Answer:
2x-6
Step-by-step explanation:
( -8ײ +24×) ÷ (-4×) =
2x-6
Can you help plz
EEEEEEEEEEEEEEEEEEEEEE
Answer:
V = 125 cm³
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightGeometry
Volume of a Cube Formula: V = a³
a is any side lengthStep-by-step explanation:
Step 1: Define
Identify variables
a = 5 cm
Step 2: Find Volume
Substitute in variables [Volume of a Cube Formula]: V = (5 cm)³Evaluate exponents: V = 125 cm³Answer:
125cm^3
Step-by-step explanation:
Volume of a cube = l^3
Where l = length of cube
The given length of the cube is 5cm
Hence Volume = 5^3 = 125cm^3
22 - 8x = -5x - 14
Find x
Please help this is due today
Find the measure of angle 5
I WILL GIVE BRAINLIEST TO THE CORRECT ANSWER
Answer:
-4x+161
Step-by-step explanation:
why-
because it is correspondoing so that is the answer
Determine whether the triangles are congruent. Explain your reasoning .
SAS (Side, Angle, Side) or ASA (Angle, Side, Angle)
Answer:
Ty
Step-by-step explanation:
A bicycle tire has a radius of 10 inches. To the nearest inch, how far does the tire travel when it makes 4 revolutions?
Answer: 251.2 inches.
Step-by-step explanation: You have to multiply 4*2*π*radius. So, simply multiply 4*2*3.14*10. It would come out as 251.2 inches.
could anyone help me with this?
Answer:
93.4 cm²
Step-by-step explanation:
Area of the shaded region = area of the square - area of half of the circle
Area of the shaded region = s² + ½(πr²)
Where,
r = 6.2 cm
s = length of square = diameter of circle = 2*r = 2*6.2
s = 12.4 cm
Plug in the values
Area of the shaded region = 12.4² - ½(π × 6.2²)
= 153.76 - 60.381411
= 93.378589
≈ 93.4 cm² (nearest tenth)
The bus ride was 35 minutes long. If the ride ended at 12:05 a.m., what time did the ride begin?
Answer:
11:30 A.M.
Step-by-step explanation:
Answer:
11:30
Step-by-step explanation:
12.05- 35 min and its 11:30
hope that helps bby<3
need help asap!!!!!! Marcel is performing the first test on his company’s new electric car. During the test, the electric car reaches a maximum speed of 81 mph.
The performance test results of the electric car can be modeled by the following table, where x represents time, in seconds at the start of the test, and y represents the speed, in miles per hour.
For this case we have the following variables:
x: represents time, in seconds at the start of the test.
y: represents the speed, in miles per hour.
We have then that:
x = 0 ---> y = 0
x = 12 ---> y = 0
Answer:
the electric car is not moving at 0 seconds and 12 seconds
I hope this helps!
the electric car is not moving at 0 seconds and 12 seconds
I hope this helps!
what is the common difference for this arthimitic sequence? -8, -13, -18, -23
a. 5
b. -5
c. -28
d. -21
What is the product?
(5r − 4)(r2 − 6r + 4)
5r3 − 34r2 + 44r − 16
5r3 − 4r2 + 14r − 16
5r3 − 6r − 16
5r3 + 10r − 16
Answer:
5r³ - 34r² + 44r - 16
Step-by-step explanation:
[tex] \small \sf \: (5r − 4)(r² − 6r + 4)[/tex]
use the distributive property
5r × (r² − 6r + 4) - 4× (r² − 6r + 4)
5r³ - 30r² + 20r - 4r² + 24r - 16
combine like terms
5r³ - 30r² - 4r² + 20r + 24r - 16
5r³ - 34r² + 44r - 16
The product of the expressions is 5r^3 - 34r^2 + 44r - 16
What is a product?The product of two expression is done by multiplying the expressions
The product expression is given as:
[tex](5r - 4)(r^2 - 6r + 4)[/tex]
Expand the expression
[tex]5r^3 - 30r^2 + 20r - 4r^2 + 24r - 16[/tex]
Collect like terms
[tex]5r^3 - 30r^2 - 4r^2 + 20r + 24r - 16[/tex]
Evaluate the like terms
[tex]5r^3 - 34r^2 + 44r - 16[/tex]
Hence, the product of the expressions is 5r^3 - 34r^2 + 44r - 16
Read more about product at:
https://brainly.com/question/4344214
A shoe repairman is working with his assistant, who takes 1.5 times as long to repair a pair of shoes.
Together they can fix 10 pairs of shoes in six hours. How long does it take the repairman to fix one pair
of shoes by himself?
Answer:
1/2 or 0.5 hours
Step-by-step explanation:
r = time for repairman to fix one pair of shoes.
a = time for assistant to fix one pair of shoes.
a = r×1.5
x×r + y×a = 6
x = number of pairs of shoes repaired by repairman.
y = number of pairs of shoes repaired by assistant.
x+y = 10
y = 10-x
x = y×1.5 (based on the a/r ratio : as the assistant needs 1.5 times longer, the repairman will have repaired 1.5 times more pair of shoes in the same time)
y = 10 - y×1.5
y + y×1.5 = 10
2.5×y = 10
y = 4
=> x = 6
6×r + 4×r×1.5 = 6
6×r + 6×r = 6
12×r = 6
r = 6/12 = 1/2 or 0.5 hours
Solve for x. Round to the nearest tenth, if
necessary.
I hope this is help full to u
thank you
Answer:
x = 3.8
Step-by-step explanation:
take 53 degree as reference angle
using cos rule
cos 53 = adjacent/hypotenuse
0.60 = x /6.3
0.60*6.3 = x
3.78 = x
3.8 = x ( after converting the answer to nearest tenth)
NO WRONG ANSWER PLEASE PO
[tex] |? \times \fracwarning [/tex]
ok no no no wrong wrong answer
Answer:2. okra
Step-by-step explanation:
Find all solutions to the equation in the interval [0, 2pie]. Enter the solutions in increasing order. cos 2x = sin x
Answer:
cos2x=sinx
<=> 1-2sin^{2}x =sinx
solve and we have x=3pie/2, x=pie/6,x= 5pie/6
Step-by-step explanation:
(Find m∠IGH) m∠IGH=
Answer:
angle IGH = 50 degree
Step-by-step explanation:
triangle GHI is an isosceles triangle because it's two sides are equal.
if angle I is 50 degree then angle G is also 50 degree becasue in isosceles triangle the base angles are equal.
Jade has seven cards. Each card is labeled with a letter. A B C D E F G H J Jade picks one of her cards at random. Find the probability that the card she picks is a) labelled F, b) labelled with a letter in her name JADE c) labelled with a letter that has at least one line of symmetry
Answer:
(a) [tex]\frac{1}{7}[/tex]
(b) [tex]\frac{4}{7}[/tex]
(c) [tex]\frac{5}{7}[/tex]
Step-by-step explanation:
Probability (P) of an event is the likelihood that the event will occur. It is given by;
P = number of favourable outcomes ÷ total number of events in the sample space.
Given letters of cards:
A B C D E F G H J
∴ Total number of events in sample space is actually the number of cards which is 7
If a card is picked at random;
(a) the probability P(F), that it is labelled F is given by;
P(F) = number of favourable outcomes ÷ total number of events in the sample space.
The number of favourable outcomes for picking an F = 1 since there is only one card labelled with F.
∴ P(F) = 1 ÷ 7
=> P(F) = [tex]\frac{1}{7}[/tex]
(b) the probability P(N), that it is labelled with a letter in her name JADE is given by;
P(N) = P(J) + P(A) + P(D) + P(E)
Where;
P(J) = Probability that it is labelled J
P(A) = Probability that it is labelled A
P(D) = Probability that it is labelled D
P(E) = Probability that it is labelled E
P(J) = [tex]\frac{1}{7}[/tex]
P(A) = [tex]\frac{1}{7}[/tex]
P(D) = [tex]\frac{1}{7}[/tex]
P(E) = [tex]\frac{1}{7}[/tex]
∴ P(N) = [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex]
∴ P(N) = [tex]\frac{4}{7}[/tex]
(c) the probability P(S), that it is labelled with a letter that has at least one line of symmetry is;
P(S) = P(A) + P(B) + P(C) + P(D) + P(E) + P(H)
Where;
P(A) = Probability that it is labelled A
P(B) = Probability that it is labelled B
P(C) = Probability that it is labelled C
P(D) = Probability that it is labelled D
P(E) = Probability that it is labelled E
P(H) = Probability that it is labelled H
Cards with letters A, B, C, D, E and H are selected because these letters have at least one line of symmetry. A line of symmetry is a line that cuts an object into two identical halves. Letters A, B, C, D, E and H can each be cut into two identical halves.
P(A) = [tex]\frac{1}{7}[/tex]
P(B) = [tex]\frac{1}{7}[/tex]
P(C) = [tex]\frac{1}{7}[/tex]
P(D) = [tex]\frac{1}{7}[/tex]
P(E) = [tex]\frac{1}{7}[/tex]
P(H) = [tex]\frac{1}{7}[/tex]
∴ P(S) = [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex] + [tex]\frac{1}{7}[/tex]
∴ P(S) = [tex]\frac{5}{7}[/tex]
Can someone help giving branliest to first correct answer
A graph of f(x)=acos(bx) is shown, where b is a positive constant. Determine the values of a and b.
Answer:
Option (1)
Step-by-step explanation:
Equation of the given wave function,
f(x) = acos(bx)
Here, a = amplitude of the wave
Period of the wave = [tex]\frac{2\pi }{B}[/tex]
From the graph attached,
Amplitude = [tex]\frac{4-(-4)}{2}[/tex]
= [tex]\frac{4+4}{2}[/tex]
= 4
Period of the wave = π - 0
= π
From the formula of the period,
Period = [tex]\frac{2\pi }{b}[/tex]
[tex]\pi =\frac{2\pi }{b}[/tex]
b = 2
Therefore, a = 4 and b = 2.
Option (1) will be the answer.
Which sequence is geometric?
Answer:
4th option
Step-by-step explanation:
in geometric sequences the number is multiplied or divided by same number continuously
in the 4th option we can see that the number 1 is multiplied by 4 continuously so the correct answer would be that.
What is the general equation for direct
variation?
Answer:
☆ y=kx
Example: if we have x= 3 and y= 15
Find y?
y= kx
*We know that y= 15 and x= 3
So,
15=k(3)
15=3k
*divide 3 from both sides
K=5
y=5x
y=5(5)=25
☆▪☆▪☆▪☆▪☆
Hope it helps..
Have a great day!!
Write the expression as either the sine, cosine, or tangent of a single angle. cos(pi/5) cos(pi/7)+sin(pi/5)sin (pi/7)
Answer:
cos(2π/35)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightPre-Calculus
Sum/Difference Formula [cosine]: [tex]\displaystyle cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)[/tex]Step-by-step explanation:
Step 1: Define
Identify
cos(π/5)cos(π/7) + sin(π/5)sin(π/7)
Step 2: Simplify
Sum/Difference Formula [cosine]: cos(π/5)cos(π/7) + sin(π/5)sin(π/7) = cos(π/5 - π/7)Subtract: cos(π/5 - π/7) = cos(2π/35)EG is the angle bisector of
Answer:
the remaining angle will be 32
cz angle bisector cuts an angle in two equal parts hooe it may help u
please i have 15 minutes
Answer:
[tex] x = \dfrac{-\log 7}{\log 7 - \log 2} [/tex]
Step-by-step explanation:
[tex] 2^x = 7^{x + 1} [/tex]
Take the log of both sides.
[tex] \log 2^x = \log 7^{x + 1} [/tex]
Use properties of log.
[tex] x \log 2 = (x + 1) \log 7 [/tex]
[tex] x \log 2 = x \log 7 + \log 7 [/tex]
[tex] x \log 2 - x \log 7 = \log 7 [/tex]
[tex] x(\log 2 - \log 7) = \log 7 [/tex]
[tex] x = \dfrac{\log 7}{\log 2 - \log 7} [/tex]
[tex] x = \dfrac{\log 7}{-(\log 7 - \log 2)} [/tex]
[tex] x = \dfrac{-\log 7}{\log 7 - \log 2} [/tex]
A pyramid with a triangular base has a volume of 50cm³. If the base and the height of the triangular base are 5cm and 8cm respectively, find the height of the pyramid ?
Answer:
h = 7.5 cm
Step-by-step explanation:
Firstly, we find the area of the triangular base
Mathematically, we have the area of a triangle as;
A = 1/2 * b * h
A = 1/2 * 5 * 8 = 20 cm^2
Mathematically, we have the formula as;
V= 1/3 * A * h
A is base area and h is height
50 = 1/3 * 20 * h
20h = 3 * 50
20h = 150
h = 150/20
h = 7.5 cm
Help me please
How many solutions does the equation
x -4 = 12 - 2x have? Explain.
- ? .
Answer: one solution.
Step-by-step explanation:
[tex]\dfrac{2}{3} x-4=12-2x\\\\\dfrac{2}{3} x+2x=12+4\\\\2\dfrac{2}{3} x=16\\\\\dfrac{8}{3} x=16\\\\8x=16 \cdot 3\\\\8x=48\\\\x=\dfrac{48}{8} =6[/tex]
This equation has one solution: x = 6.
When an algebraic expression can be written as the product of two or more expressions, then each of these expressions is called a ____________of the given expression.
[tex] \huge\boxed{\mathfrak{Answer}}[/tex]
=> Factor.
When an algebraic expression can be written as the product of two or more expressions, then each of these expressions is called a factor of the given expression.
[tex] \sf \: It's \: called \: a \: \boxed{\underline{\bf \: factor}}[/tex]
When an algebraic expression can be written as the product of two or more expressions, then each of these expressions is called a [tex]\boxed{\underline{\bf \: factor}}[/tex]of the given expression.
The locksmith is 82.9 miles west of the bakery. The pet store is 44.5 miles west of the bakery. The toy store is 38.6 miles east of the bakery. The coffee shop is 71.5 miles east of the bakery. The library is 57.0 miles south of the bakery. The magic shop is 75.7 miles south of the bakery. How far apart are the toy store and the locksmith?
Answer:
82.9+38.6=121.5 miles far away.
Please help I’ll give brainliest
Answer:
D. 12m^3n^5
Step-by-step explanation:
Answer:
12m³n⁵
Step-by-step explanation:
3 · 4 = 12
m² · m = m³
n³ · n² = n⁵
Therefore, 3m²n³ · 4mn² = 12m³m⁵
?????????????????????????????????????????????????????
Answer:
??????
Step-by-step explanation:
Answer:
The radius of the circle is 2 units.
Step-by-step explanation:
The radius is half the diameter, therefor you must divide the diameter (4) by 2, and you get 2 units.
The table above shows the value of Henry’s car for each o of the first 3 years after it is purchased. The values form a geometric sequence. What will be the approximate value of the car in the 10th year?
A $2,680
B. $5,240
C. $6,550
D. $2,150
Answer:
D.
Step-by-step explanation:
You need to use a graphing calculator to figure it out.