Answer:
Companies know that people will be willing to spend more to get an in-demand product.
Explanation:
When a product is really in demand, many customers are willing to part with more money order to purchase the product, as a result of that, many companies may take advantage of the increasing demand for the product to hike it's price.
Hence, the increase in price may not really have a negative impact on the quantity demanded because the demand for the product is high and customers are willing to spend more money in order to purchase an in-demand product, hence the answer above.
Prices increase when demand is high because companies know that people will be willing to spend more to get in-demand products.
Prices generally increase with higher demand for goods because the higher demand creates pressure for the supply to meet up.
Manufacturing companies can either increase their production to meet up with demand at the same price or capitalize on the situation to make more money by increasing the price without increasing the supply.
Since there is a buying pressure on the product in the market already, people would still be open to buying even at higher prices.
More on demand and prices can be found here: https://brainly.com/question/16170198?referrer=searchResults
Consider these metal ion/metal standard reduction potentials Cd2+(aq)|Cd(s) Zn2+(aq)|Zn(s) Ni2+(aq)|Ni(s) Cu2+(aq)|Cu(s) Ag+(aq)|Ag(s) -0.40 V -0.76 V ‑0.25 V +0.34 V +0.80 V Based on the data above, which species is the best reducing agent?
Answer:
The best reducing agent is Zn(s)
Explanation:
A reducing agent must to be able to reduce another compound, by oxidizing itself. Consequently, the oxidation potential must be high. The oxidation potential of a compound is the reduction potential of the same compound with the opposite charge. Given the reduction potentials, the best reducing agent will be the compound with the most negative reduction potential. Among the following reduction potentials:
Cd₂⁺(aq)|Cd(s) ⇒ -0.40 V
Zn²⁺(aq)|Zn(s) ⇒ -0.76 V
Ni²⁺(aq)|Ni(s) ⇒‑0.25 V
Cu²⁺(aq)|Cu(s) ⇒ +0.34 V
Ag⁺(aq)|Ag(s) ⇒ +0.80 V
The most negative is Zn²⁺(aq)|Zn(s) ⇒ -0.76 V
From this, the most reducing agent is Zn. Zn(s) is oxidized to Zn²⁺ ions with the highest oxidation potential (0.76 V).
A saturated sodium carbonate solution at 0°C contains 7.1 g of dissolved sodium carbonate per 100. mL of solution. The solubility product constant for sodium carbonate at this temperature is
Answer:
[tex]Ksp=1.2[/tex]
Explanation:
Hello,
In this case, as the saturated solution has 7.1 grams of sodium carbonate, the solubility product is computed by firstly computing the molar solubility by using its molar mass (106 g/mol):
[tex]Molar \ solubility=\frac{7.1gNa_2CO_3}{0.1L}*\frac{1molNa_2CO_3}{106gNa_2CO_3}=0.67M[/tex]
Next, as its dissociation reaction is:
[tex]Na_2CO_3(s)\rightleftharpoons 2Na^+(aq)+CO_3^{2-}(aq)[/tex]
The equilibrium expression is:
[tex]Ksp=[Na^+]^2[CO_3^{2-}][/tex]
And the concentrations are related with the molar solubility (2:1 mole ratio between ionic species):
[tex]Ksp=(2*0.67)^2*(0.67)\\\\Ksp=1.2[/tex]
Best regards.
The surface temperature on Venus may approach 753 K. What is this temperature in degrees Celsius?
Answer:
461.85 degrees Celsius
What is the balanced equation for the reaction of aqueous cesium sulfate and aqueous barium perchlorate?
Answer:
The balanced chemical reaction is given as:
[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]
Explanation:
When aqueous cesium sulfate and aqueous barium perchlorate are mixed together it gives white precipitate barium sulfate and aqueous solution od cesium perchlorate.
The balanced chemical reaction is given as:
[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]
According to reaction, 1 mole of cesium sulfate reacts with 1 mole of barium perchlorate to give 1 mole of a white precipitate of barium sulfate and 2 moles of cesium perchlorate.
3,3-dibromo-4-methylhex-1-yne
Explanation:
see the attachment. hope it will help you...A hypothetical metal crystallizes with the face-centered cubic unit cell. The radius of the metal atom is 198 picometers and its molar mass is 195.08 g/mol. Calculate the density of the metal in g/cm3.
Answer:
7.38 g/cm³ is the density of the metal
Explanation:
In a Face-centered cubic unit cell you have 4 atoms. Also, the edge length is √8×r (r is radius of the atom).
To solve this problem, we need first to calculate the volume of the unit cell and then, with molar mass calculate the mass of 4 atoms. As density is the ratio between mass and volume we can obtain this value.
Volume of the unit cellVolume = a³
a = √8×r
(r = 198x10⁻¹²m)
a = 5.6x10⁻¹⁰ m
Volume = 1.756x10⁻²⁸ m³
1m = 100cm → 1m³ = (100cm)³:
1.756x10⁻²⁸ m³× ((100cm)³ / 1m³) =
1.756x10⁻²² cm³ → Volume of the unit cell in cm³Mass of the unit cell:There are 4 atoms of gold:
4 atoms × (1mol / 6.022x10²³ atoms) = 6.64x10⁻²⁴ moles of gold
As 1 mole weighs 195.08g:
6.64x10⁻²⁴ moles of gold × (195.08g / mol) =
1.296x10⁻²¹g is the mass of the unit cellDensity of the metal:1.296x10⁻²¹g / 1.756x10⁻²² cm³ =
7.38 g/cm³ is the density of the metalThe density of the metal is 7.40 g/cm³
In cubic crystal system, face-centered cubic FFC is the name given to sort of atom arrangement observed in which structure is made up of atoms organized in a cube with a portion of an atom in each corner and six extra atoms in the center of each cube face.
It is expressed by using the formula:
[tex]\mathbf{\rho = \dfrac{Z \times M}{N_A\times a^}}[/tex]
where;
[tex]\rho[/tex] = density of the metalZ = atoms coordination no = 4 (for FCC)Molar mass (M) = 195.8 g/molAvogadro's constant (NA) = 6.022 × 10²³ /mola = edge lengthFor face-centered cubic FFC;
The edge length [tex]\mathbf{a =2 \sqrt{2}\times r }[/tex]
[tex]\mathbf{a =2 \sqrt{2}\times 198 \ pm }[/tex]
[tex]\mathbf{a =560.0285 \ pm }[/tex]
a = 5.60 × 10⁻⁸ cm
Replacing it into the previous equation, we have:
[tex]\mathbf{\rho = \dfrac{4 \times 195.8}{6.022 \times 10^{23} \times( 5.60 \times 10^{-8} )^3}}[/tex]
[tex]\mathbf{\rho = 7.40\ g/cm^3 }[/tex]
Learn more about face-centered cubic arrangement here:
https://brainly.com/question/14786352?referrer=searchResults
A student sets up the following equation to convert a measurement. The (?) Stands for a number the student is going to calculate. Fill in the missing part of this equation. (0.030 cm^3) x ? =m^3
Answer:
\text{0.30 cm}^{3} \times \left (\dfrac{10^{-2}\text{ m}}{\text{1 cm}}\right )^{3} = 3.0 \times 10^{-7} \text{ m}^{3}
Explanation:
0.030 cm³ × ? = x m³
You want to convert cubic centimetres to cubic metres, so you multiply the cubic centimetres by a conversion factor.
For example, you know that centi means "× 10⁻²", so
1 cm = 10⁻² m
If we divide each side by 1 cm, we get 1 = (10⁻² m/1 cm).
If we divide each side by 10⁻² m, we get (1 cm/10⁻² m) = 1.
So, we can use either (10⁻² m/1 cm) or (1 cm/10⁻² m) as a conversion factor, because each fraction equals one.
We choose the former because it has the desired units on top.
The "cm" is cubed, so we must cube the conversion factor.
The calculation becomes
[tex]\text{0.30 cm}^{3} \times \left (\dfrac{10^{-2}\text{ m}}{\text{1 cm}}\right )^{3} = 0.30 \times 10^{-6}\text{ m}^{3} = \mathbf{3.0 \times 10^{-7}} \textbf{ m}^{\mathbf{3}}\\\\\textbf{0.30 cm}^{\mathbf{3}} \times \left (\dfrac{\mathbf{10^{-2}}\textbf{ m}}{\textbf{1 cm}}\right )^{\mathbf{3}} = \mathbf{3.0 \times 10^{-7}} \textbf{ m}^{\mathbf{3}}[/tex]
Calculate the molarity of a solution containing 29g of glucose (C 6 H 12 O 6 ) dissolved in 24.0g of water. Assume the density of water is 1.00g/mL.
Answer:
whats the ph ofpoh=9.78
Explanation:
A piece of plastic sinks in oil but floats in water. Place these three substances in order from lowest density to greatest density.
Answer:
[tex]\rho _{oil}<\rho _{plastic}<\rho _{water}[/tex]
Explanation:
Hello,
In this case, since water and oil are immiscible due to the oil's nonpolarity and water's polarity, when mixed, the oil remains on the water since it is less dense than water. In such a way, for a plastic sunk in the oil and floating on the water (in middle of them) we can conclude that the plastic have a mid density, therefore, the required organization is:
[tex]\rho _{oil}<\rho _{plastic}<\rho _{water}[/tex]
Best regards.
NEED HELP ASAP
In 1988, three gray whales were trapped in Arctic ice. Television crews captured the frantic
attempts of hundreds of people to save the whales. Eventually, a Soviet icebreaker and U.S.
National Guard helicopters arrived to help free the whales. The cost of the rescue mission
exceeded $5 million.
i. Write a scientific question related to the whale story. (1 point)
What is the ph of 0.36M HNO3 ?
Answer:
0.44
Explanation:
We know that the pH of any acid solution is given by the negative logarithm of its hydrogen ion concentration. Hence, if I can obtain the hydrogen ion concentration of any acid, I can obtain its pH.
For the acid, HNO3, [H^+] = [NO3^-]= 0.36 M
pH= -log [H^+]
pH= - log[0.36]
pH= 0.44
place the following substances in Order of decreasing boiling point H20 N2 CO
Answer:
-195.8º < -191.5º < 100º
Explanation:
Water, or H20, starts boiling at 100ºC.
Nitrogen, or N2, starts boiling at -195.8ºC.
Carbon monoxide, or C0, starts boiling at -191.5ºC.
When we place these in order from decreasing boiling point:
-195.8º goes first, then -191.5º, and 100º goes last.
Answer:
therefore, N2, CO, H20
Decreasing boiling point
Explanation:
the bond existing in H2O is hydrogen bond
bond existing in N2 is covalent bond, force existing is dipole-dipole-interaction
bond existing in CO is covalent bond , force existing between is induced -dipole- induced dipole-interaction
hydrogen bond is the strongest , followed by dipole-dipole-interaction and induced -dipole- induced dipole-interaction
the stronger the bond , the higher the boiling point
therefore, N2, CO, H20
-------------------------------------->
Decreasing boiling point
9
What might happen if acidic chemicals were emitted into
the air by factories? Choose the best answer.
A
The acid would destroy metallic elements in the air
B
The acid would be neutralized by bases within clouds
C
Acid rain might destroy ecosystems and farmland
D
Violent chemical reactions would take place within the
atmosphere
co search
O
BI
What is the final volume V2 in milliliters when 0.551 L of a 50.0 % (m/v) solution is diluted to 23.5 % (m/v)?
Answer:
[tex]V_2=1.17L[/tex]
Explanation:
Hello,
In this case, for dilution processes, we must remember that the amount of solute remains the same, therefore, we can write:
[tex]V_1C_1=V_2C_2[/tex]
Whereas V accounts for volume and C for concentration that in this case is %(m/v). In such a way, the final volume V2 turns out:
[tex]V_2=\frac{V_1C_1}{C_2}= \frac{0.551L*50.0\%}{23.5\%}\\ \\V_2=1.17L[/tex]
Best regards.
Calculate the amount of heat that must be absorbed by 10.0 g of ice at –20°C to convert it to liquid water at 60.0°C. Given: specific heat (ice) = 2.1 J/g·°C; specific heat (water) = 4.18 J/g·°C; ΔH fus = 6.0 kJ/mol.
Answer:
The amount of heat to absorb is 6,261 J
Explanation:
Calorimetry is in charge of measuring the amount of heat generated or lost in certain physical or chemical processes.
The total energy required is the sum of the energy to heat the ice from -20 ° C to ice of 0 ° C, melting the ice of 0 ° C in 0 ° C water and finally heating the water to 60 ° C.
So:
Heat required to raise the temperature of ice from -20 °C to 0 °CBeing the sensible heat of a body the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous), the expression is used:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal - Tinitial).
In this case, m= 10 g, specific heat of the ice= 2.1 [tex]\frac{J}{g*C}[/tex] and ΔT=0 C - (-20 C)= 20 C
Replacing: Q= 10 g*2.1 [tex]\frac{J}{g*C}[/tex] *20 C and solving: Q=420 J
Heat required to convert 0 °C ice to 0 °C waterThe heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:
Q= m* ΔHfusion
In this case, being 1 mol of water= 18 grams: Q= 10 g*[tex]6.0 \frac{kJ}{mol} *\frac{1 mol of water}{18 g}[/tex]= 3.333 kJ= 3,333 J (being kJ=1,000 J)
Heat required to raise the temperature of water from 0 °C to 60 °CIn this case the expression used in the first step is used, but being: m= 10 g, specific heat of the water= 4.18 [tex]\frac{J}{g*C}[/tex] and ΔT=60 C - (0 C)= 60 C
Replacing: Q= 10 g*4.18 [tex]\frac{J}{g*C}[/tex] *60 C and solving: Q=2,508 J
Finally, Qtotal= 420 J + 3,333 J + 2,508 J
Qtotal= 6,261 J
The amount of heat to absorb is 6,261 J
The amount of heat to absorb is 6,261 J.
Calculation for heat:Heat required to raise the temperature of ice from -20 °C to 0 °C.
The formula for specific heat is used to calculate the amount of heat
Q = c * m * ΔT
Where,
Q =heat exchanged by a body,
m= mass of the body
c= specific heat
ΔT= change in temperature
Given:
m= 10 g,
specific heat of the ice= 2.1
ΔT=0 C - (-20 C)= 20 C
On substituting the values:
Q= 10 g*2.1 *20 C
Q=420 J
Heat required to convert 0 °C ice to 0 °C water.
The heat Q necessary to melt a substance depends on its mass m and on the called latent heat of fusion of each substance:
Q= m* ΔHfusion
Heat required to raise the temperature of water from 0 °C to 60 °C
m= 10 g,
Specific heat of the water= 4.18
ΔT=60 C - (0 C)= 60 C
On substituting:
Q= 10 g*4.18 *60 C
Q=2,508 J
Thus, Qtotal= 420 J + 3,333 J + 2,508 J
Qtotal= 6,261 J
The amount of heat to absorb is 6,261 J
Find more information about Specific heat here:
brainly.com/question/13439286
Heterocyclic aromatic compounds undergo electrophilic aromatic substitution in a similar fashion to that undergone by benzene with the formation of a resonance-stabilized intermediate. Draw all of the resonance contributors expected when the above compound undergoes bromination
Answer:
See explanation
Explanation:
When we talk about electrophilic substitution, we are talking about a substitution reaction in which the attacking agent is an electrophile. The electrophile attacks an electron rich area of a compound during the reaction.
The five membered furan ring is aromatic just as benzene. This aromatic structure is maintained during electrophilic substitution reaction. The attack of the electrophile generates a resonance stabilized intermediate whose canonical structures have been shown in the image attached.
Two elements represents by the letter Q and R atomic number 9 and 12 respectively. Write the electronic configuration of R
Answer:
Atomic no = 12 = Mg
Explanation:
It is given that,
The atomic number of two elements that are represented by letter Q and R are 9 and 12.
We need to write the electronic configuration of R. Atomic number shows the number of protons in atom.
For R, atomic number = 12
Its electronic configuration is : 2,8,2
It has two valance electrons in its outermost shell. The element is Magnesium (Mg).
Come up with a definition for density
Density measures how tightly packed particles are.
If particles are tightly packed together, they will be more dense.
If they are loosely together, they will be less dense.
However, a common mistake is thinking that if something
is more dense it means that it's heavier.
However, that's not the case.
It has to do with how particles are packed in an object.
Im really confused and select all that apply questions scare me.
Answer:
The 3rd one
Explanation:
Which of the following contains a nonpolar covalent bond?
O A. Co
B. NaCl
O C. 02
O D. HE
Answer:
The answer is o2
Explanation:
I took the test
g Which ONE of the following pairs of organic compounds are NOT pairs of isomers? A) butanol ( CH3-CH2-CH2-CH2-OH ) and diethyl ether ( CH3–CH2–O–CH2–CH3 ) B) isopentane ( (CH3)2-CH-CH2-CH3 ) and neopentane ( (CH3)4C ) C) ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ) D) acrylic acid ( CH2=CH-COOH ) and propanedial ( OHC–CH2–CHO ) E) trimethylamine ( (CH3)3N ) and propylamine ( CH3-CH2-CH2-NH2 )
Answer:
ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 )
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. Hence any pair of compounds that can be represented by exactly the same molecular formula are isomers of each other.
If we look at the pair of compounds; ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ), one compound has molecular formula, C2H7ON while the other has a molecular formula, C2H5ON, hence they are not isomers of each other.
How many grams of H2O will be formed when 32.0 g H2 is mixed with 73.0 g of O2 and allowed to react to form water
hope this helps u
pls mark as brainliest .-.
When we react a weak acid with a strong base of equal amounts and concentration, the component of the reaction that will have the greatest effect on the pH of the solution is:______.
a. the acid.
b. the base.
c. the conjugate acid.
d. the conjugate base.
Answer:
d. the conjugate base.
Explanation:
The general reaction of a weak acid, HA, with a strong base YOH, is:
HA + YOH → A⁻ + H₂O + Y⁻
Where A⁻ is the conjugate base of the weak acid and Y⁻ usually is a strong electrolyte.
That means after he complete reaction you don't have weak acid nor strong base, just conjugate base that will be in equilibrium with water, thus (Strong electrolyte doesn't change pH:
A⁻ + H₂O ⇄ HA + OH⁻
As the equilibrium is producing OH⁻, the pH of the solution is being affected for the conjugate base
Right option:
d. the conjugate base.An electrolysis cell has two electrodes. Which statement is correct? A. Reduction takes place at the anode, which is positively charged. B. Reduction takes place at the cathode, which is positively charged. C. Reduction takes place at the dynode, which is uncharged. D. Reduction takes place at the cathode, which is negatively charged. E. Reduction takes place at the anode, which is negatively charged.
Answer:
D. Reduction takes place at the cathode, which is negatively charged.
Explanation:
In an electrolytic cell there are two electrodes; the cathode and the anode. The anode is the positive electrode while the cathode is the negative electrode. Oxidation occurs at the anode while reduction occurs at the cathode.
At the anode, species give up electrons and become positively charged ions while at the cathode species accept electrons and become reduced.
The electrolysis of molten AlCl 3 for 2.50 hr with an electrical current of 15.0 A produces ________ g of aluminum metal.
Refer to the figure.
30. How many planes are shown in the figure?
31. How many planes contain points B, C, and E?
32. Name three collinear points.
3. Where could you add point G on plane N
so that A, B, and G would be collinear?
4. Name a point that is not coplanar with
A, B, and C.
5. Name four points that are coplanar.
BN
Answer:
30. 5 planes are shown
31. 1 plane
32. CEF
33. on line AB
34. E or F
35. ABCD or BCEF or CDEF or ACEF
Explanation:
30. Each of the surfaces of the rectangular pyramid is a plane. There are 5 planes.
__
31. 3 points define one plane only.
__
32. The only points shown on the same line segment are points E, F, and C.
__
33. If G is to be collinear with A and B, it must lie on line AB.
__
34. The only points shown that are not on plane N are points E and F. Either of those will do.
__
35. There are three planes that have 4 points shown on them. The four points that are on the same plane are any of ...
ABCDBCEFCDEFPlane ACEF is not shown on the diagram, but we know that those 4 points are also coplanar. (Any point not on line CE, together with the three points on that line, will define a plane with 4 coplanar points.)
In which of the following compounds does the carbonyl stretch in the IR spectrum occur at the lowest wavenumber?
a. Cyclohexanone
b. Ethyl Acetate
c. λ- butyrolactone
d. Pentanamide
e. Propanoyl Chloride
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the vibration of the bonds by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is a specific energy that generates a specific vibration. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the lower the wavenumber we will have less energy. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have heteroatoms (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of resonance structures which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the cyclohexanone.
See figure 1
I hope it helps!
For a particular reaction at 235.8 °C, ΔG=−936.92 kJ/mol , and ΔS=513.79 J/(mol⋅K) . Calculate ΔG for this reaction at −9.9 °C.
Answer:
-138.9 kJ/mol
Explanation:
Step 1: Convert 235.8°C to the Kelvin scale
We will use the following expression.
K = °C + 273.15 = 235.8°C + 273.15 = 509.0 K
Step 2: Calculate the standard enthalpy of reaction (ΔH°)
We will use the following expression.
ΔG° = ΔH° - T.ΔS°
ΔH° = ΔG° / T.ΔS°
ΔH° = (-936.92kJ/mol) / 509.0K × 0.51379 kJ/mol.K
ΔH° = -3.583 kJ (for 1 mole of balanced reaction)
Step 3: Convert -9.9°C to the Kelvin scale
K = °C + 273.15 = -9.9°C + 273.15 = 263.3 K
Step 4: Calculate ΔG° at 263.3 K
ΔG° = ΔH° - T.ΔS°
ΔG° = -3.583 kJ/mol - 263.3 K × 0.51379 kJ/mol.K
ΔG° = -138.9 kJ/mol
How many atoms are in 65.0g of zinc?
from
1moles=iatom
Mole=mass÷avogardos
Where
Avogadro's= 6.02×10²³
So moles = 65.0÷6.02×10²³
Atoms of zinc = 391.6 ×10²³
The number of atoms present in the given mass of Zinc that is 65.0gm is [tex]5.99\times10^{ 23}[/tex].
Atoms are the basic building blocks of matter. They are the smallest units of an element that retain the chemical properties of that element.
Now, to determine the number of atoms in a given number of moles, we can use Avogadro's number, which is approximately [tex]6.022 \times10^{23}[/tex]atoms per mole.
First, we calculate the number of moles of zinc in 65.0g by dividing the given mass by the molar mass of zinc. The molar mass of zinc (Zn) is 65.38 g/mol.
Number of moles = Mass / Molar mass
Number of moles = 65.0g / 65.38 g/mol ≈ 0.9942 mol
Next, multiply the number of moles by Avogadro's number to find the number of atoms.
Number of atoms =[tex]Number of moles \times Avogadro's number[/tex]
Number of atoms = [tex]0.9942[/tex]mol × [tex]6.022 \times10^{23}[/tex] atoms/mol
Therefore, approximately [tex]5.99\times10^{ 23}[/tex] atoms are present in 65.0g of zinc.
Learn more about atoms here:
https://brainly.com/question/1566330
#SPJ2
Write the equations that represent the first and second ionization steps for sulfuric acid (H2SO4) in water.
Answer:
[tex]H_2SO_4(aq)\rightarrow H^+(aq)+HSO_4^-\\\\HSO_4^-(aq)\rightarrow H^+(aq)+SO_4^{2-}rightarrow[/tex]
Explanation:
Hello,
In this case, given that the sulfuric acid is a diprotic acid (two hydrogen ions) we can identify two ionization reactions, the first one, showing up the dissociation of the first hydrogen to yield hydrogen sulfate ions and the second one, showing up the dissociation of the hydrogen sulfate ions to hydrogen ions and sulfate ions by separated as shown below:
[tex]H_2SO_4(aq)\rightarrow H^+(aq)+HSO_4^-\\\\HSO_4^-(aq)\rightarrow H^+(aq)+SO_4^{2-}[/tex]
They are have one-sensed arrow, since sulfuric acid is a strong acid.
Regards.
The equations that represent the first and second ionization steps for sulfuric acid in water are H₂SO₄→HSO₄+H⁺ & HSO₄⁻→SO₄⁻+H⁺ respectively.
What is ionization reaction?Ionization reactions are those reactions in which atom or molecule will convert into ion by bearing a positive or negative charge on itself.
In water in the following way ionization of sulphuric acid takes place:
In the first ionization step one hydrogen atom (H⁺) will loose from the sulphuric acid molecule as:H₂SO₄ → HSO₄⁻ + H⁺
In the second ionization step another hydrogen atom will also loose and we get the sulphate ion (SO₄⁻) and one proton (H⁺) as:HSO₄⁻ → SO₄⁻ + H⁺
Hence, two steps are shown above.
To know more about ionization reaction, visit the below link:
https://brainly.com/question/1445179