Answer: D. As x → -∞, y → -∞.
Step-by-step explanation:
The graph shows the function approaching negative infinity on the x-axis (left side). When the x-axis is decreasing, the y-axis is also decreasing towards negative infinity.
A box containing 5 balls costs $8.50. If the balls are bought individually, they cost $2.00 each. How much cheaper is it, in percentage terms, to buy the box as opposed to buying 5 individual balls?
Answer: The total cost of buying 5 balls individually is $2.00 x 5 = $10.00.
The box costs $8.50, which means it is $10.00 - $8.50 = $1.50 cheaper to buy the box.
To calculate the percentage difference, we can use the formula:
% difference = (difference ÷ original value) x 100%
In this case, the difference is $1.50, and the original value is $10.00.
% difference = ($1.50 ÷ $10.00) x 100%
% difference = 0.15 x 100%
% difference = 15%
Therefore, it is 15% cheaper to buy the box than to buy 5 individual balls.
Step-by-step explanation:
What gravitational force does the moon produce on the Earth if their centers are 3.88x108 m apart and the moon has a mass of 7.34x1022 kg?
The gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
What is gravitational force?
Gravitational force is the force of attraction that exists between any two objects in the universe with mass. This force is directly proportional to the masses of the objects and inversely proportional to the square of the distance between their centers.
The gravitational force that the moon produces on the Earth can be calculated using the formula:
[tex]F = G \cdot \frac{m_1 \cdot m_2}{r^2}[/tex]
where:
[tex]G$ = gravitational constant = $6.67430 \times 10^{-11}\ \mathrm{N(m/kg)^2}$[/tex]
[tex]m_1$ = mass of the moon = $7.34 \times 10^{22}\ \mathrm{kg}$[/tex]
[tex]m_2$ = mass of the Earth = $5.97 \times 10^{24}\ \mathrm{kg}$ (approximate)[/tex]
[tex]r$ = distance between the centers of the Earth and the moon = $3.88 \times 10^8\ \mathrm{m}$[/tex]
Substituting these values into the formula, we get:
[tex]F &= 6.67430 \times 10^{-11} \cdot \frac{7.34 \times 10^{22} \cdot 5.97 \times 10^{24}}{(3.88 \times 10^8)^2} \&= 1.98 \times 10^{20}\ \mathrm{N}[/tex]
Therefore, the gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
To learn more about gravitational force visit:
https://brainly.com/question/29328661
#SPJ1
Find the product of 3√20 and √5 in simplest form. Also, determine whether the result is rational or irrational and explain your answer.
Answer:
30, rational
Step-by-step explanation:
[tex]3\sqrt{20}\cdot\sqrt{5}=3\sqrt{4}\sqrt{5}\cdot\sqrt{5}=(3\cdot2)\cdot5=6\cdot5=30[/tex]
The result is rational because it can be written as a fraction of integers.
A simple random sample of size n is drawn. The sample mean, x, is found to be 18.1, and the sample standard deviation, s, is found to be 4.1.
(a) Construct a 95% confidence interval about u if the sample size, n, is 34.
Lower bound: Upper bound:
(Use ascending order. Round to two decimal places as needed.)
In response to the stated question, we may state that Hence, the 95% CI function for u is (16.72, 19.48), rounded to two decimal places in increasing order.
what is function?In mathematics, a function is a connection between two sets of numbers in which each member of the first set (known as the domain) corresponds to a single element in the second set (called the range). In other words, a function takes inputs from one set and produces outputs from another. Inputs are commonly represented by the variable x, whereas outputs are represented by the variable y. A function can be described using an equation or a graph. The equation y = 2x + 1 represents a linear function in which each value of x yields a distinct value of y.v
We use the following formula to create a confidence interval around the population mean u:
CI = x ± z*(s/√n)
where x represents the sample mean, s represents the sample standard deviation, n represents the sample size, z represents the z-score associated with the desired degree of confidence, and CI represents the confidence interval.
Because the degree of confidence is 95%, we must calculate the z-score that corresponds to the standard normal distribution's middle 95%. This is roughly 1.96 and may be determined with a z-table or calculator.
CI = 18.1 ± 1.96*(4.1/√34)
CI = 18.1 ± 1.96*(0.704)
CI = 18.1 ± 1.38
Hence, the 95% CI for u is (16.72, 19.48), rounded to two decimal places in increasing order.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
What is the slope of the line in the following graph?
Answer:
1/3
Step-by-step explanation:
using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3
Please answer Full question
(1) 4y-7z is a binomial.
(2) 8-xy² is a binomial.
(3) ab-a-b can be written as ab - (a + b) which is a binomial.
(4) z²-3z+8 is a trinomial.
What are monomials, binomials and trinomials?In algebra, monomials, binomials, and trinomials are expressions that contain one, two, and three terms, respectively.
A monomial is an algebraic expression with only one term. A monomial can be a number, a variable, or a product of numbers and variables.
A binomial is an algebraic expression with two terms that are connected by a plus or minus sign. For example, 2x + 3y and 4a - 5b are both binomials.
A trinomial is an algebraic expression with three terms that are connected by plus or minus signs.
Learn more about monomial on;
https://brainly.com/question/29047865
#SPJ1
Classify into monomials, binomials and trinomials.
(1) 4y-7z
(1) 8-xy²
(v) ab-a-b
(ix) z2-3z+8
find a polynomial function with the following zeros: double zero at -4 simple zero at 3.
f(x) = (x+4)^2(x-3) has polynomial function with the following zeros: double zero at -4 simple zero at 3.
If a polynomial has a double zero at -4, it means that it can be factored as (x+4)^2.
If it also has a simple zero at 3, then the factorization must include (x-3).
Therefore, the polynomial function with these zeros is :-
f(x) = (x+4)^2(x-3)
This polynomial has a double zero at -4, because $(x+4)^2$ has a zero of order 2 at -4, and a simple zero at 3, because $(x-3)$ has a zero of order 1 at 3.
To know more about polynomial-
brainly.com/question/11536910
#SPJ4
fill in the blank. Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in ______ different ways. (Give your answer as a whole number.)
Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in 24 different ways.
To solve this problem, we need to use the concept of permutations. A permutation is an arrangement of objects in a specific order. In this case, we need to find the number of permutations that can be made from the letters D, O, G, and Q when we choose 3 of these 4 letters.
The formula for finding the number of permutations is:
n! / (n-r)!
where n is the total number of objects and r is the number of objects we choose.
Using this formula, we can calculate the number of permutations as follows:
4! / (4-3)!
= 4! / 1!
= 4 x 3 x 2 x 1 / 1
= 24
Therefore, we can arrange the chosen 3 letters in 24 different ways.
To learn more about permutations click on,
https://brainly.com/question/30660588
#SPJ4
The Nutty Professor sells cashews for $6.80 per pound and Brazil nuts for $4.20 per pound. How much of each type should be used to make a 35 pound mixture that sells for $5.31 per pound?
The Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts tο make a 35 pοund mixture that sells fοr $5.31 per pοund.
Assume the Nutty Prοfessοr makes a 35-pοund mixture with x pοunds οf cashews and (35 - x) pοunds οf Brazil nuts.
The cashews cοst $6.80 per pοund, sο the tοtal cοst οf x pοunds οf cashews is $6.8x dοllars.
Similarly, Brazil nuts cοst $4.20 per pοund, sο (35 - x) pοunds οf Brazil nuts cοst 4.2(35 - x) dοllars.
The tοtal cοst οf the mixture equals the sum οf the cashew and Brazil nut cοsts, which is:
6.8x + 4.2(35 - x) (35 - x)
When we simplify, we get:
6.8x + 147 - 4.2x
2.6x + 147
The mixture sells fοr $5.31 per pοund, sο the tοtal revenue frοm selling 35 pοunds οf the mixture is:
35(5.31) = 185.85
When we divide the tοtal cοst οf the mixture by the tοtal revenue, we get:
2.6x + 147 = 185.85
Subtractiοn οf 147 frοm bοth sides yields:
2.6x = 38.85
When we divide by 2.6, we get:
x ≈ 14.94
Tο make a 35-pοund mixture that sells fοr $5.31 per pοund, the Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts.
To know more pοunds visit:
https://brainly.com/question/29145297
#SPJ1
given :√9+25 : π-4 : ³√-27 : 2÷3 : 18÷2 : √-27
√9+25 = 28
π-4 = -0.8571
³√-27 = -3
2 / 3 = 0.6667
18÷2 = 9
√-27 = 5.196
What is surdsIn mathematics, a surd is a term used to describe an irrational number that is expressed as the root of an integer. Specifically, a surd is a number that cannot be expressed exactly as a fraction of two integers, and is usually written in the form of a radical (e.g. √2, √3, √5, etc.).
We have √9+25 = 28
find the square root of 9 = 3
3 + 25 = 28
π-4 = 3.14 - 4
= -0.8571
³√-27 = ³√3³
= 3
2÷3 = 0.6667
18÷2 = 9
Read more on surds here:https://brainly.com/question/840021
#SPJ1
question:
given :√9+25 : π-4 : ³√-27 : 2÷3 : 18÷2 : √-27
find the value of the terms
Consider the initial value problem y⃗ ′=[33????23????4]y⃗ +????⃗ (????),y⃗ (1)=[20]. Suppose we know that y⃗ (????)=[−2????+????2????2+????] is the unique solution to this initial value problem. Find ????⃗ (????) and the constants ???? and ????.
The unique solution to the initial value problem of differential equation is y(t) = -t^2 + 2t + 3sin(3t) - 1 with e(t) = -t^2 + 2t + 3sin(3t) - 9, a = 2, and B = -21.
To find the solution to the initial value problem, we first need to solve the differential equation.
Taking the derivative of y(t), we get:
y'(t) = -2t + a
Taking the derivative again, we get:
y''(t) = -2
Substituting y''(t) into the differential equation, we get:
y''(t) + 2y'(t) + 10y(t) = 20sin(3t)
Substituting y'(t) and y(t) into the equation, we get:
-2 + 2a + 10(-2t + a) = 20sin(3t)
Simplifying, we get:
8a - 20t = 20sin(3t) + 2
Using the initial condition y(0) = 2, we get:
y(0) = -2(0) + a = 2
Solving for a, we get:
a = 2
Using the other initial condition y'(0) = 21, we get:
y'(0) = -2(0) + 2(21) + B = 21
Solving for B, we get:
B = -21
Therefore, the solution to the initial value problem is:
y(t) = -t^2 + 2t + 3sin(3t) - 1
Thus, we have e(t) = y(t) - 8, so
e(t) = -t^2 + 2t + 3sin(3t) - 9
and a = 2, B = -21.
To know more about differential equation:
https://brainly.com/question/14620493
#SPJ4
_____The given question is incomplete, the complete question is given below:
Consider the initial value problem >= [22. 2.1]+20). 361) = [2] Suppose we know that (t) = -2t + a 21? + is the unique solution to this initial value problem. Find e(t) and the constants and B. a = B= 8(t) =
To approximate binomial probability plx > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. O plx > 7.5) O plx >= 9) O plx > 9) O plx > 8.5)
The appropriate 0.5 adjusted formula for normal approximation is option (d) p(x > 8.5)
The appropriate 0.5 adjusted formula for normal approximation to approximate binomial probabilities when n is large is
P(Z > (x + 0.5 - np) / sqrt(np(1-p)))
where Z is the standard normal variable, x is the number of successes, n is the number of trials, and p is the probability of success in each trial.
To approximate binomial probability p(x > 8) when n is large, we need to use the continuity correction and find the appropriate 0.5 adjusted formula for normal approximation. Here, x = 8, n is large, and p is unknown. We first need to find the value of p.
Assuming a binomial distribution, the mean is np and the variance is np(1-p). Since n is large, we can use the following approximation
np = mean = 8, and
np(1-p) = variance = npq
8q = npq
q = 0.875
p = 1 - q = 0.125
Now, using the continuity correction, we adjust the inequality to p(x > 8) = p(x > 8.5 - 0.5)
P(Z > (8.5 - 0.5 - 8∙0.125) / sqrt(8∙0.125∙0.875))
= P(Z > 0.5 / 0.666)
= P(Z > 0.75)
Therefore, the correct option is (d) p(x > 8.5)
Learn more about binomial probability here
brainly.com/question/29350029
#SPJ4
The given question is incomplete, the complete question is:
To approximate binomial probability p(x > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. a) p(x > 7.5) b) p(x >= 9) c) p(x > 9) d) p(x > 8.5)
To the nearest hundredth, what is the volume of the sphere? (Use 3.14 for pie.)
Therefore, the volume of the sphere to the nearest hundredth is 724,775.70 cubic millimeters.
What is volume?Volume is a measurement of the amount of space occupied by a three-dimensional object. It is often expressed in units such as cubic meters (m³), cubic centimeters (cm³), cubic feet (ft³), or gallons (gal), depending on the context. The volume of a solid object can be calculated by multiplying its length, width, and height or using a specific formula depending on the shape of the object. For example, the volume of a rectangular box can be calculated as length x width x height, while the volume of a cylinder can be calculated as π x radius² x height. In general, volume is an important concept in many fields, including physics, chemistry, engineering, and architecture. It is often used to describe the capacity of containers, the displacement of fluids, and the amount of material used in construction or manufacturing.
Here,
The formula for the volume of a sphere is given as V = (4/3)πr³, where r is the radius of the sphere and π is approximately 3.14.
Substituting the given value of the radius, we get:
V = (4/3) x 3.14 x 48³
V ≈ 724,775.68 cubic millimeters
Rounding this value to the nearest hundredth, we get:
V ≈ 724,775.68 ≈ 724,775.70 cubic millimeters (rounded to two decimal places)
To know more about volume,
https://brainly.com/question/12237641
#SPJ1
please help me with math quiz i’ll give you brainlist
Answer:
Answer: B. Symmetric.
Explanation:
In a symmetric distribution, the data is evenly distributed around the mean or median, creating a mirror image on both sides of the center. In this histogram, the median and mean are very close together at 55 and the bars on both sides of the center are roughly equal in height, indicating a fairly even distribution. Therefore, the histogram is symmetric.
Parts A-D. What is the value of the sample mean as a percent? What is its interpretation? Compute the sample variance and sample standard deviation as a percent as measures of rotelle for the quarterly return for this stock.
The sample mean is 2.1, the sample variance is 212.5% and the standard deviation is 14.57%
What is the sample mean?a. The sample mean can be computed as the average of the quarterly percent total returns:
[tex](11.2 - 20.5 + 13.2 + 12.6 + 9.5 - 5.8 - 17.7 + 14.3) / 8 = 2.1[/tex]
So the sample mean is 2.1%, which can be interpreted as the average quarterly percent total return for the stock over the sample period.
b. The sample variance can be computed using the formula:
[tex]s^2 = sum((x - mean)^2) / (n - 1)[/tex]
where x is each quarterly percent total return, mean is the sample mean, and n is the sample size. Plugging in the values, we get:
[tex]s^2 = (11.2 - 2.1)^2 + (-20.5 - 2.1)^2 + (13.2 - 2.1)^2 + (12.6 - 2.1)^2 + (9.5 - 2.1)^2 + (-5.8 - 2.1)^2 + (-17.7 - 2.1)^2 + (14.3 - 2.1)^2 / (8 - 1) = 212.15[/tex]
So the sample variance is 212.15%. The sample standard deviation can be computed as the square root of the sample variance:
[tex]s = \sqrt(s^2) = \sqrt(212.15) = 14.57[/tex]
So the sample standard deviation is 14.57%.
c. To construct a 95% confidence interval for the population variance, we can use the chi-square distribution with degrees of freedom n - 1 = 7. The upper and lower bounds of the confidence interval can be found using the chi-square distribution table or calculator, as follows:
upper bound = (n - 1) * s^2 / chi-square(0.025, n - 1) = 306.05
lower bound = (n - 1) * s^2 / chi-square(0.975, n - 1) = 91.91
So the 95% confidence interval for the population variance is (91.91, 306.05).
d. To construct a 95% confidence interval for the standard deviation (as percent), we can use the formula:
lower bound = s * √((n - 1) / chi-square(0.975, n - 1))
upper bound = s * √((n - 1) / chi-square(0.025, n - 1))
Plugging in the values, we get:
lower bound = 6.4685%
upper bound = 20.1422%
So the 95% confidence interval for the standard deviation (as percent) is (6.4685%, 20.1422%).
Learn more on sample mean here;
https://brainly.com/question/26941429
#SPJ1
Give the interval(s) on which the function is continuous.
g(t) = 1/√16-t^2
The function g(t) is defined as:
g(t) = 1/√(16-t^2)
The function is continuous for all values of t that satisfy the following conditions:
The denominator is non-zero:
The denominator of the function is √(16-t^2). Therefore, the function is undefined when 16-t^2 < 0, or when t is outside the interval [-4,4].
There are no vertical asymptotes:
The function does not have any vertical asymptotes, because the denominator is always positive.
Thus, the function g(t) is continuous on the interval [-4,4].
If A B C are three matric such that AB=AC such that A=C then A is
Answer:
invertible
Step-by-step explanation:
If A is invertible then ∣A∣ =0
During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.
answer options
1. No
2. Yes
From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?
The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.
Step 1:
The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:
P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38
= (38/38) - (26/38) = 12/38 = 0.316
So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.
Step 2:
The average waiting time can be calculated by finding the expected value of the probability density function:
E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt
= [(t²)/(238)] from 0 to 38
= (38²)/(238) = 19
Therefore, the average waiting time is 19 minutes.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
Question 13 (2 points)
Suppose you flip a coin and then roll a die. You record your result. What is the
probability you flip heads or roll a 3?
1/2
3/4
7/12
1
Step-by-step explanation:
a probability is always the ratio
desired cases / totally possible cases
we have 2 possible cases for the coin and 6 possible cases for the die.
so, we have 2×6 = 12 combined possible cases :
heads, 1
heads, 2
heads, 3
heads, 4
heads, 5
heads, 6
tails, 1
tails, 2
tails, 3
tails, 4
tails, 5
tails, 6
out of these 12 cases, which ones (how many) are desired ?
all first 6 plus (tails, 3) = 7 cases
so, the correct probability is
7/12
formally that is calculated :
1/2 × 6/6 + 1/2 × 1/6 = 6/12 + 1/12 = 7/12
the probability to get heads combined with the probability to roll anything on the die, plus the probability to get tails combined with the probability to roll 3.
According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)
The required probability that a household in Maryland with annual income of ,
$90,000 or more is equal to 0.3377.
$50,000 or less is equal to 0.2218.
Annual household income in Maryland follows a normal distribution ,
Median = $75,847
Standard deviation = $33,800
Probability of household in Maryland has an annual income of $90,000 or more.
Let X be the random variable representing the annual household income in Maryland.
Then,
find P(X ≥ $90,000).
Standardize the variable X using the formula,
Z = (X - μ) / σ
where μ is the mean (or median, in this case)
And σ is the standard deviation.
Substituting the given values, we get,
Z = (90,000 - 75,847) / 33,800
⇒ Z = 0.4187
Using a standard normal distribution table
greater than 0.4187 as 0.3377.
P(X ≥ $90,000)
= P(Z ≥ 0.4187)
= 0.3377
Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).
Probability that a household in Maryland has an annual income of $50,000 or less.
P(X ≤ $50,000).
Standardizing X, we get,
Z = (50,000 - 75,847) / 33,800
⇒ Z = -0.7674
Using a standard normal distribution table
Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,
P(X ≤ $50,000)
= P(Z ≤ -0.7674)
= 0.2218
Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.
Therefore, the probability with annual income of $90,000 or more and $50,000 or less is equal to 0.3377 and 0.2218 respectively.
learn more about probability here
brainly.com/question/24111146
#SPJ4
For a standard normal distribution, find:
P(-2.11 < z < -0.85)
Answer:
Step-by-step explanation:
Using a standard normal table, we can find the area under the curve between -2.11 and -0.85.
P(-2.11 < z < -0.85) = P(z < -0.85) - P(z < -2.11)
Using the table, we find:
P(z < -0.85) = 0.1977
P(z < -2.11) = 0.0174
Therefore,
P(-2.11 < z < -0.85) = 0.1977 - 0.0174 = 0.1803
So the probability that a standard normal random variable falls between -2.11 and -0.85 is 0.1803.
the c on the left has blank1 - word answer please type your answer to submit electron geometry and a bond angle of
The CH3-CIOI-CNI molecule contains three carbon atoms with different electron geometries and bond angles. The CH3 and CIOI carbon atoms have tetrahedral geometry with a bond angle of approximately 109.5 degrees, while the CNI carbon atom has a trigonal planar geometry with a bond angle of approximately 120 degrees.
Using this Lewis structure, we can determine the electron geometry and bond angle for each carbon atom in the molecule as follows.
The carbon atom in the CH3 group has four electron domains (three bonding pairs and one non-bonding pair). The electron geometry around this carbon atom is tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CIOI group has four electron domains (two bonding pairs and two non-bonding pairs). The electron geometry around this carbon atom is also tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CNI group has three electron domains (one bonding pair and two non-bonding pairs). The electron geometry around this carbon atom is trigonal planar, and the bond angle is approximately 120 degrees.
Therefore, the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI are:
CH3 carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CIOI carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CNI carbon atom trigonal planar geometry, bond angle of approximately 120 degrees
To know more about electron geometry:
https://brainly.com/question/7558603
#SPJ4
_____The given question is incomplete, the complete question is given below:
Determine the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI
Use the power of a power property to simplify the numeric expression.
(91/4)^7/2
Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8
Given the expression
(9¹⁺⁴)⁷⁺²
To simplify this expression using the power of a power property, we need to multiply the exponents:
(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)
Simplifying the exponents in the parentheses:
(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8
Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).
Read more about expression at
https://brainly.com/question/4344214
#SPJ1
Oliver's normal rate of pay is $10.40 an hour.
How much is he paid for working 5 hours overtime one Saturday at time-and-a-half?
Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?
There are 92 elements in A but not in B.
What are sets?In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.
Empty or zero quantity:
Items not included. example:
A = {} is a null set.
Finite sets:
The number is limited. example:
A = {1,2,3,4}
Infinite set:
There are myriad elements. example:
A = {x:
x is the set of all integers}
Same sentence:
Two sets with the same members. example:
A = {1,2,5} and B = {2,5,1}:
Set A = Set B
Subset:
A set 'A' is said to be a subset of B if every element of A is also an element of B. example:
If A={1,2} and B={1,2,3,4} then A ⊆ B
Universal set:
A set that consists of all the elements of other sets that exist in the Venn diagram. example:
A={1,2}, B={2,3}, where the universal set is U = {1,2,3}
n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)
Hence, There are 92 elements in A but not in B.
learn more about sets click here:
https://brainly.com/question/13458417
#SPJ1
Marcia Gadzera wants to retire in San Diego when she is 65 years old. Marcia is now 50 and believes she will need $90,000 to retire comfortably. To date, she has set aside no retirement money. If she gets interest of 10% compounded semiannually, how much must she invest today to meet her goal of $90,000?
Answer:
Step-by-step explanation:
We can use the formula for the future value of an annuity to determine how much Marcia needs to invest today to meet her retirement goal of $90,000. The formula for the future value of an annuity is:
FV = PMT x [(1 + r/n)^(n*t) - 1] / (r/n)
where:
FV = future value of the annuity
PMT = payment (or deposit) made at the end of each compounding period
r = annual interest rate
n = number of compounding periods per year
t = number of years
In this case, we want to solve for the PMT (the amount Marcia needs to invest today). We know that:
Marcia wants to retire in 15 years (when she is 65), so t = 15
The interest rate is 10% per year, compounded semiannually, so r = 0.10/2 = 0.05 and n = 2
Marcia wants to have $90,000 in her retirement account
Substituting these values into the formula, we get:
$90,000 = PMT x [(1 + 0.05/2)^(2*15) - 1] / (0.05/2)
Simplifying the formula, we get:
PMT = $90,000 / [(1.025)^30 - 1] / 0.025
PMT = $90,000 / 19.7588
PMT = $4,553.39 (rounded to the nearest cent)
Therefore, Marcia needs to invest $4,553.39 today in order to meet her retirement goal of $90,000, assuming an interest rate of 10% per year, compounded semiannually.
state the third congruence statement that is needed to prove that FGH is congruent to LMN using the ASA congruence therom
Answer:
a
Step-by-step explanation:
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (1, 2) such that f'(c)> 0.
How do we know?Applying the Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:
f'(c) = (f(b) - f(a)) / (b - a)
In the scenario above, we have that f is differentiable, and that f(1) < f(2).
choosing a = 1 and b = 2.
Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:
f'(c) = (f(2) - f(1)) / (2 - 1)
f'(c) = f(2) - f(1)
We have that f(1) < f(2), we have:
f(2) - f(1) > 0
We can conclude by saying that there exists a number c in the interval (1, 2) such that:
f'(c) = f(2) - f(1) > 0
Learn more about Mean Value Theorem at: https://brainly.com/question/19052862
#SPJ1
Help me find the value of x
Answer:
x = 30
Step-by-step explanation:
We know
The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.
2x + 3x + 10 = 160
5x + 10 = 160
5x = 150
x = 30