the two sides of equal length. You can find this by dividing 360° into the number of triangles:
[tex]\frac{360^{o}}{8}=45^{o}[/tex]
The other two angles should measure the same, so we can find them by subtracting the 45° from 180° (which is what we get when adding the three angles of any triangle) and then dividing the answer into 2.
180°-45°=135°
[tex]\frac{135^{o}}{2}=67.5^{o}[/tex]
C) The sum of the measures of the internal angles of the final shape should add up to 360°, that way we can guarantee that the figure is closed:
45°+45°+45°+45°+45°+45°+45°+45°=360°
D)
D.B) The individual pieces should be isosceles triangles. The three angles of each triangle should measure 36°, 72° and 72°.
The number of triangles will define the angle between the two sides of equal length. You can find this by dividing 360° into the number of triangles:
[tex]\frac{360^{o}}{10}=36^{o}[/tex]
The other two angles should measure the same, so we can find them by subtracting the 36° from 180° (which is what we get when adding the three angles of any triangle) and then dividing the answer into 2.
180°-36°=144°
[tex]\frac{144^{o}}{2}=72^{o}[/tex]
C) The sum of the measures of the internal angles of the final shape should add up to 360°, that way we can guarantee that the figure is closed:
36°+36°+36°+36°+36°+36°+36°+36°+36°+36°=360°
You can find further information on the following links:
https://brainly.ph/question/6658482
What value of x will make the equation true?
(Square Root of 5) (square root of 5)=x
Answer:
(2.236067978)(2.236067978)
=5 ans.
If this is incorrect forgive me
I hope this will help you
stay safe
need help with this!!
Answer:
{ 1,3,4,6,7}
Step-by-step explanation:
Do B∩C first
This is B intersect C which means what they have in common
B∩C = {3,6,7}
Then A∪(B∩C)
A union {3,6,7} which means join together ( combine with no duplicates) the two sets
{ 1,3,4,6,7}
26)
A pile of bricks has 93 bricks in the first row, 89 bricks in the second row, 85 bricks in the third row, and so on.
How many bricks are there in the 12th row?
OA) 49 bricks
OB) 69 bricks
Answer:
49 bricks
Step-by-step explanation:
because it's getting smaller my 4
Now graph the points C(2, 8) and D(8, 7). (Try entering the coordinates through the input window.) Measure the lengths of and . Do the points C and D lie on the circle? How do you know? Take a screenshot showing the points and their distances from the center, and paste it below.
Answer:
this was from plato
Step-by-step explanation:
Answer:
Any point on the circle must be at a distance from the center equal to the length of the circle’s radius. In this example, the radius is 3.61 units, AC = 4.24, and AD = 3.61. Point D, which lies on the circle, has the same distance from the center as the length of the radius. Point C, which lies outside the circle, is at a different distance from the center than the length of the radius.
Help me plsss! Thank you
Answer:
45/139 green or 20/139 yellow
Step-by-step explanation:
1. Add up total number of candles- thats your denominator
2. The total number of green or yellow candles is your numerator
3. Simplify your fractions if you have to
the system of equations y =-3x+2 and y =1/2 x -6 is shown on the graph below. What is a reasonable estimate for the solution>
The reasonable estimate for the solution is (2.29, -4.87)
The reasonable estimate for the solution is the point where the two lines intersect each other.
To get the point where they intersect, we will simply equate the system of equations given as shown:
[tex]-3x+2=\frac{1}{2}x-6\\Collect \ the \ like \ terms\\-3x-\frac{1}{2}x=-6-2\\\frac{-7x}{2}=-8\\-7x=-16\\x=\frac{16}{7} \\x=2.29[/tex]
Substitute x = 2.29 into any of the equation
Using the equation y = -3x+2
y = -3(2.29)+2
y = -6.87+2
y =-4.87
This shows that the reasonable estimate for the solution is (2.29, -4.87)
Further explanation about the system of equations can be found here https://brainly.com/question/19713330
The point of intersection of the linear equations is approximately [tex](x,y) = (2.286, -4.857)[/tex].
The most quickest approach that offers a reasonable solution consist in representing both linear functions graphically by means of a graphing tool (i.e. Desmos). As there is a system of two equation and two variables, the system can be represented by 2D-graphing tool.
The solution of this system is represented by the point, in which both lines intercepts each other. Let be the following two linear functions:
[tex]y = 3\cdot x + 2[/tex] (1)
[tex]y = \frac{1}{2}\cdot x - 6[/tex] (2)
The result from graphic tool is presented below and the point of intersection is approximately [tex](x,y) = (2.286, -4.857)[/tex].
please help me asap
(geometry)
Answer:
x is ten
Step-by-step explanation:
9 times ten is 90, then minus 40 is 50, and 3 times ten is 30, plus 20 is 50
Can someone please help?
Will mark brainliest!
Answer:
108 degrees
Step-by-step explanation:
an arithmetic progression means that there is a constant inbetween all of the angles. Since the smallest angle is 12 degrees, ( i just guessed and checked) and came up with the angles :
12, 60, 108
these have a constant of 48
Answer:
108°
Step-by-step explanation:
Since the angles are in arithmetic progression , then the angles are
a + a + d + a + 2d
a is the first term and d the common difference
Sum the angles and equate to 180 with a = 12
a + a + d + a + 2d = 180
12 + 12 + d + 12 + 2d = 180 , that is
36 + 3d = 180 ( subtract 36 from both sides )
3d = 144 ( divide both sides by 3 )
d = 48
Then the largest angle is
a + 2d = 12 + 2(48) = 12 + 96 = 108°