What is the simplified form of the following expression? 2 StartRoot 18 EndRoot + 3 StartRoot 2 EndRoot + StartRoot 162 EndRoot 6 StartRoot 2 EndRoot 18 StartRoot 2 EndRoot 30 StartRoot 2 EndRoot 36 StartRoot 2 EndRoot

Answers

Answer 1

Answer:

[tex]18\sqrt2[/tex]

Step-by-step explanation:

To simplify:

[tex]2 \sqrt{18}+ 3 \sqrt2+ \sqrt{162 }[/tex]

First of all, let us write 18 and 162 as product of prime factors:

[tex]18 = 2 \times \underline{3 \times 3}\\162 = 2 \times \underline{3 \times 3} \times \underline{3 \times 3}[/tex]

The pairs are underlined as above.

While taking roots, only one of the numbers from the pairs will be chosen.

Now, taking square roots.

[tex]\sqrt{18} =3 \sqrt2[/tex]

[tex]162 = 3 \times 3 \times \sqrt 2 = 9 \sqrt2[/tex]

So, the given expression becomes:

[tex]2 \sqrt{18}+ 3 \sqrt2+ \sqrt{162 } = 2 \times 3\sqrt2 + 3\sqrt2 +9\sqrt2\\\Rightarrow 6\sqrt2 + 3\sqrt2 +9\sqrt2\\\Rightarrow \sqrt2(6+3+9)\\\Rightarrow \bold{18\sqrt2}[/tex]

So, the answer is:

[tex]18\sqrt2[/tex] or 18 StartRoot 2 EndRoot

Answer 2

Answer:

its B. 18 sqrt(2)

Step-by-step explanation:

just took test


Related Questions

A couple has a total household income of $84,000. The husband earns $18,000 less than twice what the wife earns. How much does the wife earn? Select the correct answer below:

Answers

Answer:

$34000

Step-by-step explanation:

We can set up a systems of equations, assuming [tex]h[/tex] is the husbands income and [tex]w[/tex] is the wife's income.

h + w = 84000

h = 2w - 18000

We can substitute h into the equation as 2w - 18000:

(2w - 18000) + w = 84000

Combine like terms:

3w - 18000 = 84000

Add 18000 to both sides

3w = 102000

And divide both sides by 3

w = 34000

Now that we know how much the wife earns, we can also find out how much the husband earns by substituting into the equation.

h + 34000  = 84000

h = 50000

Hope this helped!

If possible, find AB. & State the dimension of the result.

Answers

Answer:

The answer is "[tex]AB= \left[\begin{array}{cc} -2 &51 \\-8&33\\0&27&\end{array}\right][/tex]"

Step-by-step explanation:

If the value of A and B is:

[tex]A= \left[\begin{array}{cc}-1&6\\-4&5\\0&3\end{array}\right][/tex]

[tex]B=\left[\begin{array}{cc}2&3\\0&9\end{array}\right][/tex]

Find the value of A[tex]\times[/tex]B:

[tex]AB =\left[\begin{array}{cc}-1 \times 2+6 \times 0 &-1 \times 3+6 \times 9\\ -4 \times 2+5 \times 0& -4 \times 3+5 \times 9\\ 0 \times 2+3 \times 0&-1 \times 2+3\times 9\end{array}\right] \\ \\\\AB =\left[\begin{array}{cc}-2+0 &- 3+54\\ -8+0& -12+45\\ 0+ 0&-2 +27\end{array}\right] \\ \\[/tex]

[tex]AB= \left[\begin{array}{cc} -2 &51 \\-8&33\\0&27&\end{array}\right][/tex]

The first step in a mathematical induction proof is to divide by n. (True or False).

Answers

Answer:

Step-by-step explanation:

Hello, this is false.

The first step of a mathematical induction proof is to prove the statement for the initial value, which is most of the time for n = 0 or n = 1.

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

) If the half-life of 238Pu is 87.7 yr, write a function of the form =QtQ0e−kt to model the quantity Qt of 238Pu left after t years. Round the value of k to five decimal places. Do not round intermediate calculations.

Answers

Answer:

0.079

Step-by-step explanation:

According to the given situation, the calculation of the value of k is presented as follows:

[tex]Q(t)= Q_0e^{-kt}\\\\ 0.5Q_0 = Q_0e^{-k(97.7)}\\\\ 0.5 = e^{-k(87.7)}[/tex]

now,

[tex]k = \frac{In0.5}{-87.7}[/tex]

After solving the above equation we will get the value of k.

= 0.079

Therefore for determining the value of k we simply solve the above equation i.e. by considering all the information mentioned in the question

Answer:

3.5e^-0.0079t

Step-by-step explanation:

None, Good luck mate

In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will the
population be in 2033 according to the exponential growth function?
Round the answer to the nearest whole number.

Answers

Answer:

40,000 populations

Step-by-step explanation:

Initial population in 2018 = 25,000

Annual growth rate (in %) = 4%

Yearly Increment in population = 4% of 25000

= 4/100 * 25000

= 250*4

= 1000

This means that the population increases by 1000 on yearly basis.

To determine what the  population will be in 2033, we need to first know the amount of years we have between 2018 and 2033.

Amount of years we have between 2018 and 2033 = 2033-2018

= 15 years

After 15 years, the population will have increased by 15*1000 i.e 15,000 more than the initial population.

Hence the population in 2033 will be Initial population + Increment after 15years = 25,000+15000 = 40,000 population.

You know only the given information about
the measures of the angles of a triangle. Find the probability that the triangle is equiangular.
39. Each is a multiple of 12.

Answers

Since they are multiples if 12

The possibilities are

12, 12, 156

12,24,144

12,36,132

12,48,120

12,60,108

12,72,96

12,84,84

24,24,132

24,36,120

24,48,108

24,60,96

24,72,84

36,36,108

36,48,96

36,60,84

36,72,72

48,48,84

48,60,72

60,60,60

Hence the probability is 1/19 or 0.0526

A football team starts on the 10 yard line moving toward the 50 yard line so they can score on the other side of the field. In three plays they gain 14 yards, lose 12 yards, and gain 4 more yards. What yard line do they start their fourth play?

Answers

Answer:

16 yard line

Step-by-step explanation:

The football team is starting on the 10 yard line. In the first play, they move up to the 24 yard line. Then in the second play, they go back to the 12 yard line since they lost 12 yards. Then in the third play, they gain 4 yards so you add 4 to 12. They end up at the 16 yard line after the third play. This means that they're going to start their fourth play at the 16 yard line.

Answer:

16 yards.

Step-by-step explanation:

They start at 10 yards. They are moving towards the 50 yard line, so gaining yards will add to the 10 yards instead of subtract from the 10 yards.

In the first play, they gain 14 yards. 10 + 14 = 24 yards.

In the second play, they lose 12 yards. 24 - 12 = 12 yards.

In the third play, they gain 4 yards. 12 + 4 = 16 yards, which is where they start their fourth play.

Hope this helps!

a westward moving motorcycle slows down from 24.0 m/a to 12.0 m/s in 3.0 seconds. what is the magnitude and direction of the acceleration

Answers

Answer:

0

Step-by-step explanation:

Complete each equation with a number that makes it true. 5⋅______=15 4⋅______=32 6⋅______=9 12⋅______=3

Answers

Answer: blank 1:  3   Blank 2:  8   blank 3:  1.5    blank 4:   0.25

Step-by-step explanation:

5 times 8=15

4 times 8=32

6 times 1.5=9

12 times 0.25=3

The complete equation is

5⋅____3__=15

4⋅___8___=32

6⋅___1.5___=9

12⋅__0.25____=3

What is Multiplication?

Multiplication is an operation that represents the basic idea of repeated addition of the same number. The numbers that are multiplied are called the factors and the result that is obtained after the multiplication of two or more numbers is known as the product of those numbers. Multiplication is used to simplify the task of repeated addition of the same number.

Multiplication Formula

The multiplication formula is expressed as, Multiplicand × Multiplier = Product; where:

Multiplicand: The first number (factor).Multiplier: The second number (factor).Product: The final result after multiplying the multiplicand and multiplier.Multiplication symbol: '×' (which connects the entire expression)

5 * 3=154 * 8=326 * 1.5=912 * 0.25=3

Learn more about multiplication here:

https://brainly.com/question/5992872

#SPJ2

Rewrite the expression as an equivalent ratio of logs using the indicated base.log17(52.875) to base 10.

Answers

Answer:

[tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]

Step-by-step explanation:

Given

[tex]log_{17}(52.875)[/tex]

Required

Convert to base 10

To do this, we make use of the following logarithm laws;

[tex]log_ba = \frac{log_{10}a}{log_{10}b}[/tex]

In the given parameters;

[tex]a = 52.875[/tex]

[tex]b = 17[/tex]

Substitute these values in [tex]log_ba = \frac{log_{10}a}{log_{10}b}[/tex]

[tex]log_{17}52.875 = \frac{log_{10}52.875}{log_{10}17}[/tex]

Represent as a ratio

[tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]

Hence;

[tex]log_{17}(52.875)[/tex] is represented as [tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]

Expression  [tex]log_{17} 52.875[/tex] can be written as in form of ratio of log  [tex]\frac{log_{10} 52.875}{log_{10} 17}[/tex] .

Any logarithmic expression [tex]log_{a} b[/tex] can we written as in form of ratio of log on base 10.

                   [tex]log_{a} b=\frac{log_{10} b}{log_{10} a}[/tex]

Here logarithmic expression is,  [tex]log_{17} 52.875[/tex] comparing with above expression.

We get,    [tex]b=52.875,a=17[/tex]

Substitute values of a and b in above expression.

 We get,      [tex]log_{17} 52.875=\frac{log_{10} 52.875}{log_{10} 17}[/tex]

Learn more:

https://brainly.com/question/12049968                                            

A research center poll showed that % of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief? 78 The probability that someone does not believe that it is morally wrong to not report all income on tax returns is . (Type an integer or a decimal.)

Answers

Question:

A research center poll showed that 78% of people believe that it is morally wrong to not report all income on tax returns. What is the probability that someone does not have this belief?

The probability that someone does not believe that it is morally wrong to not report all income on tax returns is . (Type an integer or a decimal.)

Answer:

[tex]q = 0.22[/tex]

Step-by-step explanation:

Given

Let p represent the given proportion

p = 78%

Required

Determine the probability that someone holds a contrary belief

Start by converting the given proportion to decimal

[tex]p = 78\%[/tex]

[tex]p = \frac{78}{100}[/tex]

[tex]p = 0.78[/tex]

In probability, the sum of opposite probability is equal to 1

Represent the probability that someone holds a contrary belief with q

So;

[tex]p + q = 1[/tex]

Make q the subject of formula

[tex]q = 1 - p[/tex]

Substitute 0.78 for p

[tex]q = 1 - 0.78[/tex]

[tex]q = 0.22[/tex]

Hence, the probability that someone does not believe is 0.22

What is the solution to the linear equation?
2/5 + p = 4/5 + 3/5p​

Answers

Answer:

p = 1

Step-by-step explanation:

[tex] \frac{2}{5} + p = \frac{4}{5} + \frac{3}{5} p[/tex]

Multiply through by the LCM

The LCM for the equation is 5

That's

[tex]5 \times \frac{2}{5} + 5p = 5 \times \frac{4}{5} + \frac{3}{5}p \times 5[/tex]

We have

2 + 5p = 4 + 3p

Group like terms

5p - 3p = 4 - 2

2p = 2

Divide both sides by 2

We have the final answer as

p = 1

Hope this helps you

An airline claims that the proportion of no-shows for passengers who booked on its flights is less than 0.06. In a random sample of 380 reservations, 19 were no-shows. A hypothesis test is to be performed to test the airline's claim that the proportion of no-shows on its flights is less than 0.06. Calculate the test statistic associated with this sample. An airline claims that the proportion of no-shows for passengers who booked on its flights is less than 0.06. In a random sample of 380 reservations, 19 were no-shows. A hypothesis test is to be performed to test the airline's claim that the proportion of no-shows on its flights is less than 0.06. Calculate the test statistic associated with this sample.

Answers

Answer:

≈ -0.821

Step-by-step explanation:

Given:

n= 380, samplex= 19, no-shows countp = 0.06, proportion of no-shows

Then, the sample proportion is:

p' = x/n = 19/ 380 = 0.05

Hypothesis test:

H₀: p = 0.06H₁: p< 0.06

Test statistics:

z = (p' - p) /[tex]\sqrt{p(1-p)/n}[/tex] z = (0.05 - 0.06)/[tex]\sqrt{006(1-0.06)/380}[/tex] ≈ -0.821

Assume the triangular prism has a base area of 49cm^2 and a volume of 588cm^3. What side length does the rectangular prism need to have the same volume?

Answers

Answer:

Length = Width = 7 cm

Step-by-step explanation:

Volume of a triangular prism is represented by the formula,

Volume = (Area of the triangular base) × height

588 = 49 × h

h = [tex]\frac{588}{49}[/tex]

h = 12 cm

We have to find the side length of a rectangular prism having same volume.

Volume = Area of the rectangular base × height

588 = (l × b) × h [l = length and b = width ]

588 = (l × b) × 12

l × b = 49 = 7 × 7

Therefore, length = width = 7 cm may be the side lengths of the rectangular prism to have the same volume.              

On a single toss of a fair coin, the probability of heads is 0.5 and the probability of tails is 0.5. If you toss a coin twice and get heads on the first toss, are you guaranteed to get tails on the second toss? Explain. Yes, since the coin is fair. No, each outcome is equally likely regardless of the previous outcome. Yes, tails will always result on the second toss. No, tails will never occur on the second toss.

Answers

Answer:

No, each outcome is equally likely regardless of the previous outcome.

Which of the following graphs accurately displays a parabola with its directrix and focus?

Answers

Answer:

Hey there!

The first graph is the correct answer. A point on the parabola is equally far from the focus as it is to the directrix.

Let me know if this helps :)

The graph that  accurately displays a parabola with its directrix and focus is the first graph.

How do we make graph of a function?

Suppose the considered function whose graph is to be made is  f(x)

The values of 'x' (also called input variable, or independent variable) are usually plotted on horizontal axis, and the output values  f(x) are plotted on the vertical axis.

They are together plotted on the point  (x,y) = (x, f(x))

This is why we usually write the functions as:  y = f(x)

A point shown in the graphs on the parabola is equally far from the focus as it is to the directrix.

Therefore, The first graph is the correct answer.

Learn more about graphing functions here:

https://brainly.com/question/14455421

#SPJ2

What is the image of point (8,-4) under the rotation R90° about the origin?

A) (8,4)
B) (4,8)
C) (-4,8)
D) (-4,-8)​

Answers

Answer:

D). (-4,-8)​

Step-by-step explanation:

An image at (8,-4) if rotated at an angle of 90° wipl have another location.

First of all, an image at (8,-4) is in the fourth quadrant, and if it's to rotate clockwise at 90° iths supposed to be in the third quadrant.

And in the third quadrant both x and y is negative.

So the new position is at (-4,-8)​

What is lim x → 0 e^2x - 1/ e^x - 1

Answers

Hello, please consider the following.

[tex]\displaystyle \forall x \in \mathbb{R}\\\\\dfrac{e^{2x}-1}{e^x-1}\\\\=\dfrac{(e^x)^2-1^2}{e^x-1}\\\\=\dfrac{(e^x-1)(e^x+1)}{e^x-1}\\\\=e^x+1\\\\\text{So, we can find the limit.}\\\\\lim_{x\rightarrow 0} \ {\dfrac{e^{2x}-1}{e^x-1}}\\\\=\lim_{x\rightarrow 0} \ {e^x+1}\\\\=e^0+1\\\\\large \boxed{\sf \bf \ =2 \ }[/tex]

Thank you

PLS HELP:Find all the missing elements:

Answers

Answer:

b = 9.5 , c = 15

Step-by-step explanation:

For b

To find side b we use the sine rule

[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]

a = 7

A = 23°

B = 32°

b = ?

Substitute the values into the above formula

That's

[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex]

[tex] |b| \sin(23) = 7 \sin(32) [/tex]

Divide both sides by sin 23°

[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]

b = 9.493573

b = 9.5 to the nearest tenth

For c

To find side c we use sine rule

[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]

C = 125°

So we have

[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex]

[tex] |c| \sin(23) = 7 \sin(125) [/tex]

Divide both sides by sin 23°

[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]

c = 14.67521

c = 15.0 to the nearest tenth

Hope this helps you

Write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants. 5x − 4 x(x2 + 7)2

Answers

Answer:

[tex]\frac{5x-4}{x(x^2+7)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+7} + \frac{Dx+E}{(x^2+7)^2}[/tex]

Step-by-step explanation:

Given the expression [tex]\frac{5x-4}{x(x^2+7)^2}[/tex], we are to re-write the expression in form of a partial fraction.

Before we write in form of a partial fraction, we need to note the expression at the denominator. Since the expression in parenthesis is a quadratic equation, the equivalent numerator must be a linear expression.

Also the quadratic equation is a repeated form since it is squared. This means that we are to repeat the quadratic equation twice when writing as a partial fraction.

[tex]\frac{5x-4}{x(x^2+7)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+7} + \frac{Dx+E}{(x^2+7)^2}[/tex]

From the above partial fraction, it can be seen that x² + 7 in parenthesis was repeated twice and their equivalent expressions at the numerator are  both linear i.e Bx+E and Dx+ E where A, B, C, D and E are the unknown constant.

How many cabinets must he sell to break even?

Answers

Answer:   He must sell 7 cabinets.

Step-by-step explanation:

So it gives us the equations y= 400x + 1400  and the equations  y=600x and to find the break even point we need to set the two equations equal each other to solve for x.

400x + 1400 = 600x

-400x               -400x

1400 = 200x

 x = 7    

Given the set of data: 24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25 a. Find the mode. b. Find the median. c. Find the mean, to the nearest tenth. d. Find the midrange. e. Find the standard deviation, to the nearest hundredth. f. Determine the quartiles.

Answers

Answer: a. 43

b. 27

c.  34.8

d. 45

e. 17.72

f. First quartile = 23

Second quartile = 27

Third quartile =43

Step-by-step explanation:

The given set of data:  24, 43, 65, 12, 31, 78, 43, 24, 25, 18, 29, 53, 18, 23, 20, 43, 53, 25

Arrange in Ascending order:

12 ,18,18 , 20 ,23 ,24 , 24 ,25 , 25 , 29, 31, 43, 43 , 43 , 53 , 53, 65 , 78

Total data points: n= 18 ( even)

a. Mode= Most repeated data value = 43

i.e. mode =43

b. Median = [tex]\dfrac{(\frac{n}{2})^{th}\text{term}+(\frac{n}{2}+1)^{th}\text{term}}{2}[/tex]

[tex]=\dfrac{(\frac{18}{2})^{th}\text{term}+(\frac{18}{2}+1)^{th}\text{term}}{2}\\\\=\dfrac{9^{th}\text{term}+10^{th}\text{term}}{2}\\\\=\dfrac{25+29}{2}\\\\=27[/tex]

i.e. median = 27

c. Mean = (sum of data points)÷n

Sum =12+18+18 + 20 +23 +24 + 24 +25 + 25 + 29+ 31+ 43+ 43 + 43 + 53 + 53+ 65 + 78=627

Mean = 627 ÷ 18 ≈34.8

i.e. Mean = 34.8

d. Mid range = [tex]\dfrac{\text{Maximum value +Minimum value}}{2}[/tex]

[tex]=\dfrac{78+12}{2}\\\\=\dfrac{90}{2}\\\\=45[/tex]

e. Standard deviation =[tex]\sqrt{\dfrac{\sum (x-mean)^2}{n}}[/tex][tex]\sum (x-\mean)^2=(12-34.8)^2+(18-34.8)^2+(18 -34.8)^2+( 20 -34.8)^2+(23 -34.8)^2+(24 -34.8)^2+( 24 -34.8)^2+(25 -34.8)^2+2( 25 -34.8)^2+( 29-34.8)^2+( 31-34.8)^2+( 43-34.8)^2+( 43 -34.8)^2+( 43 -34.8)^2+( 53 -34.8)^2+( 53-34.8)^2+( 65 -34.8)^2+( 78-34.8)^2\\\\=5654.56[/tex]

[tex]\sqrt{\dfrac{5654.56}{18}}=\sqrt{314.1422}\approx17.72[/tex]

f. First quartile = Median of first half (12 ,18,18 , 20 ,23 ,24 , 24 ,25 , 25)

= 23  (middle most value)

Second quartile = Median = 27

Third quartile = Median of second half (29, 31, 43, 43 , 43 , 53 , 53, 65 , 78)

= 43 (middle most value)

Many stores run "secret sales": Shoppers receive cards that determine how large a discount they get, but the percentage is revealed by scratching off that black stuff only after the purchase has been totaled at the cash register. The store is required to reveal (in the fine print) the distribution of discounts available. Determine whether the following probability assignment is legitimate?


10% off 20% off 30% off 50% off
a. 0.2 0.2 0.2 0.2
b. 0.5 0.3 0.2 0.1
c. 0.8 0.1 0.05 0.05
d. 0.75 0.25 0.25 -0.25
e. 1 0 0 0

Answers

Answer:

b

Step-by-step explanation:

it makes the most senses the lower the discount the higher the chance

Let A and B be events. The symmetric difference A?B is defined to be the set of all elements that are in A or B but not both.
In logic and engineering, this event is also called the XOR (exclusive or) of A and B.
Show that P(AUB) = P(A) + P(B)-2P(AnB), directly using the axioms of probability.

Answers

Correction:

P(AΔB) = P(A) + P(B) - 2P(AnB)

is what could be proven using the axioms of probability, and considering the case of symmetric difference given.

Answer:

P(AΔB) = P(A) + P(B) - 2P(AnB)

Has been shown.

Step-by-step explanation:

We are required to show that

P(AUB) = P(A) + P(B) - 2P(AnB)

directly using the axioms of probability.

Note the following:

AUB = (AΔB) U (AnB)

Because (AΔB) U (AnB) is disjoint, we have:

P(AUB) = P(AΔB) + P(AnB)..................(1)

But again,

P(AUB) = P(A) + P(B) - P(AnB)...............(2)

Comparing (1) with (2), we have

P(AΔB) + P(AnB) = P(A) + P(B) - P(AnB)

P(AΔB) = P(A) + P(B) - 2P(AnB)

Where AΔB is the symmetric difference of A and B.

Let R be a system consisting of rational expressions. Which operations are closed for R?

Answers

Answer:

D

Step-by-step explanation:A set is said to be closed under an operation when the application of the operation between any two elements of the set leads to an element that belongs to the same set. If a set is closed under an operation, it is said to have the closure property of that operation. When we combine two rational expressions by adding, subtracting, multiplying, or dividing, we get a rational expression. This pattern indicates that rational expressions are closed for all four operations.

7. Suppose that y varies inversely with x. Write an equation for the inverse variation,
y = 4 when x = 6
A
у
x =
2
B
х
y =
24
с
24
y =
OD y = 2x

Answers

Answer:

The answer is

[tex]y = \frac{24}{x} [/tex]

Step-by-step explanation:

The statement

y varies inversely with x is written as

[tex]y = \frac{k}{x} [/tex]

where k is the constant of proportionality

To find k substitute the values of x and y into the equation

From the question

y = 4

x = 6

We have

[tex]4 = \frac{k}{6} [/tex]

Cross multiply

k = 4 × 6

k = 24

So the formula for the variation is

[tex]y = \frac{24}{x} [/tex]

Hope this helps you

Answer: 5

Step-by-step explanation:

Consider a bag of jelly beans that has 30 red, 30 blue, and 30 green jelly beans. a) How many color combinations of 15 beans have at least 6 green beans

Answers

Answer:

680

Step-by-step explanation:

Number of red beans = 30

Number of Blue beans = 30

Number of green beans = 30

How many color combinations of 15 beans have at least 6 green beans?

Since at least 6 of the beans must be green,

Then (15 - 6) = 9

Then, the remaining 9 could be either red, blue or green.

Therefore, C(9 + (9 - 1), 3)

C(17, 3) = 17C3

nCr = n! ÷ (n-r)! r!

17C3 = 17! ÷ (17 - 3)! 3!

17C3 = 17! ÷ 14!3!

17C3 = (17 * 16 * 15) / (3 * 2)

17C3 = 4080 / 6

17C3 = 680 ways

Using the combination formula, it is found that there are 17,157,323,000,000,000 color combinations of 15 beans have at least 6 green beans.

The order in which the beans are chosen is not important, hence, the combination formula is used to solve this question.

Combination formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

Th total number of combinations of 15 beans from a set of 30 + 30 + 30 = 90 is:

[tex]C_{90,15} = \frac{90!}{15!75!} = 45795674000000000[/tex]

With less than 6 green, we have:

0 green:

[tex]C_{30,0}C_{60,15} = \frac{60!}{15!45!} = 53194089000000[/tex]

1 green:

[tex]C_{30,1}C_{60,14} = \frac{30!}{1!29!} \times \frac{60!}{14!46!} = 520376960000000[/tex]

2 green:

[tex]C_{30,2}C_{60,13} = \frac{30!}{2!28!} \times \frac{60!}{13!47!} = 2247585600000000[/tex]

3 green:

[tex]C_{30,3}C_{60,12} = \frac{30!}{3!27!} \times \frac{60!}{12!48!} = 5681396900000000[/tex]

4 green:

[tex]C_{30,4}C_{60,11} = \frac{30!}{4!26!} \times \frac{60!}{11!49!} = 9391696900000000[/tex]

5 green:

[tex]C_{30,5}C_{60,10} = \frac{30!}{5!25!} \times \frac{60!}{10!50!} = 10744101000000000[/tex]

Hence, the total for the number of combinations with less than 5 green is:

[tex]53194089000000 + 520376960000000 + 2247585600000000 + 5681396900000000 + 9391696900000000 + 10744101000000000 = 28638351000000000[/tex]

Subtracting the total amount of combinations from the number with less than 5 green, the number of combinations with at least 6 green is:

[tex]T = 45795674000000000 - 28638351000000000 = 17157323000000000[/tex]

There are 17,157,323,000,000,000 color combinations of 15 beans have at least 6 green beans.

A similar problem is given at https://brainly.com/question/24437717

Sharvay spends $15 to buy 17 pieces of candy. M&M’s cost $0.75 and candy bars cost $1. How many M&M’s and candy bars did Sharvay buy?

Answers

Answer:

8 M&Ms and 9 Candy Bars

Step-by-step explanation:

$15 dollars could buy 15 candy bars, and there are 17 pieces of candy total.

Prioritizing the number of bars:

0.75 * 2 = 1.50

1.50 * 2 = 3

At least $3 were spend on M&Ms, meaning 4 M&Ms and 12 candy bars, which is only 16 candy pieces...

8 M&Ms and 9 candy bars is equivalent to 17 total candy pieces.

A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two. What is the probability of no defects in 10 feet of steel

Answers

Answer:

the probability of no defects in 10 feet of steel = 0.1353

Step-by-step explanation:

GIven that:

A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two.

Let consider β to be the average value for defecting

So;

β = 2

Assuming Y to be the random variable which signifies the anticipated number of defects in a 10-foot segment of this roll.

Thus, y follows a poisson distribution as number of defect is infinite with the average value of β = 2

i.e

[tex]Y \sim P( \beta = 2)[/tex]

the probability mass function can be represented as follows:

[tex]\mathtt{P(y) = \dfrac{e^{- \beta} \ \beta^ \ y}{y!}}[/tex]

where;

y =  0,1,2,3 ...

Hence,  the probability of no defects in 10 feet of steel

y = 0

[tex]\mathtt{P(y =0) = \dfrac{e^{- 2} \ 2^ \ 0}{0!}}[/tex]

[tex]\mathtt{P(y =0) = \dfrac{0.1353 \times 1}{1}}[/tex]

P(y =0) = 0.1353

Choose the correct ray whose endpoint is B.

Answers

Answer:

The second option.

Step-by-step explanation:

The first option consists of a line that extends at both opposite sides to infinity, with no precise end.

The third option is a ray that has an endpoint of A, and extends to infinity towards B.

The fourth option is a line segment. It has two endpoints, B and A.

The second portion is a ray that has an endpoint B, and extends towards A in one direction, to infinity.

The answer is the 2nd option.

Other Questions
Use the following prompt to answer the next 6 questions. Suppose we want to test the color distribution claim on the M&Ms website that a bag of plain M&Ms is made up of 10% blue, 10% orange, 10% green, 20% red, 20% yellow, and 30% brown. We select a sample of 400 plain M&Ms and found the following: Color Blue Orange Green Red Yellow Brown Frequency 30 48 55 66 70 131 Is there evidence to doubt the color distribution claimed by the website? Use ????=0.05 Find the volume of this composite figure. Show all work.Please!!!!! An experimental probability is ______ likely to approach the theoretical probability if the number of trials simulated is larger. A. as B. more C. less D. not On January 1, 2017, Crane Company decided to begin accumulating a fund for asset replacement five years later. The company plans to make five annual deposits of $64000 at 10% each January 1 beginning in 2017. What will be the balance in the fund, on January 1, 2022 (one year after the last deposit) Which method can chefs use to change orange juice to resemble caviar? A. emulsification B. deconstruction C. flash freezing D. sous-vide E. spherification Parabolic microphones are used for field audio during sports events. The microphones are manufactured such that the equation of their cross section is x=1/34y^2, in inches. The feedhorn part of the microphone is located at the focus a. How far is the feedhorn from the edge of the parabolic surface of the microphone?b. What is the diameter of the microphone? Explain your reasoning c. If the diameter is increased by 5 inches, what is the new equation of the cross section of the microphone? Angles L and M are supplementary. What is the sum oftheir measures?The sum of the measures of angles L and M is Detectives work in three different locations when processing evidence. Which is the correct order for the locations of processing evidence? a. in the forensic lab, analyzing evidence b. in the court, testifying about their findings c. at the crime scene, collecting evidence 1. a, b, c 2. b, c, a 3. c, b, a 4. c, a, b Shelly and Terrence completed x tasks in a game. Terrence's total points were 20 less than Shelly's total. The expression below shows Terrence's total points in the game: 90x 20What does the first term of the expression represent? A. The total points Shelly earned B. The number of tasks Terrence completed C.The sum of Shelly's and Terrence's total points D. The number of tasks Shelly completed PLEASE HELP ME !!!!!!!!!!!!!!!!! Which of the following is NOT true? A. 5x + 6x = 70 degreesB. 5x + 6x < 180 degreesC. 5x + 6x = 110 degreesD. 5x + 6x + 70 degrees = 180 degreesPlease include ALL work! Why is milk pack showing green tag, its a animal product so it should show red tag right? how did the issues of taxation and violation of individual rights lead to the outbreak of the american revolution? What most likely accounts for the difference in the debt level in the last year of the Bush presidency (1992) and the last year of the Clinton presidency (2000)?Clinton supported government-funded social programs, while Bush minimized them. Clinton introduced more open-trading policies, while Bush increased military spending. Clinton enacted more regulations, while Bush only enacted the Clean Air Act and Americans with Disabilities Act. Clinton presided over economic growth with higher taxes, while the economy under Bush did poorly. A man traveled to his country home, a distance of 150 miles and then back. His average rate of speed going was 50 miles an hour and his average return speed was 30 miles per hour. His average rate of speed for the entire trip was Need help will mark brainlist Solve for x: 2 ( x+5 ) = 0 Can somebody please tell me if its right? ill mark u the brainliest an investment under consideration has a payback of six years and a cost of 876000. Assume the cash flows are conventional. If the required return is 12 percent, what is the worst-case NPV? Please someone help me!!!! What is the total surface area of the square pyramid below? A square pyramid. The square base has side lengths of 10 centimeters. The triangular sides have a height of 14 centimeters. 100 cm2 200 cm2 280 cm2 380 cm2