Solve the right triangle.
a = 3.3 cm, b = 1.7 cm, C = 90°
Round values to one decimal place.
Answer:
A = 62.7°B = 27.3°c = 3.7Step-by-step explanation:
tan(A) = a/b = 3.3/1.7
A = arctan(33/17) ≈ 62.7°
B = 90° -A = 27.3°
c = √(a²+b²) = √(3.3² +1.7²) = √13.78
c ≈ 3.7
g a video game claims that the drop rate for a certain item is 5% according to the game publisher. in online forums, a number of players are complaining that the drop rate seems to be low. in order to test the drop rate claim, 100 players agree to attempt to get the drop, each attempting 10 times. of the 1000 tries, the item only drops 40 times state the null hypothesis needed to test this claim group of answer choices
Answer:
p0 = 0.05
Step-by-step explanation:
Amy is a software saleswoman. Let Y represent her total pay (in dollars). Let X represent the number of copies of "English is Fun" she sells. Suppose that X and Y are related by the equation 110X +2300 = Y.
Answer the questions below. Note that a change can be an increase or decrease.
What is the change in Amy's total pay for each copy of "English is Fun"?
What is Amy's total pay if she doesn't sell any copies of "English is Fun"?
Answer:
1) For every copy she sells, her pay increases by $110
2) Her total pay is 2300
Step-by-step explanation:
1) X is the number of copies she sells. In the equation 110X+ 2300 = Y, X will determine how many times 110 is multiplied. So, for every increase by one in X, Y will also go up by 110
eg.
110(50) + 2300 = 7800 -- if she sells 50 copies
110(51) + 2300 = 7910 -- if she sells 51 copies,
2) If she doesn't sell any copies, the equation becomes 110 * 0 + 2300. Anything multiplied by 0 equals 0, so the equation equals 0 + 2300 = 2300 = Y
Therefore, if she doesn't sell any copies, she will get a pay of $2300
Assuming that the loss of ability to recall learned material is a first-order process with a halflife of 35 days. Compute the number of days required to forget 90% of the material that you have learned today. Report to 1 decimal place.
Answer:
5.3 days
Step-by-step explanation:
Let us assume the loss of ability to recall a learned material = 100%
Formula to calculate number of days = time(t) =
t = t½ × Log½(Nt/No)
Nt = Ending Amount
No = Beginning Amount
t½ = Half life
t = Time elapsed
Therefore, we have the following values from the questions:
Half life (t½)= 35 days
Initial or beginning amount = 100%
Ending amount = 90%
t = t½ × Log½ (Nt/No)
t = 35 × Log ½(90/100)
t = 5.3201082705768 days
Approximately = 5.3 days
he sum of two nonnegative numbers is 300. What is the maximum value of the product of these two numbers?
Answer:
[tex]\boxed{22,500}[/tex]
Step-by-step explanation:
Hey there!
Well, half of 300 is 150, and 150•150 = 22500
So 150 and 150 are it's highest numbers.
Hope this helps :)
Hello people, please if you can give me a Hint with this, l only get half of the marks, what i am doing wrong here? thanks
Errors: Both of your upper bounds are wrong
You subtracted the upper bound from the upper bound
Step-by-step explanation:
605 kg to the nearest 5 kg
lower bound is 602.5 (because it rounds up to 605)
upper bound is 607.4 (because it rounds down to 605)
Note: 607.5 would round up to 610
78 kg rounded to the nearest 1 kg
lower bound is 77.5 (because it rounds up to 78)
upper bound is 78.4 (because it rounds down to 78)
Note: 78.5 would round up to 79
Upper Bound - Lower bound is the maximum weight remaining on the elevator
607.4 - 77.5 = 529.9
529.9 ≤ 530 so YES the elevator is safe.
Solve the equation using square roots x^2+20=4
Answer:
Step-by-step explanation:
x^2+20=4 first isolate the variable by subtracting 20 on both sides.
x^2=-16 again isolate the variable but this time you square root both sides.
[tex]\sqrt{x}^2[/tex]=[tex]\sqrt{-16[/tex] then simplify
x= ±4
Emily made a pot cream of pumpkin soup for thanksgiving dinner she put 5 cups of cream in the soup she poured the soup into 24 small bowl show much cream measured in oz is used for each small bowl of soup?
Answer:
each bowl can contain 5/3 oz. of soup.
Step-by-step explanation:
1 cup = 8 oz.
8 oz.
5 cups x -------------- = 40 oz.
1 cup
to get the measurement of each bowl,
40 oz. divided into 24 bowls.
therefore, each bowl can contain 5/3 oz. of soup.
Compare the line passing through the points (–2, –9) and (4, 6) to the line given by the equation y = 25x – 4.
A. They have the same slope.
B. They have the same x-intercept.
C. The two lines are perpendicular.
D. They have the same y-intercept.
Answer:
D. They have the same y-intercep
Step-by-step explanation:
Before the comparison will be efficient, let's determine the equation of the two points and the x intercept .
(–2, –9) and (4, 6)
Gradient= (6--9)/(4--2)
Gradient= (6+9)/(4+2)
Gradient= 15/6
Gradient= 5/2
Choosing (–2, –9)
The equation of the line
(Y+9)= 5/2(x+2)
2(y+9)= 5(x+2)
2y +18 = 5x +10
2y =5x -8
Y= 5/2x -4
Choosing (4, 6)
The equation of line
(Y-6)= 5/2(x-4)
2(y-6) = 5(x-4)
2y -12 = 5x -20
2y = 5x-8
Y= 5/2x -4
From the above solution it's clear that the only thing the both equation have in common to the given equation is -4 which is the y intercept
Y * 3 = 81 please i need it for today
Answer:
Y = 27
Step-by-step explanation:
Y * 3 = 81
Divide each side by 3
Y * 3/3 = 81/3
Y = 27
Use parenthesis to make each number sentence true.
124 - 6 x 0 + 15 = 34
Answer:
12 - 6 x (0 + 15) = 34
How I got my answer
First, how i got my answer was that I had to solve the equation first, ignoring the answer. I got 0 x 6 = 0, then I did 124 - 0 = 124, then I did 124 - 15 = 109, which clearly isn't 34. I figured that we have to put the parentheses around the zero because if we don't, we are going have to multiply something by zero, which always gets zero. After that, I decided that I should put the parentheses around either the 6, or the 15. I did both, and saw which one was correct. If we put it around the 6, we get, 124 - (6 x 0) + 15 = 124 - 0 - 15 = 124 - 15 = 109, which isn't 34. Then I checked 124 - 6 x (0 + 15) = 124 - 6 x 15 = 124 - 90 = 34, and we just got the answer.
P.S. Sorry if it was confusing, I didn't really know how to explain it
At a certain charity fundraiser, some guests will be randomly selected to receive a gift. The probability of receiving a gift is 3/25. Find the odds in favor of receiving a gift. I got 3/28. A child has a box of candies which might have a toy inside. The odds against the box having a toy are 7/2. What is the probability of the box having a toy? I got 7/9. Are my answers correct?
Answer:
a) Your answer for part a (I got 3/28) is wrong.
Odds are always expressed as ratios after calculating. Therefore, the odds in favour of receiving a gift = 3:22
b) Your answer in part b(I got 7/9) is correct.
The probability of the box having a toy is 7/9.
Step-by-step explanation:
The question above has to do with odds and probability.
It is important to note that odds are expressed in the form of ratios while probabilities are expressed as fractions.
a) At a certain charity fundraiser, some guests will be randomly selected to receive a gift. The probability of receiving a gift is 3/25. Find the odds in favor of receiving a gift.(I got 3/28)
The formula for calculating odds from probability is Odds = Probability / (1 - Probability).
Probability = 3/25
Odds =(3/25)/(1 - 3/25)
= (3/25)/22/25
= 3/25 ÷ 22/25
= 3/25 × 25/22
= 3/22
Note that odds are always expressed as ratios.
Therefore, the odds in favour of receiving a gift = 3:22
Your answer for part a (I got 3/28) is wrong.
The correct answer is 3:22
b) A child has a box of candies which might have a toy inside. The odds against the box having a toy are 7/2. What is the probability of the box having a toy? I got 7/9.
The formula for calculating probability from odds is P = Odds / (Odds + 1).
Odds = 7/2 or 7:2
We convert the odds to fraction when calculating
Probability = Odds / (Odds + 1).
Probability = (7/2)/ (7/2 + 1)
Probability = (7/2)/9/2
Probability = 7/2 ÷ 9/2
= 7/2 × 2/9
= 7/9
Probability is always expressed as a fraction.
Therefore, the probability of the box having a toy is 7/9.
Your answer in part b(I got 7/9) is correct.
PLEASE HELP !! (2/5) -50 POINTS-
Answer:
3 -1 -2
5 1 6
Step-by-step explanation:
An augmented system has the coefficients for the variables and then the solution going across
Rewriting the equations to get them in the form
ax + by = c
-3x+y =2
3x-y =-2
5x+y = 6
The matrix is
3 -1 -2
5 1 6
Factor of
x2 – 14x + 24
A. (x - 6)(x - 4)
B. (x - 8)(x - 3)
C. (x - 12)(x - 2)
D. (x - 24)(x - 1)
Answer: The answer is C.
Step-by-step explanation:
Hi, there!!!
The answer is option C.
The solution is in picture.
I hope it helps....
Solve for 2 in the diagram below.
45°
150
42°
ea
Stuck? Watch a video or use a hint.
Step-by-step explanation:
Hi, there!!!
It's so simple..
Let me clear you, alright.
Here, On the fig line, OE is just a confusing line. If you look it in simple way,
AB and CD are interested at a point O.
so, angle AOD and angle COB are equal.{ because they are vertically opposite angle}
so, angle AOD= angle COB
or, 4x°=45°+15°
or, 4x°= 60°
or, x= 60°/4
Therefore, x= 15°.
Hope it helps....
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
Using Normal Distribution, what is the area to the right of 0.72 under the
standard normal curve?
Answer: 0.2358
Step-by-step explanation:
Using Normal Distribution, under the standard normal curve
The area to the right of z is given by P(Z>z)=1-P(Z<z)
So, the area to the right of z= 0.72 under the standard normal curve would be:
P(Z>0.72)=1-P(z<0.72)
=1-0.7642 [By using p-value table]
= 0.2358
Hence, the area to the right of z= 0.72 under the standard normal curve is 0.2358 .
3 divided by 6 it hard
Answer:
3/6 = 1/2 = 0.5
Step-by-step explanation:
3 / 6 = 1/2 = 0.5
I need help badly best answer gets BRAINLIEST:)
Answer:
a = 55°, b = 65°, c = 65°, d = 60°, e = 120°, f = 60°
Step-by-step explanation:
Vertical angles are congruent. Since a and 55° are vertical angles, we know that a = 55°. Since b and 65° are vertical angles, we know that b = 65°. Alternate interior angles are congruent. Since b and c are alternate interior angles and b = 65°, we know that c = 65° as well. Since 60° and d are alternate interior angles, we know that d = 60°. Supplementary angles add up to 180°. Since d and e are supplementary and d = 60°, we know that e = 180 - 60 = 120°. Since vertical angles are congruent, we see that d and f are vertical angles and we know d = 60°, we also know that f = 60°.
What is the value of 1/3x-3/4 when x =1/4
Answer:
The value of 1/3x-3/4 when x=1/4 is 0.08333 repeated.
Step-by-step explanation:
will rate you brainliest
Answer:
[tex] \frac{11x}{3y} [/tex]
Step-by-step explanation:
[tex] \frac{7x}{3y} + \frac{12x}{9y} [/tex]
Make both a single fraction by adding together.
[tex] \frac{3(7x) + 1(12x)}{9y} [/tex]
[tex] \frac{21x + 12x}{9y} [/tex]
[tex] \frac{33x}{9y} [/tex]
Simplify
[tex] \frac{3(11)x}{3(3y)} [/tex]
[tex] \frac{11x}{3y} [/tex]
Jill works at a cell phone store. Jill earns $175 every week plus $45 for every phone p that she sells. if Jill makes $445 at the end of the week how many phones did she sell?
━━━━━━━☆☆━━━━━━━
▹ Answer
6 phones
▹ Step-by-Step Explanation
$445 - $175 = $270
$270 ÷ $45 = 6
6 phones
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Diana paints 150 fence posts and chuck paints 130 fence posts. Diana paints 10 more fence posts than chuck. How many fence posts does chuck paint per hour?
Complete Question
The complete question is shown on the first uploaded image
Answer:
Step-by-step explanation:
From the question we are told that
The relationship is [tex]\frac{150 }{d} = \frac{130}{c}[/tex]
The number of fence post painted by chuck is [tex]l = 130[/tex]
The number of fence post painted by Diana is [tex]k = 150[/tex]
can paint 10 fences more than chuck so let say the of fence painted in an hour by chuck is [tex]g[/tex]
Then the number of fence post painted by Diana in one hour is
[tex]f = g+ 10[/tex]
So
[tex]\frac{150 }{ g + 10 } = \frac{130}{g}[/tex]
[tex]130 g + 1300 = 150g[/tex]
[tex]g = 65 \ m[/tex]
A large population has a bell-shaped distribution with a mean of 200 and a standard deviation of 40. Which one of the following intervals would contain approximately 95% of the measurements?
a. (160, 240)
b. (140, 260)
c. (120, 280)
d. (200, 320)
The intervals would contain approximately 95% of the measurements will be (120, 280). Then the correct option is C.
What is a normal distribution?The Gaussian Distribution is another name for it. The most significant continuous probability distribution is this one. Because the curve resembles a bell, it is also known as a bell curve.
In numerical documentation, these realities can be communicated as follows, where Pr(X) is the likelihood capability, Χ is a perception from an ordinarily circulated irregular variable, μ (mu) is the mean of the dispersion, and σ (sigma) is its standard deviation:
The interval for 95% will be given as,
Pr(X) = μ ± 2σ
Pr(X) = 200 ± 2(40)
Pr(X) = 200 ± 80
Pr(X) = (200 - 80, 200 + 80)
Pr(X) = (120, 280)
The intervals would contain approximately 95% of the measurements will be (120, 280). Then the correct option is C.
More about the normal distribution link is given below.
https://brainly.com/question/12421652
#SPJ5
Fiona wrote the linear equation y = y equals StartFraction 2 over 5 EndFraction x minus 5.x – 5. When Henry wrote his equation, they discovered that his equation had all the same solutions as Fiona’s. Which equation could be Henry’s? x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 2 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 2 EndFraction.y =
Answer:
D. [tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{2}{5}x - 5[/tex]
Required
Determine its equivalent
From the list of given options, the correct answer is
[tex]x - \frac{5}{2}y = \frac{25}{2}[/tex]
This is shown as follows;
[tex]y = \frac{2}{5}x - 5[/tex]
Multiply both sides by [tex]\frac{5}{2}[/tex]
[tex]\frac{5}{2} * y = \frac{5}{2} * (\frac{2}{5}x - 5)[/tex]
Open Bracket
[tex]\frac{5}{2} * y = \frac{5}{2} * \frac{2}{5}x - \frac{5}{2} *5[/tex]
[tex]\frac{5}{2}y = x - \frac{25}{2}[/tex]
Subtract x from both sides
[tex]\frac{5}{2}y - x = x -x - \frac{25}{2}[/tex]
[tex]\frac{5}{2}y - x = - \frac{25}{2}[/tex]
Multiply both sides by -1
[tex]-1 * \frac{5}{2}y - x * -1 = - \frac{25}{2} * -1[/tex]
[tex]-\frac{5}{2}y + x = \frac{25}{2}[/tex]
Reorder
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Hence, the correct option is D
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Answer:
The 4th option
Step-by-step explanation:
Compute the mean and variance of the following probability distribution. (Round your answers to 2 decimal places.) x P(x) 3 .10 11 .30 19 .20 27 .40
Answer:
69.76
Step-by-step explanation:
The mean is the average of the numbers. It can be gotten by adding all the numbers, then divide by how many numbers available.
Variance (σ2) measure the spread between numbers in a data set. That is, it measures how far each number in the set is from the mean .
mean value can be computed using below expression
= ∑x(i)P(x(i))
= 3(0.10)+11(0.30)+19(0.20)+27(0.40)
= 18.2
Therefore, the mean value is 18.2
The variance can be calculated using below expression
variance
= ∑(x(i)-mean)^2 P(x(i))
= (3-18.2)^2 (.10) + (11-18.2)^2 (.30) + (19-18.2)^2 (.20)+(27-18.2)^2(0.40)
= 69.76
Therefore, the variance Vale is 69.76
In a two-factor analysis of variance, the F-ratios for factor A, factor B, and the AxB interaction _____. Group of answer choices may have different df values but they all have the same denominator all have the same df values and they all have the same denominator may have different df values and may have different denominators all have the same df values but they may have different denominators
Answer:
may have different df values but they all have the same denominator
Step-by-step explanation:
In a two-factor analysis of variance, the F-ratios for factor A, factor B, and the AxB interaction _____. may have different df values but they all have the same denominator
In two--factor analysis of variance, the estimates of the variance can be obtained by partitioning the total sum of squares into three components corresponding to the three possible sources of variation , viz; Between Rows, Between Columns, and Within Samples or error.
As the number of rows and columns may differ the degrees of freedom differ with them.
In other words
Total df= Rows df + Columns df + Error df
Since the variance is identically the same for each row of the c values and variance is the same for each observation in the jth column of r values the sum of squares becomes an identity.
Therefore it may have different df values but they all have the same denominator.
How many solutions does the following equation have ?
−3x+9−2x=−12−5x
[tex]\text{Solve for x:}\\\\-3x+9-2x=-12-5x\\\\\text{Combine like terms}\\\\-5x+9=-12-5x\\\\\text{Add 5x to both sides}\\\\9=-12\\\\\text{Since that's not valid, there would be no solutions}\\\\\boxed{\text{No solutions}}[/tex]
A deli sandwich shop is offering either a ham or turkey sandwich, either tomato or vegetable soup, and either coffee or milk for their lunch special. What is the probability that a customer will choose vegetable soup as part of the chosen combination?
Answer:
Ok, the first step is to count all the possible selections that we have and the number of options in each selection:
1) Sandwich: 2 options, ham or turkey.
2) Soup, 2 options, tomato or vegetable.
3) Drink, 2 options, coffee or milk.
(i assume that the sandwich and the soup are separated selections)
Now, if the customer chooses at random, the probability that in one given selection he selects a given outcome is equal to the number of options that match the outcome divided by the total number of options for that selection.
Then in the soup selection we have: options that match the outcome (one, is the vegetable soup). Total number of options = 2.
Then the probability is:
P = 1/2 = 0.5
or 0.5*100% = 50% in percentage form.
Answer:
1/2
Step-by-step explanation:
If A = {2,4,6,8,10) and B = [4,8,10), then which of the following statements is false?
A n B = B
B C B
A C B
A C B because all elements of A are not found in B