answer is oxygen .
oxygen is an exception in octet rule
Among the following given elements,oxygen is an element which cannot have an expanded octet.
What is an expanded octet?Expanded octet is a condition where an octet has more than 8 electrons and which is called as hyper-valency state. This concept is related to hybrid orbital theory and Lewis theory. Hyper-valent compounds are not less common and are of equal stability as the compounds which obey octet rule.
Expansion of octet is possible for elements from third period on wards only as they have low-lying empty d - orbitals which can accommodate more than eight electrons.
Expanded octet is not applicable to oxygen as it is second period of periodic table and has less than ten electrons and even does not have the 2d -orbitals due to which it does not fulfill the criteria of an element to have an expanded octet.
Learn more about expanded octet, here:
https://brainly.com/question/10535983
#SPJ2
2NO + 2H2 ⟶N2 + 2H2O What would the rate law be if the mechanism for this reaction were: 2NO + H2 ⟶N2 + H2O2 (slow) H2O2 + H2 ⟶2H2O (fast)
Answer:
rate = [NO]²[H₂]
Explanation:
2NO + H2 ⟶N2 + H2O2 (slow)
H2O2 + H2 ⟶2H2O (fast)
From the question, we are given two equations.
In chemical kinetics; that is the study of rate reactions and changes in concentration. The rate law is obtained from the slowest reaction.
This means that our focus would be on the slow reaction. Generally the rate law is obtained from the concentrations of reactants in a reaction.
This means our rate law is;
rate = [NO]²[H₂]
A compound (C_9H_9BrO_2) gives the following NMR data. Draw the structure of the compound.
'1^H-NMR: 1.39 ppm, t(3H); 4.38 ppm, q(2H); 7.57 ppm, d(2H); 7.90 ppm, d(2H)
13^C-NMR: 165.73; 131.56; 131.01; 129.84; 127.81; 61.18; 14.18
You do not have to consider stereo chemistry.
You do not have to explicitly draw H atoms.
Do not include lone pairs in your answer.
Answer:
ethyl 4-bromobenzoate
Explanation:
In this question, we can start with the Index of Hydrogen Deficiency (I.H.D):
[tex]I.H.D=\frac{2C+2+N-H-X}{2}=\frac{(2*9)+2+0-9-1}{2}~=~5[/tex]
This indicates, that we can have a benzene ring (I.H.D = 4) and a carbonyl group (I.H.D = 1), for a total of 5.
Additionally, in the 1H-NMR info, we have a triplet 1.39 (3H) followed by a doublet 4.38 (2H), this indicates the presence of an ethyl group ([tex]CH_3-CH_2-[/tex]). Also, in the formula, we have 2 oxygens if we have carbonyl group with 2 oxygens we have a high probability to have an ester group.
[tex]O=C-O-CH_2-CH_3[/tex]
Now, if we add this to the benzene ring and the "Br" atom that we have in the formula, we will have ethyl 4-bromobenzoate.
See figures 1 and 2 to further explanations.
I hope it helps!
The literature value for the Ksp of Ca(OH)2 at 25 °C is 4.68E−6. Imagine you ran the experiment and got a calculated value for Ksp which was too high. Select all of the possible circumstances which would cause this result.
A. The HCl was more concentrated than the labeled molarity (0.0500 M).
B. The Ca[OH]2 solution may have been supersaturated.
C. The HCl was less concentrated than the labeled molarity (0.0500 M).
D. The Ca[OH]2 solution may have been unsaturated.
E. The titration flask may have not been clean and had a residue of a basic solution.
F. The titration flask may have not been clean and had a residue of an acidic solution.
Answer:
D. The Ca[OH]2 solution may have been unsaturated
Explanation:
The solubility product constant Ksp of any given chemical compound is a term used to describe the equilibrium between a solid and the ions it contains solution. The value of the Ksp indicates the extent to which any compound can dissociate into ions in water. A higher the Ksp, implies more greater solubility of the compound in water.
If the Ksp is more than the value in literature, this false value must have arisen from the fact that the solution was unsaturated hence it appears to be more soluble than it should normally be when saturated.
Read the article. Use your understanding to answer the questions that follow. What type of source is this article? primary or secondary and how do you know
Answer: C
Explanation:
The article was sourced from the Oak National Laboratory
Which reasons did you include in your response? Check all of the boxes that apply.
1. The article does not present original research.
and
3. The article has references to primary sources.
Answer:
C
Explanation:
Which reasons did you include in your response? Check all of the boxes that apply.
The article does not present original research.
The article summarizes other research.
The article has references to primary sources.
In which ONE of the following compounds would the bonding be expected to have the highest percentage of ionic character? A) LiBr B) CsCl C) BaBr2 D) NaCl E) KI
Answer:
B) CsCl
Explanation:
The ionic character is formed between two kinds of atoms having a large electronegativity differences e.g metals (like those in groups IA and IIA) and nonmetals (like those in groups VIA and VIIA). The formation of an ionic character involves a transfer of electrons from the less electronegative atom(metal) to the more electronegative atom (non-metal) such that the two kinds of atoms now have completely filled outer shell like the noble gases.
In CsCl, electrons are being transferred from Cs⁺ to Cl⁻ . As a result of this transfer , the atom of the metal becomes positively charged (cation) while that of the non-metal becomes negatively charged (anion).
The highest percentage of ionic character will occur as a result of smaller negatively charged (anion) and larger positively charged (cation). From the options given, CsCl have the highest percentage of ionic character.
A soft drink contains 63 g of sugar in 378 g of H2O. What is the concentration of sugar in the soft drink in mass percent
Answer:
[tex]\% m/m= 14.3\%[/tex]
Explanation:
Hello,
In this case, the by mass percent is computed as shown below:
[tex]\% m/m=\frac{m_{solute}}{m_{solute}+m_{solvent}} *100\%[/tex]
Whereas the solute is the sugar and the solvent the water, therefore, the concentration results:
[tex]\% m/m=\frac{63g}{63g+378g} *100\%\\\\\% m/m= 14.3\%[/tex]
Best regards.
Bomb calorimetry is a poor choice to determine the number of nutritional Calories in food; it consistently overestimates the Caloric content because options: A) dietary fiber isn't used by the body. B) carbohydrates don't burn to completion. C) proteins don't burn. D) water has Calories and isn't burnable.
Answer:
A) dietary fiber isn't used by the body.
Explanation:
The food we eat contains certain nutritional contents that provides energy, measured in calories (CAL) to the body. A procedure called BOMB CALORIMETRY can be used to determine the energy contents of these foods. The energy-supplying macromolecules contained in food substances we eat are carbohydrate, protein, fats etc.
Bomb calorimetry uses the method of burning the food substance in a device called bomb calorimeter, and measure the caloric content of the burnt food. Bomb calorimetry measures all the present calories in a food substance, which can include dietary fibers. Due to this reason, it is considered a poor choice in determining the number of nutritional calories in a food substance.
Dietary fibers are indigestible carbohydrates that cannot be broken down and used by the body. They pass along the alimentary canal until they are egested. Hence, they are no source of nutrients to the body. Since bomb calorimetry measures all calories including dietary fibers, it is said to overestimate the caloric content of food substances.
How many liters of CH₃OH gas are formed when 3.20 L of H₂ gas are completely reacted at STP according to the following chemical reaction? Remember 1 mol of an ideal gas has a volume of 22.4 L at STP.CO(g)+ H2(g) → CH3OH
Answer:
The correct answer is 1.60 Liters.
Explanation:
The given reaction:
CO (g) + H₂(g) ⇔ CH₃OH (g)
Based on the given reaction, two moles of H₂ reacts with one mole of CO and produce one mole of CH₃OH.
It is mentioned that 3.20 L of H₂ is reacted, therefore, there is a need to convert it into moles.
As 22.4 L at standard temperature and pressure is equivalent to 1 mole.
Therefore, 1 L at STP will be, 1/22.4 mole
Now 3.20 L at STP will be,
= 1/22.4 × 3.20
= 0.1428 mole
And as mentioned in the reaction that 2 moles of H₂ gives 1 mole of CH₃OH, therefore, 1 mole of H₂ will give 1/2 mole of CH₃OH
Now, 0.1428 mole of H₂ will give,
= 0.1428/2 = 0.071 mole of CH₃OH
= 0.071 × 22.4 = 1.60 L
The volume, in liters, of CH₃OH gas formed is 1.60 L
From the question,
We are to determine the volume of CH₃OH formed
The given chemical equation for the reaction is
CO(g)+ H₂(g) → CH₃OH
The balanced chemical equation for the reaction is
CO(g)+ 2H₂(g) → CH₃OH
This means
1 mole of CO reacts with 2 moles of H₂ to produce 1 mole of CH₃OH
Now, we will determine the number of moles of H₂ present in the 3.20 L H₂ at STP
1 mol of an ideal gas has a volume of 22.4 L at STP
Then,
x mole of the H₂ gas will have a volume of 3.20 L at STP
x = [tex]\frac{3.20 \times 1}{22.4}[/tex]
x = 0.142857 mole
∴ The number of mole of H₂ present is 0.142857 mole
Since
2 moles of H₂ reacts to produce 1 mole of CH₃OH
Then,
0.142857 mole of H₂ will react to produce [tex]\frac{0.142857}{2}[/tex] mole of CH₃OH
[tex]\frac{0.142857}{2} = 0.0714285[/tex]
∴ The number of moles of CH₃OH produced = 0.0714285 mole
Now, for the volume of CH₃OH formed
Since
1 mol of an ideal gas has a volume of 22.4 L at STP
Then,
0.0714285 mol of CH₃OH will have a volume of 22.4 × 0.0714285 at STP
22.4 × 0.0714285 = 1.5999984 L ≅ 1.60 L
Hence, the volume of CH₃OH gas formed is 1.60 L
Learn more here: https://brainly.com/question/13899989
Which of the following processes have a ΔS < 0? Which of the following processes have a ΔS < 0? carbon dioxide(g) → carbon dioxide(s) water freezes propanol (g, at 555 K) → propanol (g, at 400 K) methyl alcohol condenses All of the above processes have a ΔS < 0.
Answer:
All of the above processes have a ΔS < 0.
Explanation:
ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.
The question requests us to identify the process that has a negative change of entropy.
carbon dioxide(g) → carbon dioxide(s)
There is a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.
water freezes
There is a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.
propanol (g, at 555 K) → propanol (g, at 400 K)
Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.
This reaction highlights a drop in temperature which means a negative change in entropy.
methyl alcohol condenses
Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.
A saturated sodium carbonate solution at 0°C contains 7.1 g of dissolved sodium carbonate per 100. mL of solution. The solubility product constant for sodium carbonate at this temperature is
Answer:
[tex]Ksp=1.2[/tex]
Explanation:
Hello,
In this case, as the saturated solution has 7.1 grams of sodium carbonate, the solubility product is computed by firstly computing the molar solubility by using its molar mass (106 g/mol):
[tex]Molar \ solubility=\frac{7.1gNa_2CO_3}{0.1L}*\frac{1molNa_2CO_3}{106gNa_2CO_3}=0.67M[/tex]
Next, as its dissociation reaction is:
[tex]Na_2CO_3(s)\rightleftharpoons 2Na^+(aq)+CO_3^{2-}(aq)[/tex]
The equilibrium expression is:
[tex]Ksp=[Na^+]^2[CO_3^{2-}][/tex]
And the concentrations are related with the molar solubility (2:1 mole ratio between ionic species):
[tex]Ksp=(2*0.67)^2*(0.67)\\\\Ksp=1.2[/tex]
Best regards.
Calculate a pressure at a point that is 100 m below the surface of sea water of density 1150 kgm?
Answer:
1229.08975 kPa
Explanation:
Given that:
The depth of the water = 100 m below the surface of the water.
The density of the water = 1150 kgm
The mass of the water = depth of the water × density of the water
The mass of the water = 100 m × 1150 kgm
The mass of the water = 115000 kgf/m²
The mass of the water is the pressure of the water at a depth of 100 m below the surface of the water.
Since 1 kgf/m² = 0.00980665 kPa
Then 115000 kgm² = (115000 × 0.00980665) kPa
= 1127.76475 kPa
At standard temperature and pressure , the atmospheric pressure = 101.325 kPa.
Therefore, the pressure below the surface of sea water = 1127.76475 kPa + 101.325 kPa
= 1229.08975 kPa
How does the spontaneity of the process below depend on temperature? PCl5(g)+H2O(g)→POCl3(g)+2HCl(g) ΔH=−126 kJ mol−1, ΔS=146 J K−1mol−
The given question is incomplete, the complete question is:
How does the spontaneity of the process below depend on temperature? PCI5(9)+H2O(g)POCI3(g) +2HCI(g) -126 kJ mol1, AS = 146 J K-'mol1 ΔΗ Select the correct answer below: nonspontaneous at all temperatures spontaneous at all temperatures spontaneous at high temperatures and nonspontaneous at low temperatures spontaneous at low temperatures and nonspontaneous at high temperatures
Answer:
The correct answer is spontaneous at all the temperatures.
Explanation:
Gibbs Free energy is an essential relation that determines the spontaneity of any reaction, that is, ΔG = ΔH - TΔS
When ΔG is less than zero, that is, negative, the reaction is considered to be in spontaneous state. Based on the given information, ΔH = -126 kJ/mol
= -126000 J/mol, it is negative
ΔS = 146 J/K/mol, it is positive
Now, ΔG = ΔH-TΔS
= (-ve) - T (+ve), Thus, when ΔH, is -ve, ΔS is +ve, -TΔS is -ve, the ΔG will be -ve. Therefore, reaction will be spontaneous at all the temperatures.
For which of the following elements (in their normal, stable, forms) would it be correct to describe the bonding as involving "a sea of electrons"?
a. hydrogen
b. nellum
c. sulfur
d. Iodine
e. Ethium
Answer:
e. Lithium
Explanation:
Correct list of options!
a. hydrogen b. Helium c. sulfur d. Iodine e. Lithium
Sea of electrons generally refers to metal atoms. This is because of the delocalized nature of the electrons compared to non metals where the electrons are localized (fixed to a specific atoms).
Among all the elements in the options, the metal is option e. Lithium
Enter the balanced chemical equation for the reaction of each of the following carboxylic acids with KOH.Part Aacetic acidExpress your answer as a chemical equation. Assume that there is no dissociation (i.e., enter only whole compounds, not ions).Part B2-methylbutanoic acid (CH3CH2CH(CH3)COOH)Express your answer as a chemical equation. Assume that there is no dissociation (i.e., enter only whole compounds, not ions).Part C4-chlorobenzoic acid (ClC6H4COOH)Express your answer as a chemical equation. Assume that there is no dissociation (i.e., enter only whole compounds, not ions).
Answer:
Explanation:
Answer in attached file .
A student wants to examine a substance by altering the bonds within its molecules. Which of the following properties of the substance should the student examine?
Question is incomplete, the complete question is as follows:
A student wants to examine a substance by altering the bonds within its molecules. Which of the following properties of the substance should the student examine?
A. Toxicity, because it can be observed by altering the state of the substance
B. Boiling point, because it can be observed by altering the state of the substance
C. Toxicity, because it can be observed by replacing the atoms of the substance with new atoms
D. Boiling point, because it can be observed by replacing the atoms of the substance with new atoms
Answer:
B.
Explanation:
A student can examine a substance without altering the bonds within the molecules by examining its boiling point.
The boiling point is the property of a substance, at which the substance changes its state, which is from solid to liquid, liquid to gas and others. So, examining the boiling point will alter the bonds within the molecules as the state of substance will change.
Hence, the correct answer is "B".
Which response has both answers correct? Will a precipitate form when 250 mL of 0.33 M Na 2CrO 4 are added to 250 mL of 0.12 M AgNO 3? [K sp(Ag 2CrO 4) = 1.1 × 10 –12] What is the concentration of the silver ion remaining in solution?
Answer:
A precipitate will form.
[Ag⁺] = 2.8x10⁻⁵M
Explanation:
When Ag⁺ and CrO₄²⁻ are in solution, Ag₂CrO₄(s) is produced thus:
Ag₂CrO₄(s) ⇄ 2 Ag⁺(aq) + CrO₄²⁻(aq)
Ksp is defined as:
Ksp = 1.1x10⁻¹² = [Ag⁺]² [CrO₄²⁻]
Where the concentrations [] are in equilibrium
Reaction quotient, Q, is defined as:
Q = [Ag⁺]² [CrO₄²⁻]
Where the concentrations [] are the actual concentrations
If Q < Ksp, no precipitate will form, if Q >= Ksp, a precipitate will form,
The actual concentrations are -Where 500mL is the total volume of the solution-:
[Ag⁺] = [AgNO₃] = 0.12M ₓ (250mL / 500mL) = 0.06M
[CrO₄²⁻] = [Na₂CrO₄] = 0.33M × (250mL / 500mL) = 0.165M
And Q = [0.06M]² [0.165M] = 5.94x10⁻⁴
As Q > Ksp; a precipitate will form
In equilibrium, some Ag⁺ and some CrO₄⁻ reacts decreasing its concentration until the system reaches equilibrium. Equilibrium concentrations will be:
[Ag⁺] = 0.06M - 2X
[CrO₄²⁻] = 0.165M - X
Where X is defined as the reaction coordinate
Replacing in Ksp expression:
1.1x10⁻¹² = [0.06M - 2X]² [0.165M - X]
Solving for X:
X = 0.165M → False solution. Produce negative concentrations.
X = 0.0299986M
Replacing, equilibrium concentrations are:
[Ag⁺] = 0.06M - 2(0.0299986M)
[CrO₄²⁻] = 0.165M - 0.0299986M
[Ag⁺] = 2.8x10⁻⁵M[CrO₄²⁻] = 0.135M
Aqueous potassium nitrate (KNO3) and solid silver bromide are formed by the reaction of aqueous potassium bromide and aqueous silver nitrate (AgNO3). Write a balanced chemical equation for this reaction
Answer:
For the mentioned reaction, the balanced chemical equation is:
KBr (aq) + AgNO3 (s) ⇒ KNO3 (aq) + AgBr (s)
The number written in front of the ion, atoms, and molecules in a chemical reaction so that each of the elements on both the sides of reactants and products of the equation gets balanced is known as the stoichiometric coefficient.
From the mentioned balanced equation, the stoichiometric coefficient before KBr is 1, AgNO3 is 1, KNO3 is 1, as well as before AgBr is also 1. Thus, it is clear that 1 mole of potassium bromide reacts with 1 mole of silver nitrate to produce 1 mole of potassium nitrate and 1 mole of silver bromide.
0.22 L of HNO3 is titrated to equivalence using 0.18 L of 0.2 MNaOH. What is the concentration of the HNO3?
Answer:
0.16 M
Explanation:
Data provided as per the question is below:-
Volume of [tex]HNO_3[/tex] = 0.22 L
The Volume of NaOH = 0.18 L
Morality of NaOH = 0.2
According to the given situation, the calculation of the concentration of the [tex]HNO_3[/tex] is shown below:-
For equivalence,
Number of the equivalent of [tex]HNO_3[/tex] = Number of equivalents of NaOH
[tex]= \frac{0.18\times0.2}{0.22}[/tex]
[tex]= \frac{0.036}{0.22}[/tex]
= 0.16363 M
or
= 0.16 M
When balancing redox reactions under acidic conditions, hydrogen is balanced by adding: Select the correct answer below:
a. hydrogen gas
b. water molecules
c. hydrogen atoms
d. hydrogen ions
Answer:
water molecules
Explanation:
Redox reactions are carried out under acidic or basic conditions as the case may be.
If the reaction is carried out in an acid medium, then we must balance the hydrogen ions on the lefthand side of the reaction equation with water molecules on the righthand side of the reaction equation.
For instance, the equation for reduction of MnO4^- under acidic condition is shown below;
MnO4^-(aq) + 5e + 8H^+(aq) --------> Mn^2+(aq) + 4H2O(l)
why are(±)-glucose and (-)-glucose both classified as D sugar
Answer:
See explanation
Explanation:
We must remember that the D / L nomenclature refers to the orientation of the hydroxyl group on carbon 5. If the "OH" is on the right we will have a D configuration. Yes, the "OH" is on the left we will have an L configuration. (See figure 1)
Now, the orientation of this "OH" has nothing to do with the ability of the molecule to deflect polarized light. If the molecule deflects light to the left we will have the symbol "(-)" (levorotation) if the molecule deflects light to the right we will have the symbol "(+)" (dextrorotation).
So in the "D" configuration, we can have both a right (+) and a left (-) deviation.
I hope it helps!
Which of the examples is potassium?
es )
A)
B)
B
C)
Answer:
examples of things which contain potassium are:
green vegetables
root vegetables
fruits
potassium chloride
potassium sulphate
Explanation:
if you need a specific answer please send the options
Answer:
C
Explanation:
The answer is the one with 20 protons, 20 neutrons, and 6-8-8-2 electrons.
Compounds A and B (both C10H14) show prominent peaks in their mass spectrum at m/z 134 and 119. Compound B also shows a less prominent peak at m/z 91. On vigorous oxidation with chromic acid, compound A is nonreactive while compound B yielded terephthalic acid.
Required:
From this information, deduce the structures of both compounds, and then draw the structure of B.
A 635 mL NaCl solution is diluted to a volume of 1.13 L and a concentration of 5.00 M . What was the initial concentration C1?
Answer:
8.90 M
Explanation:
Step 1: Given data
Initial concentration (C₁): ?Initial volume (V₁): 635 mL = 0.635 LFinal concentration (C₂): 5.00 MFinal volume (V₂): 1.13 LStep 2: Calculate the initial concentration
We have a concentrated NaCl solution and we want to prepare a diluted one. We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
C₁ = C₂ × V₂ / V₁
C₁ = 5.00 M × 1.13 L / 0.635 L
C₁ = 8.90 M
Answer:
[tex]\large \boxed{\text{8.90 mol/L}}[/tex]
Explanation:
We can use the dilution formula to calculate the concentration of the original solution.
[tex]\begin{array}{rcl}V_{1}c_{1} & = & V_{2}c_{2}\\\text{635 mL }\times c_{1} & = & \text{1130 mL} \times \text{5.00 mol/L}\\635 c_{1}&=& \text{5650 mol/L}\\c_{1}& = & \dfrac{5650}{635}\text{ mol/L}\\\\& = & \textbf{8.90 mol/L}\\\end{array}\\\text{The initial concentration was $\large \boxed{\textbf{8.90 mol/L }}$}[/tex]
Calculate [OH-] given [H3O+] in each aqueous solution and classify the solution as acidic or basic. [H3O+] = 2.6 x 10-8 M
Answer:
To calculate the [OH-] in the solution we must first find the pOH
That's
pH + pOH = 14
pOH = 14 - pH
First to find the pH we use the formula
pH = - log [H3O+]From the question
[H3O+]= 2.6 × 10^-8 M
pH = - log 2.6 × 10^-8
pH = 7.6
pH = 8
So we pOH is
pOH = 14 - 8 = 6
To find the [OH-] we use the formula
pOH = - log [OH-]6 = - log [OH-]
Find antilog of both sides
[OH-] = 1.0 × 10^-6 MThe solution is slightly basic since it's pH is in the basic region and slightly above the neutral point 7
Hope this helps you
What is the pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid with 15.00 mL of 0.10 M KOH? Assume that the volumes of the solutions are additive. K a = 1.8 ×× 10-5 for CH3CO2H.
Answer:
pH = 8.72
Explanation:
This is like a titration of a weak acid and a strong base, in this case, we are at the equivalence point plus we have the same mmoles of acid and base. We have completely neutralized the acid.
CH₃COOH + OH⁻ ⇄ CH₃COO⁻ + H₂O
0.1M . 15 mL 0.1M . 15 mL
We only have (0.1M . 15 mL) mmoles of acetate ion. → 1.5 mmoles
As this compound acts like a base, we propose this equilibrium:
CH₃COO⁻ + H₂O ⇄ CH₃COOH + OH⁻ Kb
We need to work with Kb and we know, that Kw = Ka. Kb so, Kb = Kw/Ka
Kb = 1×10⁻¹⁴ /1×10 ⁻⁵ = 5.55×10⁻¹⁰
Concentration of CH₃COO⁻ → 1.5 mmol / 30mL (volumes of the solutions are additive) = 0.05M
So: [CH₃COOH] . [OH⁻] / [CH₃COO⁻] = Kb
x²/ 0.05-x = 5.55×10⁻¹⁰
We can avoid the quadractic equation because Kb is so small
[OH⁻] = √(5.55×10⁻¹⁰ . 0.05) = 5.27×10⁻⁶
pOH = - log [OH⁻] → 5.28
pH = 14 - pOH = 8.72
The pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid should be 8.72.
Calculation of the pH of the solution:Since the following equation should be used.
CH₃COOH + OH⁻ ⇄ CH₃COO⁻ + H₂O
0.1M . 15 mL 0.1M . 15 mL
Now
(0.1M . 15 mL) mmoles of acetate ion. → 1.5 mmoles
So,
CH₃COO⁻ + H₂O ⇄ CH₃COOH + OH⁻ Kb
Now
Kw = Ka. Kb
Kb = Kw/Ka
And,
Kb = 1×10⁻¹⁴ /1×10 ⁻⁵
= 5.55×10⁻¹⁰
Now
[CH₃COOH] . [OH⁻] / [CH₃COO⁻] = Kb
x²/ 0.05-x = 5.55×10⁻¹⁰
Now
[OH⁻] = √(5.55×10⁻¹⁰ . 0.05) = 5.27×10⁻⁶
pOH = - log [OH⁻] → 5.28
pH = 14 - pOH
= 8.72
Hence, The pH of a solution made by mixing 15.00 mL of 0.10 M acetic acid should be 8.72.
Learn more about an acid here: https://brainly.com/question/4519963
An element has an atomic number of 36, what element is it? Question 4 options: Kr K Se Es
Answer:
[tex]\Huge \boxed{\mathrm{Kr}}[/tex]
Explanation:
Krypton is an element in the periodic table with an atomic number of 36.
The symbol for Krypton is Kr.
Answer:
KR.
Explanation:
Use the periodic table for reference:
g Solution of barium hydroxide reacts with phosphoric acid to produce barium phosphate precipitate and water. How many mL of 6.50 M calcium hydroxide solution are required to react with a phosphoric acid solution of 45.00 mL that has a concentration of 8.70 M protons (hydrogen ions)
Answer:
30.12 mL.
Explanation:
We'll begin by calculating the molarity of the phosphoric acid. This can be obtained as follow:
Phosphoric acid H3PO4 will dissociate in water as follow:
H3PO4(aq) <==> 3H^2+(aq) + PO4^3-(aq)
From the balanced equation above,
1 mole of H3PO4 produces 3 moles of H+.
Therefore, XM H3PO4 will produce 8.70 M H+ i.e
XM H3PO4 = 8.70/3
XM H3PO4 = 2.9 M.
Therefore, the molarity of the acid solution, H3PO4 is 2.9 M.
Next, we shall write the balanced equation for the reaction. This is illustrated below:
2H3PO4 + 3Ba(OH)2 —> Ba3(PO4)2 + 6H2O
From the balanced equation above, we obtained the following:
Mole ratio of the acid, H3PO4 (nA) = 2
Mole ratio of the base, Ba(OH)2 (nB) = 3
Data obtained from the question include the following:
Molarity of base, Ba(OH)2 (Mb) = 6.50 M
Volume of base, Ba(OH)2 (Vb) =.?
Molarity of acid, H3PO4 (Ma) = 2.9 M
Volume of acid, H3PO4 (Va) = 45 mL
The volume of the base, Ba(OH)2 Needed for the reaction can be obtained as follow:
MaVa /MbVb = nA/nB
2.9 x 45 / 6.5 x Vb = 2/3
Cross multiply
2 x 6.5 x Vb = 2.9 x 45 x 3
Divide both side by 2 x 6.5
Vb = (2.9 x 45 x 3) /(2 x 6.5)
Vb = 30.12 mL
Therefore, the volume of the base, Ba(OH)2 needed for the reaction is 30.12 mL
Hey can anyone help me please?
Answer:
D
Explanation:
D is the answer
Answer:
D is the correct option. All of the above.Explanation;Hope it helps you....thank you...
How many dozen (dz) eggs are needed to make 12 muffins? What about 15.5
muffins? (hint cross out units first) *
Answer:
I think its 1.2 cause I divided 15.5 with 12 and got 1.2 as an answer
243
Am
95
1. The atomic symbol of americium-243 is shown. Which of the following is correct?
• A. The atomic mass is 243 amu, and the atomic number is 95.
B. The atomic mass is 338 amu, and the atomic number is 95.
• C. The atomic mass is 95 amu, and the atomic number is 243.
D. The atomic mass is 243 amu, and the atomic number is 338.
Answer:
A. The atomic mass is 243 amu, and the atomic number is 95.