Answer:
2–methylbutane
Explanation:
To name the compound given above, the following must be obtained:
1. Determine the longest continuous carbon chain. This gives the parent name of the compound.
2. Determine the substituent group attached.
3. Determine the position of the substituent group by giving it the lowest possible count..
4. Combine the above to obtain the name of the compound.
With the above information, we can name the compound as follow:
1. The longest continuous carbon chain of the compound is 4. Thus, the parent name is butane.
2. The substituent group attached to the compound is methyl (–CH₃).
3. The methyl (–CH₃) group is located at carbon 2 (i.e counting from the left side).
4. The name of the compound is:
2–methylbutane
What is the speed of a wave with a frequency of 2 Hz and a wavelength of 87m (subject is science) pls answer fast
Answer:
43.5
Explanation:
Hope that helps
Which best expresses the uncertainty of the measurement 32.23 cm?
A.) ±0.05 cm
B.) 0.1 cm
C.) 1%
D.) ±0.01 cm?
Answer:
D.) ±0.01 cm?
Explanation:
Since 32.23 cm has two decimal places, the uncertainty is taken as one-half the last decimal pace.
The last decimal place is 0.03. Half of this is 0.03 cm/2 = 0.015 cm.
Since we cannot go below two decimal places, we ignore the 5 in 0.015 cm.
So, we have our uncertainty as 0.01 cm.
So, the best expression of the uncertainty in the measurement 32.23 cm is ± 0.01 cm.
So, the answer is D. which is ± 0.01 cm.
The formula for europium oxide is Eu203. On the basis of this information, the formula for the chlorate of europium would be expected to be
Answer:
Eu(ClO3)3
Explanation:
The chlorate ion is written as follows, ClO⁻ ₃. We can see from this that the ion is univalent.
From the formula, Eu203, it is easy to see that the europium ion is trivalent.
Hence, when a compound is formed between the europium ion and chlorate ion, the compound will be written as Eu(ClO3)3.
This is so because, when ionic compounds are formed, there is an exchange of valence between the ions in the compound. This gives the final formula of the ionic substance.
A student named a particular compound 2-ethyl-3-methyl-2-butene. Assuming that the student's choice actually corresponded to the correct distribution of the double bond and the substituents, what is the correct IUPAC name for this compound
Answer:
2-ethyl-3-methylbut-2-ene
Explanation:
The whole idea of IUPAC nomenclature is to devise a universally accepted system of writing the name of a compound from its structure.
According to IUPAC nomenclature, the root of the compound is the longest carbon chain. The substituents are named in alphabetical order and in such a way as to give each one the lowest number. The position of the functional group is indicated accordingly.
For the compound in question, its correct IUPAC name is 2-ethyl-3-methylbut-2-ene.
What size volumetric flask would you use to create a 1.00M solution using 166.00 g of KI?
Answer:
A 1 liter volumetric flask should be used.
Explanation:
First we convert 166.00 g of KI into moles, using its molar mass:
Molar mass of KI = Molar mass of K + Molar mass of I = 166 g/mol
166.00 g ÷ 166 g/mol = 1 mol KIThen we calculate the required volume, using the definition of molarity:
Molarity = moles / litersLiters = moles / molarity
1 mol / 1.00 M = 1 LHow many milliliters of a 0.40%(w/v) solution of nalorphine must be injected to obtain a dose of 1.5 mg?
Answer:
0.375mL of solution of nalorphine must be injected
Explanation:
A solution of 0.40% (w/v) contains 0.40g of solute (In this case, nalorphine), in 100mL of solution. To obtain 1.5mg of nalorphine = 1.5x10⁻³g of nalorphine are needed:
1.5x10⁻³g * (100mL / 0.40g) =
0.375mL of solution of nalorphine must be injectedA sample of gas contains 0.1800 mol of CO(g) and 0.1800 mol of NO(g) and occupies a volume of 23.2 L. The following reaction takes place:
2CO(g) + 2NO(g 2Co2(g) +N2(g)
Calculate the volume of the sample after the reaction takes place, assuming that the temperature and the pressure remain constant.
Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
Where V is volume and n moles of 1, initial state and 2, final state of the gas
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
The volume of the sample is 17.4LWhat is the observation of heating of iodine crystals
Answer:
On heating, the van der Waals dispersion forces existing then will easily break as it has a low boiling point and sublimates into gas. On heating iodine in the test tube, iodine evolves as violet fuming gas.
Explanation:
Trộn 100ml dung dịch H2SO4 0,03M với 200ml dung dịch HCl 0,03M và 0,001mol Ba(OH)2 0,05M . Hãy tính pH của dung dịch này?
Answer:
pH = 1.92Explanation:
[H+] = 0.1x0.03x2 + 0.2x0.03 = 0.012 mol
[OH-] = 0.001x0.05x2 = 0.0001 mol
=> [H+] dư = 0.012 - 0.0001 =0.0119 mol
pH = -log[H+] = 1.92
A 14.570 g sample of CaCl2 was added to 12.285 g of K2CO3 and mixed in water. A 3.494 g yield of CaCO3 was obtained.
What is the limiting reagent?
-CaCO3
-K2CO3
-CaCl2
Calculate the percent yield of CaCO3.
yield of CaCO3= %
Answer:
Limiting reagent is the potassium carbonate.
Percent yield of calcium carbonate is: 39.3 %
Explanation:
The reaction is:
CaCl₂ + K₂CO₃ → CaCO₃ + 2KCl
Formula for percent yield is:
(Produced yield / Thoeretical yield) . 100
Firstly we determine the moles of each reactant, in order to say what is the limiting reagent: ratio is 1:1.
1 mol of chloride need 1 mol of carbonate.
14.570 g . 1 mol /110.98 g = 0.131 moles of CaCl₂
12.285 g . 1 mol / 138.2g = 0.0889 moles of carbonate.
Limiting reagent is carbonate. For 0.131 moles of CaCl₂ we need the same amount of carbonate and we have less moles.
Ratio is also 1:1, with calcium carbonate.
1 mol of potassium carbonate produces 1 mol of calcium carbonate
then, 0.0889 moles will produce the same amount of CaCO₃
We convert moles to mass: 0.0889 mol . 100.08g /mol = 8.89 g
That's the theoretical yield; to find the percent yield:
(3.494 g / 8.89g) . 100 = 39.3%
How do we fix climate change?
The biggest problem of course is conspiracy theorys. Some say it is just a hoxe when really their chidrin or grandchidrin will sufer greatly from it. How do we educate ourselfs better?
Answer:
Hi so your answer is that to helping fix the climate change you have to : speak up , power your home with renewable engery , reduce water waste , dont waste food , and finally invest energy .
Explanation:
Really hope i helped , have a nice day :)
Answer:
we can reduce air pollution,which is one of the main cause of climate change.Climate change is not a hoxe if it is not attending the upcoming generations will suffer greatly.
study the reaction given below in which excess magnesium ribbon (Mg)reacts with 50cm of a diluted sulphuric acid solution at room temperature
Questions
what Changes can be made to the following substance to increase the rate of reaction?
5.1.1 Magnesium
5.1.2 Sulphuric acid
Answer:
Magnesium reacts with dilute hydrochloric acid in a conical flask which is ... One student can add the magnesium ribbon to the acid and stopper the flask, ... 50 cm3 of 1M hydrochloric acid is a six-fold excess of acid.
Predict the products from theses reaction, and balance the equations. Include phase symbols.
Reaction : K(s)+Cl2(g)⟶
Reaction :Cu(s)+O2(g)⟶
Answer:
2 K(s) + Cl₂(g) ⟶ 2 KCl(s)
2 Cu(s) + O₂(g) ⟶ 2 CuO(s)
Explanation:
Both reactions are synthesis reactions (two substances combine to form another).
Reaction: K(s) + Cl₂(g) ⟶
The product is the binary salt KCl. The balanced chemical equation is:
2 K(s) + Cl₂(g) ⟶ 2 KCl(s)
Reaction: Cu(s) + O₂(g) ⟶
The most likely product is the metal oxide CuO. The balanced chemical equation is:
2 Cu(s) + O₂(g) ⟶ 2 CuO(s)
You decide to share some sugar sweetened fruit juice with your friend. You divide the fruit equally into two glasses. Then an additional equal volume of water is added to glass 1. Which glass would have the lower molarity?
Answer:
Glass 1
Explanation:
Molarity is measured in moles of substance per liter.
For the sake of calculations, let's say that each glass contains 1 mole of juice and 1 liter after it is divided between the glasses. If you add an equal amount of water to glass 1 ( another liter), you now have:
Glass 1 = 1 mole / 2 liters = 0.5 M
Glass 1 = 1 mole/ 1 liter = 1 M
So glass 1 will have a lower molarity
Organic compounds undergo a variety of different reactions, including substitution, addition, elimination, and rearrangement. An atom or a group of atoms in a molecule is replaced by another atom or a group of atoms in a substitution reaction. In an addition reaction, two molecules combine to yield a single molecule. Addition reactions occur at double or triple bonds. An elimination reaction can be thought of as the reverse of an addition reaction. It involves the removal of two atoms or groups from a molecule. A rearrangement reaction occurs when bonds in the molecule are broken and new bonds are formed, converting it to its isomer. Classify the following characteristics of the organic reactions according to the type of organic reaction.
a. Reactions involving the replacement of one atom or group of atoms.
b. Reactions involving removal of two atoms or groups from a molecule.
c. Products show increased bond order between two adjacent atoms.
d. Reactant requires presence of a π bond.
e. Product is the structural isomer of the reactant.
1. Substitution reaction
2. Addition reaction
3. Elimination reaction
4. Rearrangement reaction
Answer:
Reactions involving the replacement of one atom or group of atoms. - Substitution reaction
Reactions involving removal of two atoms or groups from a molecule - Elimination reaction
Products show increased bond order between two adjacent atoms - Elimination reaction
Reactant requires presence of a π bond - Addition reaction
Product is the structural isomer of the reactant - Rearrangement reaction
Explanation:
When an atom or a group of atoms is replaced by another in a reaction, then such is a substitution reaction. A typical example is the halogenation of alkanes.
A reaction involving the removal of two atoms or groups from a molecule resulting in increased bond order of products is called an elimination reaction. A typical example of such is dehydrohalogenation of alkyl halides.
Any reaction that involves a pi bond is an addition reaction because a molecule is added across the pi bond. A typical example is hydrogenation of alkenes.
Rearrangement reactions yield isomers of a molecule. Rearrangement may involve alkyl or hydride shifts in molecules.
Reactions involving the replacement of one atom or group of atoms is substitution reaction, reactions involving removal of two atoms or groups from a molecule and products show increased bond order between two adjacent atoms is elimination reaction, reactant requires presence of a π bond in addition reaction and product is the structural isomer of the reactant is rearrangement reaction.
What is chemical reaction?Chemical reactions are those reactions in which reactants undergoes through a variety of changes for the formation of new product.
Substitution reaction: In this reaction any atom or molecule of reactant is replaced by any outside atom or molecule.Addition reaction: In this reaction addition of any reagent takes place across the double or triple bond of any reactant for the formation of product.Elimination reaction: In this reaction any molecule or two atoms will eliminate from the reactant as a result of which we get a bond order increased product.Rearrangement reaction: In this reaction atoms or bonds of a reactant get rearranged for the formation of new product.Hence, classification of above points are done according to their characteristics.
To know more about chemical reactions, visit the below link:
https://brainly.com/question/26018275
Identify the isoelectronic elements.
i. Cl-, F-, Br-, I-, At-
ii. Ne, Ar, Kr, Xe, He
iii. N3-, S2-, Br-, Cs+, Sr2+
iv. N3-, O2-, F-, Na+, Mg2+
v. Li+, Na+, K+, Rb+,Cs+
Answer:
iv. N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺
Explanation:
Isoelectronic elements are those that have the same number of electrons. So, if at least 2 elements differ in their number of electrons, the series is not of isoelectronic elements.
To know the number of electrons we will consider the atomic number and add electrons if it is an anion and subtract electrons it is a cation.
Identify the isoelectronic elements.
i. Cl⁻, F⁻, Br⁻, I⁻, At⁻. NO. Cl⁻ has 18 electrons (17+1) and F⁻ has 10 electrons (9+1). ii. Ne, Ar, Kr, Xe, He. NO. Ne has 10 electrons and Ar has 18. iii. N³⁻, S²⁻, Br⁻, Cs⁺, Sr²⁺. NO. N³⁻ has 10 electrons (7+3) and S²⁻ has 18 (16+2).iv. N³⁻, O²⁻, F⁻, Na⁺, Mg²⁺. YES. They all have 10 electrons v. Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺. NO. Li⁺ has 2 electrons (3-1) and Na⁺ has 10 (11-1).