What is the initial value of 34.2 x 3^x
Initial value is your y intercept, and to find that you just need to substitute 0 for x. Anything to the power of 0 is just 1. So you get 34.2(1), which means that your initial value is 34.2.
Help anyone can help me do 16 and 17 question,I will mark brainlest.The no 16 question is find the area of the shaded region
Answer:
Question 16 = 22
Question 17 = 20 cm²
Step-by-step explanation:
Concepts:
Area of Square = s²
s = sideArea of Triangle = bh/2
b = baseh = heightDiagonals of the square are congruent and bisect each other, which forms a right angle with 90°
Segment addition postulate states that given 2 points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC.
Solve:
Question # 16
Step One: Find the total area of two squares
Large square: 5 × 5 = 25
Small square: 2 × 2 = 4
25 + 4 = 29
Step Two: Find the area of the blank triangle
b = 5 + 2 = 7
h = 2
A = bh / 2
A = (7) (2) / 2
A = 14 / 2
A = 7
Step Three: Subtract the area of the blank triangle from the total area
Total area = 29
Area of Square = 7
29 - 7 = 22
-----------------------------------------------------------
Question # 17
Step One: Find the length of PT
Given:
PR = 4 cmRT = 6 cmPT = PR + RT [Segment addition postulate]
PT = (4) + (6)
PT = 10 cm
Step Two: Find the length of S to PT perpendicularly
According to the diagonal are perpendicular to each other and congruent. Therefore, the length of S to PT perpendicularly is half of the diagonal
Length of Diagonal = 4 cm
4 ÷ 2 = 2 cm
Step Three: Find the area of ΔPST
b = PT = 10 cm
h = S to PT = 2 cm
A = bh / 2
A = (10)(2) / 2
A = 20 / 2
A = 10 cm²
Step Four: Find the length of Q to PT perpendicularly
Similar to step two, Q is the endpoint of one diagonal, and by definition, diagonals are perpendicular and congruent with each other. Therefore, the length of Q to PT perpendicularly is half of the diagonal.
Length of Diagonal = 4 cm
4 ÷ 2 = 2 cm
Step Five: Find the area of ΔPQT
b = PT = 10 cm
h = Q to PT = 2 cm
A = bh / 2
A = (10)(2) / 2
A = 20 / 2
A = 10 cm²
Step Six: Combine area of two triangles to find the total area
Area of ΔPST = 10 cm²
Area of ΔPQT = 10 cm²
10 + 10 = 20 cm²
Hope this helps!! :)
Please let me know if you have any questions
Please I need help who want to earn 13 points ..
Answer:
Triangle ISK
Step-by-step explanation:
Answer:
Triangle ISK
Step-by-step explanation:
if the angles and sides of one triangle are equal to the corresponding sides and angles of the other triangle, they are congruent.
∠Q = ∠I
∠R = ∠S
∠S = ∠K
Please help me :)))!!!!!!
Answer:
16 × X + 3=
Step-by-step explanation:
u will get your answer
A car travelling at v kilometers per hour will need a stopping distance, d, in meters without skidding that can be modelled by the function d=0.0067v2+0.15v. Determine the speed at which a car can be travelling to be able to stop within 37m.
I’m need of serious help!
Answer:
v = 14 km/h
Step-by-step explanation:
d = 0.0067[tex]v^{2}[/tex] + 0.15v
differentiate the function with respect to v to have;
d = 0.0134v - 0.15
given that the distance without skidding = 37 m (0.037 km) , then;
0.037 = 0.0134v - 0.15
0.0134v = 0.037 + 0.15
= 0.187
v = [tex]\frac{0.187}{0.0134}[/tex]
= 13.9552
v = 14 km/h
The speed of the car travelling would be 14 km/h to be able to stop within 37m.
find the volume of each figure. Round to the nearest tenth if necessary.
Answer:
112
Step-by-step explanation:
The volume is given by l*b*h=4*4*7=112
Can someone help me I need it.
Answer:
C is the answer 3rd one...
Kristi finds a shirt for $27.99 at the store.
The sign says that it is 25% off the
original price. Kristi must also pay the 8.5%
sales tax. What is the cost of the shirt
after the sales tax?
Answer:
Kristi will pay $22.77 for the shirt.
Step-by-step explanation:
First, determine the sales price of the shirt. If the full price is $27.99, a 25% reduction is $7. Subtract the discount from the full price to get a sales price of $20.99 for the shirt.
Next, determine the amount of tax Kristi will pay for the shirt. In her state, the sales tax is 8.5% (0.085). Multiply $20.99 by 0.085 and you will see that the sales tax is $1.78. Add the amount of the tax, $1.78, to the sales price of the shirt, $20.99, and you will get $22.77 as the cost of the shirt after the sales tax is added.
What is the measure of ∠
A. 60°
B. 6°
C. 42°
D. 49°
A boardwalk game of chance costs 2 dollars to play. You have a 20% chance of winning 1 dollar, a 25% chance of winning back your entire 2 dollars, and a 35% chance to win 5 dollars. What is the expected value of playing the game if you lose your bet 20% of the time?
Answer:
For a give event with outcomes:
{x₁, x₂, ..., xₙ}
Each with probabilities:
{p₁, p₂, ..., pₙ}
The expected value is:
Ev = x₁*p₁ + ... + xₙ*pₙ
Here we have the outcomes and probabilities:
win $1, with a probability 20%/100% = 0.2
win $2, with a probability 25%/100% = 0.25
win $5, with a probability of 35%/100% = 0.35
do not win, with a probability of 20%/100% = 0.2
Then the expected value of the game is:
Ev = $1*0.2 + $2*0.25 + $5*0.35 + $0*0.2 = $2.45
And if we know that the game costs $2, then the expected value is:
Ev = $2.45 - $2 = $0.45
The expected value is $0.45
Write the slope-intercept form of the equation of the line described. Through (-1,-1) parallel to y=6x-2
Answer:
[tex]\boxed {\boxed {\sf y= 6x+5}}[/tex]
Step-by-step explanation:
We are asked to find the slope-intercept equation of a line. Slope-intercept form is one way to write the equation of a line. It is:
[tex]y=mx+b[/tex]
Where m is the slope and b is the y-intercept.
We are given a point (-1, -1) and the line is parallel to the line y= 6x-2. Since the line is parallel to the other line, they have the same slope, which is 6. We have a point and a slope, so we should use the point-slope formula to find the equation of the line.
[tex]y-y_1= m (x-x_1)[/tex]
Here, m is the slope and (x₁, y₁) is the point. We know the slope is 6 and the point is (-1, -1). Therefore:
m= 6x₁= -1y₁= -1Substitute the values into the formula.
[tex]y- -1 = 6(x- -1) \\y+1= 6(x+1)[/tex]
Distribute the 6. Multiply each value inside the parentheses by 6.
[tex]y+1 = (6*x)+ (6*1) \\y+1= 6x+6[/tex]
Slope-intercept form requires y to be isolated. 1 is being added to y. The inverse of addition is subtraction. Subtract 1 from both sides.
[tex]y+1-1=6x+6-1 \\y= 6x+5[/tex]
The equation of the line in slope-intercept form is y=6x+5
Find the line’s slope and a point on the line
Y-4=-3/4(x+5)
Answer:
The slope is -3/4 and a point on the line is (-5,4)
Step-by-step explanation:
This equation is in point slope form
y -y1 = m(x-x1)
where m is the slope and (x1,y1) is a point on the line
Y-4=-3/4(x+5)
Y-4=-3/4(x - -5)
The slope is -3/4 and a point on the line is (-5,4)
What’s the answers ?
hope this helps! feel free to clarify if unsure
A line of best fit must pass through all data points of a graph.
True or False?
1) 18,27 – 9,756 =
2) 6 – 2,407 =
3) 18 – 5,432 =
4) 10 – 7,602 =
5) 13,013 – 12,5 =
6) 972,5 – 247,451 =
7) 83,12 – 90,2 + 12,3 =
8) 46,75 – 60,13 + 32,50 =
9) 254,0187 – 29,34682 =
10)1.015,568 – 123,712 =
no entiendo me ayudan
Answer:
1) -7929
2) -2401
3)-5414
4) -7592
5) 12888
6)-237726
7) 7287
8)-4588
9)-394495
10) 891856
A bus has less than 42 seats. If 36 seats are already occupied, write an
inequality representing the possible number of passengers that can be
added to the bus.
A.) x - 36 < 42
B.) x + 36 < 42
C.) x - 36 > 42
D.) x + 36 > 57
Answer:
B
Step-by-step explanation:
A x - 36 <42 is wrong because its saying how many can be added
B x +36 < 42 this one is most likely correct because its displays x as how many can be added
C x - 36 > 42 this is wrong because the bus has less than 42 seats
D x + 36 >57 like i said cant be over 42
The inequality representing the possible number of passengers that can be added to the bus is Option(B) x + 36 < 42.
What is inequality ?An inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. Inequality is used most often to compare two numbers on the number line by their size. There is always a definite equation to represent it.
How to form the given inequality equation ?Let x be the number of passengers that can be added to the bus.
It is given that the bus has less than 42 seats and 36 seats are already occupied.
The sum of the remaining seats which are to be filled by the passenger and the 36 seats which are filled, must be less than the total seats that is 42.
Therefore the inequality equation becomes,
x + 36 < 42.
Thus, the inequality representing the possible number of passengers that can be added to the bus is Option(B) x + 36 < 42.
To learn more about inequality equation, refer -
https://brainly.com/question/17448505
#SPJ2
What is tanA?
Triangle A B C. Angle C is 90 degrees. Hypotenuse A B is 17, adjacent A C is 8, opposite B C is 15.
a.
StartFraction 15 Over 17 EndFraction
c.
StartFraction 8 Over 15 EndFraction
b.
StartFraction 8 Over 17 EndFraction
d.
StartFraction 15 Over 8 EndFraction
Answer:
D. [tex] \frac{15}{8} [/tex]
Step-by-step explanation:
Recall: SOH CAH TOA
Thus,
Tan A = Opposite/Adjacent
Reference angle (θ) = A
Length of side Opposite to <A = 15
Length of Adjacent side = 8
Plug in the known values
[tex] Tan(A) = \frac{15}{8} [/tex]
Log5 =0,699 find log 0,5
Answer:
-0.301
Step-by-step explanation:
Correct Question :-
If log 2 = 0.301 , find log 0.5
Solution :-
We are here given that the value of log 5 is 0.699 . Here the base of log is 10 .
[tex]\rm\implies log_{10}2= 0.301 [/tex]
And we are supposed to find out the value of log 0.5 . We can write it as ,
[tex]\rm\implies log_{10}(0.5) = log _{10}\bigg( \dfrac{5}{10}\bigg)[/tex]
Simplify ,
[tex]\rm\implies log _{10}\bigg( \dfrac{1}{2}\bigg)[/tex]
This can be written as ,
[tex]\rm\implies log_{10} ( 2^{-1})[/tex]
Use property of log ,
[tex]\rm\implies -1 \times log_{10}2 [/tex]
Put the value of log 2 ,
[tex]\rm\implies -1 \times 0.301 =\boxed{\blue{-0.301}} [/tex]
Hence the value of log (0.5) is -0.301 .
*Note -
Here here there was no use of log 5 in the calculation .
help me friends write in copy
20 pts so don't spam
Answer:
ii
Step-by-step explanation:
from what you've written in the comments I think this question requires you to find the equation that can be expressed in two variables,so the best way to do this is to solve the pairs as simultaneous equations and see the ones that will give you two answers x and y
if you solve the first pair you will have
x + y = 5
2x+2y=10
2(x + y =5)
1(2x+2y=10)
2x+2y=10
2x+2y=10--
now from this you will see that it cannot be expressed as two variables because the answer is just zero..
for the second equation it can be expressed as two variables
x - y = 8
3x-3y =16
3(x-y =8)
1(x-3y=16)
3x-3y=24
x - 3y=16
2x/2=8/2
x=4
x-y=8
4-y=8
-y=8-4
-y/-1=4/-1
y=-4...
so you see it can be expressed as two variables..
if you solve the third one it will also give you an answer which is zero so it can't be expressed as two variables.
and the fourth one also cannot.
I hope this helps and if you don't understand feel free to ask..and sorry if it's wrong
Plz help me with this thank you
Answers:
One possible equation to solve is tan(x) = 4/15That solves to roughly 15 degrees==============================================================
Explanation:
Refer to the diagram below.
The segment AB is the player's height of 6 ft.
The segment CD is the hoop's height, which is 10 ft.
There is a point E on CD such that rectangle BACE forms. This will help us form ED later.
Angle EBD is what we're after, which I'll call x.
Since the free throw line is 15 ft from the basket, this means segments EB and AC are 15 ft each.
In rectangle BACE, the side EC is opposite AB. So both of those sides are 6 ft each.
Since CD = 10 and EC = 6, this must mean ED = CD-EC = 10-6 = 4.
---------------------------------------
To summarize, we found that ED = 4 and EB = 15.
We'll focus our attention entirely on triangle EBD
We have two known legs of the triangle, specifically the opposite and adjacent sides.
So we'll use the tangent ratio.
tan(angle) = opposite/adjacent
tan(B) = ED/EB
tan(x) = 4/15 .... is the equation to solve
x = arctan(4/15) .... same as inverse tangent or [tex]\tan^{-1}[/tex]
x = 14.931417 ..... make sure to be in degree mode
x = 15 ..... rounding to the nearest whole degree
So that unknown angle in the diagram is approximately 15 degrees
Please help me find the length of the line!
Answer:
The length of the segment is 10.
Step-by-step explanation:
Think of the segment as the hypotenuse of a right triangle.
Draw the legs and label the lengths.
See the picture below.
The length of the hypotenuse is c.
c^2 = a^2 + b^2
c^2 = 6^2 + 8^2
c^2 = 36 + 64
c^2 = 100
c = 10
Answer: 10
Solve for x. X/5-x/6=1/3 x = 10 x = 1/90 x = 1/10
Answer:
x=10
Step-by-step explanation:
I hope this will help you
Please help ASAP!!!!
========================================================
Explanation:
The two points mentioned in bold are midpoints of segments AB and AC respectively.
To find the coordinates of a midpoint, you add up the x coordinates and divide by 2. Do the same with the y coordinates.
For example, points A and B are at (7,6) and (1,-2)
If we add up the x coordinates and divide by 2, then we get (7+1)/2 = 4. Do the same for the y coordinates to get (6+(-2))/2 = 2. So that's how (4,2) is the midpoint of segment AB. You'll use similar logic to find that (8,2) is the midpoint of segment AC.
A slight alternative is that once you find one midpoint is (4,2), you can draw a horizontal line until you reach (8,2). We're using the idea that the midsegment is parallel to BC which is also horizontal.
suppose you roll to standard number cubes. let event a be rolling a 4 on the first die and let event b be rolling a 3 on the second die. are a and b independent events? are a and b mutually exclusive events. explain.
Answer:
The events are independent and are not mutually exclusive.
Step-by-step explanation:
Two events A and B are independent if the outcome of each of them does not affect the outcome of the other.
And two events are mutually exclusive if these can't occur at the same time.
Here the events are:
a = rolling a 4 on the first die
b = rolling a 3 on the second die.
Becuase, these are number cubes, we know that the outcome of one die has no impact in the outcome of the other die.
And because each outcome is on a different die, we can conclude that these events are independent.
(rolling a 4 in the first die does not change the probability of getting a 3 when we roll the second die).
Now, the events are mutually exclusive?
No, we can roll both dices and get a 3 in the first one and a 4 in the second one, so these events can happen in the same time.
Answer:
YES.
Step-by-step explanation:
The event rolling a number '4' and the event rolling a number '3' are mutually exclusive events because both of them cannot occur at the same time.
Just took quick check
Trey took 5/4
hours to clean the bedroom. He took1/2
hours to clean the den. How much longer did it take Trey to clean the bedroom?
Write your answer as a mixed number in simplest form.
Answer:
3/4 more hours
Step-by-step explanation:
Hours taken to clean bedroom = 5/4
Hours taken to clean den = 1/2
How much more = 5/4 - 1/2
5-2/4 (common denominator)
3/4 more hours (It's a propper fraction, so we can't write it as a mixed number)
Answer from Gauthmath
Friends, i need help with this question.
Answer:
Step-by-step explanation:
The answer is 4.
Once you add 4, you get:
x^2 -2x + 4 = 7.
The left side is factorable:
(x-2)^2 = 7.
There is your perfect square.
Find the missing length of the following trapezoid
Answer:
1) The length of [tex]DC[/tex] is 20.
2) The length of [tex]PS[/tex] is 17.
Step-by-step explanation:
1) If [tex]DR = RE[/tex] and [tex]CS = SB[/tex], then we can use the following proportionality ratio:
[tex]\frac{DE}{DR} = \frac{32 - x}{26 - x}[/tex] (1)
Where [tex]x[/tex] is the length of segment [tex]\overline{CD}[/tex].
If [tex]DE = 2\cdot DR[/tex], then the value of [tex]x[/tex] is:
[tex]2 = \frac{32-x}{26-x}[/tex]
[tex]52 - 2\cdot x = 32 - x[/tex]
[tex]20 = x[/tex]
The length of [tex]DC[/tex] is 20.
2) If [tex]QV = VP[/tex] and [tex]RW = WS[/tex], then we can use the following proportionality ratio:
[tex]\frac{QP}{QV} = \frac{x-7}{12-7}[/tex] (2)
Where [tex]x[/tex] is the length of segment [tex]\overline{PS}[/tex].
If [tex]QP = 2\cdot QV[/tex], then the value of [tex]x[/tex] is:
[tex]2 = \frac{x-7}{5}[/tex]
[tex]10 = x-7[/tex]
[tex]x = 17[/tex]
The length of [tex]PS[/tex] is 17.
Find the value of x.
A. 99
B. 9
C. 90
D. 11
ILL GIVE BRAINLIEST
Answer:
B) 9
Step-by-step explanation:
Because there's a square between the 2 angles, that means these angles are complementary (angles that add up to 90°). So:
5x - 9 + 6x = 90
11x - 9 = 90
11x = 90 + 9
11x = 99
x = 9
Answer:
B.9
Step-by-step explanation:
The way to solve this is by noticing that these angles are complementary(they add up to 90 degrees). So you add the equations together and equal them to 90. 5x-9+6x=90.Then you solve to find that x=9.
please help with these two questions!!
6√5 + 3√6 = 6√5 + 3√6 [cannot be simplified]
; roots do not contain any perfect squares, and the roots are not similar.
6√5(3√6) = 18√30 [can be simplified]
; although roots do not contain any perfect squares, the product rule can be applied to create a singular expression.
simplify the following
[tex]simplify \: the \: follwing \: \\ logx \: x9[/tex]
please I need help
Answer:
9
Step-by-step explanation:
Using the rules of logarithms
log[tex]x^{n}[/tex] = nlogx
[tex]log_{b}[/tex] b = 1
Then
[tex]log_{x}[/tex] [tex]x^{9}[/tex]
= 9[tex]log_{x}[/tex] x
= 9