What is the measure of L?
A. 390
B. 25°
C. Cannot be determined
D. 32°

Answers

Answer 1

Answer:

im pretty sure 25°

Step-by-step explanation:

Well the shape of an L is basically 1/4 of a rectangle. 1/4 is equal to 25 because 25 multiplied by 4 is 100. 100 divided by 4 is 25.

Answer 2
i think it is 25 definitely is that

Related Questions

b Draw a picture to show 3:5= 6:10. Explain how your picture show equivalerit ratios.​

Answers

Answer:

3:5 = 6:10

3x2 : 5x2

= 6:10

Answer:

Step-by-step explanation:

Draw 3:5 balls shaded, and draw 6:10 balls shaded. Then, divide the 10 balls into two, with three shaded balls and 5 total balls on one side.

[tex]\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx[/tex]

Answers

First integrate the indefinite integral,

[tex]\int(1-x^2)^{3/2}dx[/tex]

Let [tex]x=\sin(u)[/tex] which will make [tex]dx=\cos(u)du[/tex].

Then

[tex](1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u)[/tex] which makes [tex]u=\arcsin(x)[/tex] and our integral is reshaped,

[tex]\int\cos^4(u)du[/tex]

Use reduction formula,

[tex]\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du[/tex]

to get,

[tex]\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du[/tex]

Notice that,

[tex]\cos^2(u)=\frac{1}{2}(\cos(2u)+1)[/tex]

Then integrate the obtained sum,

[tex]\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du[/tex]

Now introduce [tex]s=2u\implies ds=2du[/tex] and substitute and integrate to get,

[tex]\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du[/tex]

[tex]\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C[/tex]

Substitute 2u back for s,

[tex]\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C[/tex]

Substitute [tex]\sin^{-1}[/tex] for u and simplify with [tex]\cos(\arcsin(x))=\sqrt{1-x^2}[/tex] to get the result,

[tex]\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}[/tex]

Let [tex]F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C[/tex]

Apply definite integral evaluation from b to a, [tex]F(x)\Big|_b^a[/tex],

[tex]F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}[/tex]

Hope this helps :)

Answer:[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]General Formulas and Concepts:

Pre-Calculus

Trigonometric Identities

Calculus

Differentiation

DerivativesDerivative Notation

Integration

IntegralsDefinite/Indefinite IntegralsIntegration Constant C

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                    [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

U-Substitution

Trigonometric Substitution

Reduction Formula:                                                                                               [tex]\displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution (trigonometric substitution).

Set u:                                                                                                             [tex]\displaystyle x = sin(u)[/tex][u] Differentiate [Trigonometric Differentiation]:                                         [tex]\displaystyle dx = cos(u) \ du[/tex]Rewrite u:                                                                                                       [tex]\displaystyle u = arcsin(x)[/tex]

Step 3: Integrate Pt. 2

[Integral] Trigonometric Substitution:                                                           [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Rewrite:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Simplify:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du[/tex][Integral] Reduction Formula:                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b[/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du[/tex][Integral] Reduction Formula:                                                                          [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Reverse Power Rule:                                                                     [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b[/tex]Back-Substitute:                                                                                               [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b[/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Rewrite:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

The width of a rectangle is

3

inches less than the length. The perimeter is

54

inches. Find the length and the width.

please help asap!!!

Answers

Answer:

let length be x

b = x - 3

perimeter = 2( l + b)

54 = 2(x+x-3)

27 = 2x - 3

30 = 2x

x = 15

l = 15

b = 15 - 3

b = 12

Solve the equation Axb by using the LU factorization given for A. Also solve Axb by ordinary row reduction. A ​, b Let Lyb and Uxy. Solve for x and y. nothing nothing Row reduce the augmented matrix and use it to find x. The reduced echelon form of is nothing​, yielding x nothing.

Answers

Answer: Hello your question is poorly written attached below is the complete question

answer:

[tex]y = \left[\begin{array}{ccc}-4\\-11\\5\end{array}\right][/tex]

[tex]x = \left[\begin{array}{ccc}16\\12\\-40\end{array}\right][/tex]

Step-by-step explanation:

[tex]y = \left[\begin{array}{ccc}-4\\-11\\5\end{array}\right][/tex]

[tex]x = \left[\begin{array}{ccc}16\\12\\-40\end{array}\right][/tex]

attached below is the detailed solution using LU factorization

PLEASE ANSWER ASAP THANK YOU!!! How much money will be in a bank account after 3 years if $9 is deposited at an interest rate of 5% compounded annually? Round to the nearest dollar.....​

Answers

Answer:

10 bucks

Step-by-step explanation:

Money=9*(1+0.05)^3

Money=9*(1.05)^3=10.41≈10

lim(x-0) (sinx-1/x-1)

Answers

9514 1404 393

Answer:

as written: the limit does not existsin(x-1)/(x-1) has a limit of sin(1) ≈ 0.841 at x=0

Step-by-step explanation:

The expression written is interpreted according to the order of operations as ...

  sin(x) -(1/x) -1

As x approaches 0 from the left, this approaches +∞. As x approaches 0 from the right, this approaches -∞. These values are different, so the limit does not exist.

__

Maybe you intend ...

  sin(x -1)/(x -1)

This can be evaluated directly at x=0 to give sin(-1)/-1 = sin(1). The argument is interpreted to be radians, so sin(1) ≈ 0.84147098...

The limit is about 0.841 at x=0.

in a fruit punch drink,the 3 ingredients are apple juice,orange juice and cramberry juice.if 3/4 of the drink is apple juice and 1/10 is orange juice then write the ratio of cranberry juice to apple juice to orange juice in its simplest form​

Answers

Answer:

3 : 15 : 2

Step-by-step explanation:

Let cranberry juice = x,

3/4 + 1/10 + x = 1

x = 3/20

Ratio = cranberry : apple : orange

= 3/20 : 3/4 : 1/10

= 3 : 15 : 2 (Times everything with 20)

integration of 3^x (1-3^(x+1)^9)dx​

Answers

Step-by-step explanation:

the answer is in picture

.........................................................

Answers

Answer:

..............................what this

The table below shows the educational attainment of a country's population, aged 25 and over. Use the data in the table, expressed in millions to find the probability that a randomly selected citizenaged 25 or over , was a man with 4 years of college (or more)

Answers

Answer:

The answer is "[tex]\bold{\frac{22}{171}}[/tex]"

Step-by-step explanation:

There are 22 million males that have completed four years of undergraduate, according to the data below: (or more). This is predicated on a population of 171 million.

The chances we're searching about [tex]\frac{(22\ million)}{(171\ million)} = \frac{22}{171}[/tex]

however

This proportion could be further reduced because 22 and 171 have no common features (other than 1).

The sum of two positive integers is 19 and the product is 48

Answers

Answer:

16 and 3

Step-by-step explanation:

Let x and y represent the positive integers. We know that

[tex]x + y = 19[/tex]

[tex]xy = 48[/tex]

Isolate the top equation for the x variable.

[tex]x = 19 - y[/tex]

Substitute into the second equation.

[tex](19 - y)y = 48[/tex]

[tex]19y - {y}^{2} = 48[/tex]

[tex] - {y}^{2} + 19y = 48[/tex]

[tex] - {y}^{2} + 19y - 48[/tex]

[tex](y - 16)(y - 3)[/tex]

So our values are

16 and 3.

Find the midpoint of the line segment defined by the points: (5, 4) and (−2, 1) (2.5, 1.5) (3.5, 2.5) (1.5, 2.5) (3.5, 1.5)

Answers

Answer:

[tex]\boxed {\boxed {\sf (1.5 , 2.5)}}[/tex]

Step-by-step explanation:

The midpoint is the point that bisects a line segment or divides it into 2 equal halves. The formula is essentially finding the average of the 2 points.

[tex](\frac {x_1+x_2}{2}, \frac {y_1+ y_2}{2})[/tex]

In this formula, (x₁, y₁) and (x₂, y₂) are the 2 endpoints of the line segment. For this problem, these are (5,4 ) and (-2, 1).

x₁= 5 y₁= 4 x₂= -2 y₂= 1

Substitute these values into the formula.

[tex]( \frac {5+ -2}{2}, \frac {4+1}{2})[/tex]

Solve the numerators.

5+ -2 = 5-2 = 3 4+1 = 5

[tex]( \frac {3}{2}, \frac{5}{2})[/tex]

Convert the fractions to decimals.

[tex](1.5, 2.5)[/tex]

The midpoint of the line segment is (1.5 , 2.5)

Simplify, write without exponents.

[tex]2*4^{2} *(128\frac{1}{4})[/tex]


[tex]_\sqrt[_]{_}[/tex]


a.) 8

b.) 20

c.) 2

d.) 64

e.) 4

f.) 16

Answers

it is helpful to you

On Monday, Main Street station sells 40 tickets.
There are four types of ticket; infant, child, adult and senior.
The bar chart shows the number of infant, child and adult tickets sold.

How many Senior tickets sold ?

Find how many adult tickets were sold than child tickets ?
BOTH QUESTIONS ANSWER NEEDED PLES HELP

Answers

Answer:

0 senior tickets were sold

5 more adult tickets were sold than chil tickets

Step-by-step explanation:

You need to see the frequency of each bar

Answer by Gauthmath

Which choice correctly shows the solution(s) of the equation x2 = 1442
A)
x= √144
B)
x=V12
X=-
-V144
D)
x = 1V144

Answers

Answer:

Step-by-step explanation:

If the 2s are exponents, you need to indicate this with "^":  

x^2 = 144^2 means x² = 144²

x = ±√144² = ±144

Answer:

Step-by-step explanation:

f the 2s are exponents, you need to indicate this with "^":  

x^2 = 144^2 means x² = 144²

x = ±√144² = ±144

Use formula autocomplete to enter a sum function in cell B7 to calculate the total of cells in B2:B6

Answers

Excel enables the users to perform mathematics basic and advanced function with just one formula.

The formula for sum of entire row or column can be done with just entering a single formula and results are shown in seconds.

The formula for sum of few column cells is,

=SUM(B2:B6)

The spreadsheet allows the user to enter various formula and results are displayed withing seconds.

There are formulas for basic math functions and there are also formulas for advance mathematics calculations. For addition of values of many cells sum formula is used and range is assigned for reference.

The formula adds all the values of selected cells and displays the results in different cell.

Learn more at https://brainly.com/question/24365931

Write this quadratic equation in standard form.

Answers

Answer:

-[tex]x^{2} + 3x -8 = 0[/tex]

Step-by-step explanation:

[tex]x^{2} + x -8 - 2x = 0[/tex] [tex]x^{2} + 3x -8 = 0[/tex]

Suppose the distributor charges the artist a $40.00 cost for distribution, and the streaming services pays $4.00 per unit. (Note: One unit = one thousand streams)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Formula: y = 40x + 4 (Graph Attached)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

After how many streams will you pay for the distributor charges? (Hint: this is where the line crosses the x-axis, round to the nearest thousand)

Answers

Answer:

356 streams

Step-by-step explanation:

From the graph, you will see that the line cross the x-axis at x = 8.8

Substitute into the expression y = 40x + 4

y = 40(8.8)+4

y = 352 + 4

y = 356

Hence the distributor charges will be paid for after 356 streams

Question two
The lengths of the sides of a triangle are in the ratio 2:3:4. The shortest side is 14cm long.
Find the lengths of the other two sides​

Answers

Answer:

14 and 21 and 28

Step-by-step explanation:

2:3:4.

The shortest side is 14

14/2 = 7

Multiply each side by 7

2*7:3*7:4*7

14 : 21 : 28

Triangle are in the ratio 2:3:4.

2x =5

x = 5/2 = 2.5 cm

3x = 3(2.5) =7.5 cm
4x =4(2.5) =10.0 cm

According to government data, the probability than an adult never had the flu is 19%. You randomly select 70 adults and ask if he or she ever had the flu. Decide whether you can use the normal distribution to approximate the binomial distribution, If so, find the mean and standard deviation, If not, explain why. Round to the nearest hundredth when necessary.

Answers

Answer:

Since [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal distribution can be used to approximate the binomial distribution.

The mean is 13.3 and the standard deviation is 3.28.

Step-by-step explanation:

Binomial probability distribution

Probability of exactly x successes on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex], if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex].

The probability than an adult never had the flu is 19%.

This means that [tex]p = 0.19[/tex]

You randomly select 70 adults and ask if he or she ever had the flu.

This means that [tex]n = 70[/tex]

Decide whether you can use the normal distribution to approximate the binomial distribution

[tex]np = 70*0.19 = 13.3 \geq 10[/tex]

[tex]n(1-p) = 70*0.81 = 56.7 \geq 10[/tex]

Since [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal distribution can be used to approximate the binomial distribution.

Mean:

[tex]\mu = E(X) = np = 70*0.19 = 13.3[/tex]

Standard deviation:

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{70*0.19*0.81} = 3.28[/tex]

The mean is 13.3 and the standard deviation is 3.28.

1.8>4.7+w

Does anyone know what this may be ? Thank you very much .

Answers

Answer:

-2.9 > w

Step-by-step explanation:

1.8>4.7+w

Subtract 4.7 from each side

1.8-4.7>4.7-4.7+w

-2.9 > w

Answer:

w = -2.9

Step-by-step explanation:

The hypotenuse of a right triangle measures 14 cm and one of its legs measures 1 cm. Find the measure of the other leg. If necessary, round to the nearest tenth.

Answers

Answer:

b=14 cm

Step-by-step explanation:

Use pythagorean equation

A^2+b^2=c^2

1^2+b^2=14^2

1+b^2=196

b^2=195

b=13.964

Please Help!
Function: y=x^2+5x-7
Vertex: (___,___)
Solutions: (___,___) and (___,___)

* i thought the vertex was (-5/2,-53,4) but apparently i’m wrong since it keeps saying it* i need answers please

Answers

Answer:

Step-by-step explanation:

Shortern this expression pls​

Answers

Answer:

[tex]c =\frac{8}{3}[/tex]

Step-by-step explanation:

Given

[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}[/tex]

Required

Shorten

We have:

[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}}[/tex]

Rationalize

[tex]c = \sqrt{\frac{4 + \sqrt 7}{4 - \sqrt 7} * \frac{4 + \sqrt 7}{4 + \sqrt 7}} + \sqrt{\frac{4 - \sqrt 7}{4 + \sqrt 7}*\frac{4 - \sqrt 7}{4 - \sqrt 7}}[/tex]

Expand

[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{4^2 - (\sqrt 7)^2}} + \sqrt{\frac{(4 - \sqrt 7)^2}{4^2 - (\sqrt 7)^2}[/tex]

[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{16 - 7}} + \sqrt{\frac{(4 - \sqrt 7)^2}{16 - 7}[/tex]

[tex]c = \sqrt{\frac{(4 + \sqrt 7)^2}{9}} + \sqrt{\frac{(4 - \sqrt 7)^2}{9}[/tex]

Take positive square roots

[tex]c =\frac{4 + \sqrt 7}{3} + \frac{4 - \sqrt 7}{3}[/tex]

Take LCM

[tex]c =\frac{4 + \sqrt 7 + 4 - \sqrt 7}{3}[/tex]

Collect like terms

[tex]c =\frac{4 + 4+ \sqrt 7 - \sqrt 7}{3}[/tex]

[tex]c =\frac{8}{3}[/tex]

Help me solve please

Answers

(3a^4b/2b^3)^3

cube all the terms:

3^3 = 27

b^3

(a^4)^3 = a^(4*3) = a^12

2^3 = 8

(b^3)^3 = b^3*3 = b^9

27a^12b^3 / 8b^9

Divide the b terms to get the final answer:

27a^12 / 8b^6

Write an inequality for the shaded region shown in the figure.​

Answers

Answer:

the equation of the circle is x^2 + y^2 < 36

NOT LESS OR EQUAL cause of the dotted lines

and the theory behind this is because the square root of 36 is +-6 so when the equation is less than +-6 the shade cannot go outside these point, if you know what i mean

hope that answers your question :)

What would be the equation for this word problem?

Jack drove y miles in 20 mins. If he continues at the same rate how many miles can he drive in the next 15 mins?

Answers

9514 1404 393

Answer:

  d/15 = y/20

Step-by-step explanation:

At a given rate, distance is proportional to time. The distance d that Jack can drive in 15 minutes will be ...

 d/15 = y/20 . . . . the equation

  d = (3/4)y . . . . . the solution (multiply the above equation by 15, reduce)

what percent is equal to 7/25​

Answers

28% because 25x4=100 7x4=28

HELP URGENT !!!!!!



what happens if the lines that are being cut by the transversal are not parallel

Answers

The answer is c. Alcohol your welcome

An automobile went 84 miles on 6.5 gallons of gasoline. At this rate, how many gallons would be needed to travel 126 miles

Answers

Answer:

10 gallons

Step-by-step explanation:

84 ÷ 6.5 =12.9(The unit rate.)

Seeing as one gallon can get you 12.9 miles;

126÷12.9=9.7

So the answers 9.7 gallons, but if you need to round, then 10 to get a whole number.

Answer:

9.75

Step-by-step explanation:

We can write a ratio to solve

84 miles          126 miles

--------------   = -------------------

6.5 gallons        x gallons

Using cross products

84 x = 6.5 * 126

84x=819

84x/84 = 819/84

x = 9.75

Other Questions
Find the least common multiple of 4 and 10 The candidates debated the current policies were appropriate the economy had changed, there were shifts in the population, and the war had ended. Samuel had 12 red marbles , 15 blue marbles , and 13 green marbles . Which fraction represents the number of red marbles he has Find the remainder when f(x) = x^3- 6x^2 +3x -1 divided by 2x-3 any 5 algebraic formulas We meet every Thursday, at a different club member's house each week. The host for each week provides drinks and a ... snacksin 1 t thi :' Complete the tables, and the graph HELPPP Theorem 8.9 : The line segment joining the mid-points of two sides of a triangle is parallel to the third side. prove this theorem What is the sale price of this bed after the discount has been taken off the standard price? URGENT PLS HELP what is 7.65% of $509.25 Why are sponges considered as parazoa Media and technology do not have an impacton your health,True False gip t vi, mnh hc lp 9 sContinent E is , the largest of the worlds seven continents.Australia is continent .Continent C is . Given three different prime numbers [tex]p_1 \ \ ; \ \ p_2[/tex] and [tex]p_3[/tex] satisfy equation [tex]p_1+p_2+p_3=202[/tex] . Find the maximum value of [tex]\pmb {p_1 \times p_2\times p_3=?}[/tex] Egg come first in this world or hen come first What type of polynomial is: -2/3 b^3 PLEASE HELP! A machine uses filtration to separate a component from orange juice. Which component does the machine most likely separate from the mixture?A - PigmentB - SugarC - PulpD - Water Read the following group discussion about utopias (perfect societies) and dystopias (hellish societies). VICTOR: If you all read Sanchez's article, you know that she argues that Aldous Huxley's Brave New World is a utopian novel, not a dystopian novel. It's a negative society for the main character only because he's a weirdo, an outsider. Everybody else is happy. RIKU: Yeah, but keep in mind how Sanchez defines a utopia. Her idea of a perfect society is one where everybody is ranked by ability and there isn't any conflict - not even disagreements. EDGAR: What's your point? RIKU: My point is that Sanchez's idea of a perfect society is all about rules and order. I know that my idea of a utopia is totally different from that, and it's probably different from a lot of other people's, including Huxley's.MARIA: In that case, what are some other examples of utopias? Ones that aren't orderly like the society in Brave New World?Edgar: Why don't we each find a different example of a utopian society in literature and see how they're different?VICTOR: O.K., I pick Thomas More's Utopia. I haven't read it yet so we'll see what he thinks.Which student is MOST clearly evaluating an author's point of view?