why do you like the full moon ?

Answers

Answer 1

Answer:

The Moon brings perspective. Observing the Moon, and I mean really looking – sitting comfortably, or lying down on a patch of grass and letting her light fill your eyes, it's easy to be reminded of how ancient and everlasting the celestial bodies are. When I do this, it always puts my life into perspective.
Answer 2

Answer:

because it look more impressive than empty dark sky .

Why Do You Like The Full Moon ?

Related Questions

You walk into a room and you see 4 chickens on a bed 2 cows on the floor and 2 cats in a chair. How many legs are on the ground? (I know this answer just a riddle to see who knows it) (:

Answers

Answer:

18

Explanation:

I'm pretty sure I got it right

A car hurtles off a cliff and crashes on the canyon floor below. Identify the system in which the net momentum is zero during the crash.

Answers

Solution :

It is given that a car ran off from a cliff and it crashes on canyon floor. Now the system of a car as well as the earth together have a  [tex]\text{ net momentum of zero}[/tex] when the car crashes on the canyon floor, thus reducing the momentum of the car to zero. The earth also stops its upward motion and it also reduces the momentum to zero.

After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by observing an interference pattern from electrons scattering off what

Answers

Answer:

Scattering is an interaction that can happen when a given particle or wave, like an electron, impacts a target or material. Then the electron changes it's original path and leaves some energy in the process. (This is a really simplified explanation of scattering, this is a really complex phenomenon, but let's not dive into that path)

Particularly, Davisson and Germer used a beam of electrons against a target of nickel, and these scattered electrons were detected by a detector. All of that in a vacuum chamber.

Then the correct answer is a nickel target.

"After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by observing an interference pattern from electrons scattering off a nickel target"

Which of the following statements is correct about the magnitude of the static friction force between an object and a surface?

a. Static friction depends on the mass of the object.
b. Static friction depends on the shape of the object.
c. Static friction depends on what the object is made of but not what the surface is made of.
d. None of the above is correct.

Answers

Answer:

Static friction depends on the mass of the object.

Explanation:

Friction is the force between two surfaces in contact. The force of friction between two surfaces in contact depends on;

1) nature of the object and the surface(how rough or smooth the surfaces are)

2)surface area of the object and the surface

3) mass of the object

Since;

F=μmg

Where;

μ= coefficient of static friction

m= mass of the object

g= acceleration due to gravity

Hence, as the mass of the object increases, the magnitude of static friction force between an object and a surface increases and vice versa.

A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?

Answers

Answer:

a n c

Explanation:

The density of blood is 1055 kg/m3 . If the blood at the very top of your head exerts a minimum gauge pressure of 45 mm Hg (6000 Pa), estimate the gauge pressure at your heart in pascals.

Answers

Answer:

   P = 10135.6 Pa

Explanation:

For this exercise we use that the pressure varies with the height

           P = P₀ + ρ g h

where h is the height from the head to the heart, which is approximately

h = 40 cm = 0.40m  and P₀ is the head pressure P₀ = 6000 Pa

          P = 6000 + 1055 9.8 0.40

          P = 6000 + 4135.6

          P = 10135.6 Pa

Traveling waves propagate with a fixed speed usually denoted as v (but sometimes c). The waves are called __________ if their waveform repeats every time interval T.

a. transverse
b. longitudinal
c. periodic
d. sinusoidal

Answers

Answer:

periodic

Explanation:

Question 7 of 10
A railroad freight car with a mass of 32,000 kg is moving at 2.0 m/s when it
runs into an at-rest freight car with a mass of 28,000 kg. The cars lock
together. What is their final velocity?
A.1.1 m/s
B. 2.2 m/s
C. 60,000 kg•m/s
D. 0.5 m/s

Answers

Answer:

a

Explanation:

you take 32,000kg ÷2.0m

ASK YOUR TEACHER A 2.0-kg mass swings at the end of a light string with the length of 3.0 m. Its speed at the lowest point on its circular path is 6.0 m/s. What is its kinetic energy at an instant when the string makes an angle of 50 degree with the vertical

Answers

Answer:

  K_b = 78 J

Explanation:

For this exercise we can use the conservation of energy relations

starting point. Lowest of the trajectory

        Em₀ = K = ½ mv²

final point. When it is at tea = 50º

        Em_f = K + U

        Em_f = ½ m v_b² + m g h

where h is the height from the lowest point

        h = L - L cos 50

        Em_f = ½ m v_b² + mg L (1 - cos50)

energy be conserve

        Em₀ = Em_f

         ½ mv² = ½ m v_b² + mg L (1 - cos50)

         K_b = ½ m v_b² + mg L (1 - cos50)

let's calculate

          K_b = ½ 2.0 6.0² + 2.0 9.8 6.0 (1 - cos50)

          K_b = 36 +42.0

          K_b = 78 J

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.71 s. He breaks the tackle and runs straight forward another 24.0 m in 5.20 s. Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)

Answers

Answer:

Average Velocity = 3.63 m/s

Explanation:

First, we will calculate the total displacement of the quarterback, taking forward direction as positive:

Total Displacement = 15 m - 3 m + 24 m = 36 m

Now, we will calculate the total time taken for this displacement:

Total Time = 3 s + 1.71 s + 5.2 s = 9.91 s

Therefore, the average velocity will be:

[tex]Average\ Velocity = \frac{Total\ Displacement}{Total\ Time}\\\\Average\ Velocity = \frac{36\ m}{9.91\ s}[/tex]

Average Velocity = 3.63 m/s

2.
Select the correct answer.
Erica is working in the lab. She wants to remove the fine dust particles suspended in a sample of oil. Which method is she most likely to use?

Answers

Answer:

Reverse Osmosis

Explanation:

Reverse osmosis is a type of filtration that involves passing a solvent through a semipermeable membrane in the opposite direction that natural osmosis does. Separation is always enforced through the use of pressure in this process. Ions, fine dust particles, molecules, and larger particles are typically removed from solvents using this method. The technique is particularly popular in the treatment and purification of water.

Answer:

filtration is used to separate

A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.

Answers

Answer:

The frequency of the second wave is half of the frequency of first one.

Explanation:

The wavelength of the second wave is double is the first wave.

As we know that the frequency is inversely proportional to the wavelength of the velocity is same.

velocity = frequency x wavelength

So, the ratio of frequency of second wave to the first wave is

[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]

The frequency of the second wave is half of the frequency of first one.

a girl is moving with a uniform velocity of 1.5 m/s then mathematically find her acceleration​

Answers

Answer:

0

Explanation:

a = dv/dt

if v is constant than the slope of the v graph will be 0, so dv/dt is 0

a= 0

The slope of a d vs t graph represents velocity. Describe 3 ways you know this to be true.

Answers

Answer:

Look at explanation

Explanation:

I only know 1 way, there is another way you can rephrase this using derivatives but that's pretty much the same thing.

The slope is calculated by Δy/Δx so the slope of distance vs time graph is Δd/Δt which is the velocity

It takes 130 J of work to compress a certain spring 0.10m. (a) What is the force constant of this spring? (b) To compress the spring an additional 0.10 m, does it take 130 J, more than 130 J or less than 130 J? Verify your answer with a calculation.

Answers

Explanation:

Given that,

Work done to stretch the spring, W = 130 J

Distance, x = 0.1 m

(a) We know that work done in stretching the spring is as follows :

[tex]W=\dfrac{1}{2}kx^2\\\\k=\dfrac{2W}{x^2}\\\\k=\dfrac{2\times 130}{(0.1)^2}\\\\k=26000\ N/m[/tex]

(b) If additional distance is 0.1 m i.e. x = 0.1 + 0.1 = 0.2 m

So,

[tex]W=\dfrac{1}{2}kx^2\\\\W=\dfrac{1}{2}\times 26000\times 0.2^2\\\\W=520\ J[/tex]

So, the new work is more than 130 J.

A cylindrical disk of wood weighing 45.0 N and having a diameter of 30.0 cm floats on a cylinder of oil of density 0.850 g>cm3 (Fig. E12.19). The cylinder of oil is 75.0 cm deep and has a diameter the same as that of the wood. (a) What is the gauge pressure at the top of the oil column

Answers

Answer:

665.25 Pa

Explanation:

Given data :

Weight of the disk, w = 45 N

Diameter, d = 30 cm

                    = 0.30 m

Therefore, radius of the disk,

[tex]$r=\frac{d}{2}$[/tex]

[tex]$r=\frac{0.30}{2}$[/tex]

   = 0.15 m

Now, area of the cylindrical disk,

[tex]$A=\pi r^2$[/tex]

[tex]$A=3.14 \times (0.15)^2$[/tex]

   [tex]$=0.07065 \ m^2$[/tex]

∴ The gauge pressure at the top of the oil column is :

   [tex]$p=\frac{w}{A}$[/tex]

   [tex]$p=\frac{47}{0.07065}$[/tex]

      = 665.25 Pa

Therefore, the gauge pressure is 665.25 Pa.

The definition of pressure allows to find the result for the pressure at the top of the oil cylinder is:

The pressure is: P = 636.6 Pa

The pressure is defined by the relationship between perpendicular force and area.

          [tex]P = \frac{F}{A}[/tex]

where P is pressure, F is force, and A is area.

They indicate that the wooden cylinder weighs W = 45.0 N and has a diameter of d = 30 cm = 0.30 m.

The area is:

        A = π r² = [tex]\pi \frac{d^2}{4}[/tex]  

In the attachment we see a diagram of the forces, where the weight of the cylinder and the thrust are equal.

         B-W = 0

          B = W

The force applied to the liquid is the weights of the cylinder. Let's replace.

          [tex]P= \frac{W}{A} \\P = W \frac{4}{\pi d^2 }[/tex]  

Let's calculate.

          [tex]P = \frac{45 \ 4 }{\pi \ 0.30^2 }[/tex] P = 45 4 / pi 0.30²

          P = 636.6 Pa

In conclusion using the definition of pressure we can find the result for the pressure at the top of the oil cylinder is:

The pressure is: P = 636.6 Pa.

Learn more about pressure here: brainly.com/question/17467912

how can scientific method solve real world problems examples

Answers

The scientific method is nothing more than a process for discovering answers. While the name refers to “science,” this method of problem solving can be used for any type of problem

A uniform horizontal bar of mass m1 and length L is supported by two identical massless strings. String A Both strings are vertical. String A is attached at a distance d

Answers

Answer:

a)  T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex] ,  b) T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]

c)  x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex],  d)  m₂ = m₁  ( [tex]\frac{ L}{2d} -1[/tex])

Explanation:

After carefully reading your long sentence, I understand your exercise. In the attachment is a diagram of the assembly described. This is a balancing act

a) The tension of string A is requested

The expression for the rotational equilibrium taking the ends of the bar as the turning point, the counterclockwise rotations are positive

      ∑ τ = 0

      T_A d - W₂ x -W₁ L/2 = 0

      T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]

b) the tension in string B

we write the expression of the translational equilibrium

       ∑ F = 0

       T_A - W₂ - W₁ - T_B = 0

       T_B = T_A -W₂ - W₁

       T_ B =   [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]  - g m₂ - g m₁

       T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]

c) The minimum value of x for the system to remain stable, we use the expression for the endowment equilibrium, for this case the axis of rotation is the support point of the chord A, for which we will write the equation for this system

         T_A 0 + W₂ (d-x) - W₁ (L / 2-d) - T_B d = 0

at the point that begins to rotate T_B = 0

          g m₂ (d -x) -  g m₁  (0.5 L -d) + 0 = 0

          m₂ (d-x) = m₁ (0.5 L- d)

          m₂ x = m₂ d - m₁ (0.5 L- d)

          x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex]

 

d) The mass of the block for which it is always in equilibrium

this is the mass for which x = 0

           0 = d - \frac{m_1}{m_2} \  \frac{L}{2d}

         [tex]\frac{m_1}{m_2} \ (0.5L -d) = d[/tex]

          [tex]\frac{m_1}{m_2} = \frac{ d}{0.5L-d}[/tex]

          m₂ = m₁  [tex]\frac{0.5 L -d}{d}[/tex]

          m₂ = m₁  ( [tex]\frac{ L}{2d} -1[/tex])

During the same Olympics, Bolt also set the world record in the 200-m dash with a time of 19.30 s. Using the same assumptions as for the 100-m dash, what was his maximum speed for this race

Answers

Answer:

The maximum speed of Bolt for the 100 m race is 14.66 m/s

Explanation:

Given;

initial distance covered by Bolt, d = 200 m

time of this motion, t = 19.3 s

The second distance covered by Bolt, = 100 m

Assuming Bolt maintained the same acceleration for both races.

His acceleration can be determined from the 200 m race.

d = ut + ¹/₂at²

where;

u is his initial velocity = 0

d =  ¹/₂at²

[tex]at^2 = 2d\\\\a = \frac{2d}{t^2} \\\\a = \frac{2\times 200}{19.3^2} \\\\a = 1.074 \ m/s^2[/tex]

Let the final or maximum velocity for the 100 m race = v

v² = u² + 2ad₂

v² =  2 x 1.074 x 100

v² = 214.8

v = √214.8

v = 14.66 m/s

The maximum speed of Bolt for the 100 m race is 14.66 m/s

3. You have a variable-voltage power supply and a capacitor in the form of two metal disks of radius 0.6 m, held a distance of 1 mm apart. What is the largest voltage you can apply to the capacitor without the air becoming highly conductive

Answers

Answer:

The breakdown of air occurs at a maximum voltage of 3kV/mm.

Explanation:

The breakdown of air occurs at a maximum voltage of 3kV/mm.

At this level of voltage the air between the plates become highly ionised and breakdown occurs. Since, the distance held between the plates is 1mm , it can withstand a maximum voltage of 3 kV.

After this voltage the air will become conductive in nature and will form ions in the air between the plates and ultimately breakdown will take place with a flash.

A 1.40-kg block is on a frictionless, 30 ∘ inclined plane. The block is attached to a spring (k = 40.0 N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.60 m/s .
How far does it drop before coming to rest? (Assume the spring is unlimited in how far it can stretch.)
Express your answer using two significant figures.

Answers

Answer:

0.5

Explanation:

because the block is attached to the pulley of the string

A 0.500-kg block slides up a plane inclined at a 30° angle. If it slides 1.50 m before coming to rest while encountering a frictional force of 2 N, find (a) its acceleration, and (b) its initial velocity.

Answers

B it’s Intail velocity

1. A 20.0 N force directed 20.0° above the horizontal is applied to a 6.00 kg crate that is traveling on a horizontal
surface. What is the magnitude of the normal force exerted by the surface on the crate?

Answers

N = 52.0 N

Explanation:

Given: [tex]F_a= 20.0\:\text{N}=\:\text{applied\:force}[/tex]

[tex]m=6.00\:\text{kg}[/tex]

[tex]N = \text{normal force}[/tex]

The net force [tex]F_{net}[/tex] is given by

[tex]F_{net} = N + F_a\sin 20 - mg=0[/tex]

Solving for N, we get

[tex]N = mg - F_a\sin 20[/tex]

[tex]\:\:\:\:\:\:= (6.00\:\text{kg})(9.8\:\text{m/s}^2) - (20.0\:\text{N}\sin 20)[/tex]

[tex]\:\:\:\:\:\:= 52.0\:\text{N}[/tex]

If a bale of hay behind the target exerts a constant friction force, how much farther will your arrow burry itself into the hay than the arrow from the younger shooter

Answers

Answer:

The arrow will bury itself farther by 3S₁

Explanation:

lets assume; the Arrow shot by me has a speed twice the speed of the arrow fired by the younger shooter

Given that ; acceleration is constant , Frictional force is constant

                    A₂ =   A₁

Vf²₂ - Vi²₂ / 2s₂  = Vf₁² - Vi₁² / 2s₁ ---- ( 1 )

final velocities = 0

Initial velocities : Vi₂ = 2(Vi₁ )

Back to equation 1

0 - (2Vi₁ )² / 2s₂ =  0 - Vi₁² / 2s₁

hence :

s₂ = 4s₁

hence the Arrow shot by me will burry itself farther by :

s₂ - s₁ = 3s₁

Note :  S1 = distance travelled by the arrow shot by the younger shooter

uppose that 3 J of work is needed to stretch a spring from its natural length of 32 cm to a length of 49 cm. (a) How much work (in J) is needed to stretch the spring from 37 cm to 45 cm

Answers

Answer:

0.113 J

Explanation:

Applying,

w = ke²/2................. Equation 1

Where w = workdone in stretching the spring, k = spring constant, e = extension

make k the subject of the equation

k = 2w/e²................ Equation 2

From the question,

Given: w = 3 J, e = 49-32 = 17 cm = 0.17 m

Substitute these values into equation 2

k = (2×3)/0.17²

k = 6/0.17

k = 35.29 N/m

(a) if the spring from 37 cm to 45 cm,

Then,

w = ke²/2

Given: e = 45-37 = 8 cm = 0.08

w = 35.29(0.08²)/2

w = 0.113 J

A wheel rotates about a fixed axis with an initial angular velocity of 13 rad/s. During a 8-s interval the angular velocity increases to 57 rad/s. Assume that the angular acceleration was constant during this time interval. How many revolutions does the wheel turn through during this time interval

Answers

Answer:

The number of revolutions is 44.6.

Explanation:

We can find the revolutions of the wheel with the following equation:

[tex]\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}[/tex]

Where:

[tex]\omega_{0}[/tex]: is the initial angular velocity = 13 rad/s              

t: is the time = 8 s

α: is the angular acceleration

We can find the angular acceleration with the initial and final angular velocities:

[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]

Where:

[tex] \omega_{f} [/tex]: is the final angular velocity = 57 rad/s

[tex] \alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2} [/tex]

Hence, the number of revolutions is:

[tex] \theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev [/tex]

Therefore, the number of revolutions is 44.6.

       

I hope it helps you!

No esporte coletivo, um dos principais fatores desenvolvidos é o desenvolvimento social. Qual desses não faz parte das virtudes ensinadas no esporte?

Companheirismo
Humildade
Ser justo (Fair Play)
Vencer independente do que precise ser feito

Answers

Answer:

fair palybtgshsisuehdh

A nerve impulse travels along a myelinated neuron at 90.1 m/s.
What is this speed in mi/h?

Answers

Answer:

201.5537 mph

Explanation:

Given the following data;

Speed = 90.1 m/s

Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.

Mathematically, speed is given by the formula;

Speed = distance/time

To convert this value into miles per hour;

Conversion;

1 meter = 0.000621 mile

90.1 meters = 90.1 * 0.000621 = 0.05595 miles

1 metre per second = 2.237 miles per hour

90.1 meters per seconds = 90.1 * 2.237 = 201.5537 miles per hour

90.1 m/s = 201.5537 mph

two identical eggs are dropped from the same height. The first eggs lands on a dish and breaks, while the second lands on a pillow and does not break. Which quantities are the same in both situations

Answers

Answer:

The height is the same

Explanation:

Because they were at the same height but they fell at different velocities

Two pistons are connected to a fluid-filled reservoir. The first piston has an area of 3.002 cm2, and the second has an area of 315 cm2. If the first cylinder is pressed inward with a force of 50.0 N, what is the force that the fluid in the reservoir exerts on the second cylinder?​

Answers

Answer:

The force on the second piston is 5246.5 N .

Explanation:

Area of first piston, a = 3.002 cm^2

Area of second piston, A = 315 cm^2

Force on first piston, f = 50 N

let the force of the second piston is F.

According to the Pascal's law

[tex]\frac{f}{a} = \frac{F}{A}\\\\\frac{50}{3.002}=\frac{F}{315}\\\\F = 5246.5 N[/tex]

Other Questions
Which classification best represents a triangle with side lengths 6 cm, 10 cm, and 12 cm?acute, because 62 + 102 < 122acute, because 6 + 10 > 12obtuse, because 62 + 102 < 122obtuse, because 6 + 10 > 12 The risk-free rate of return is currently 3 percent, whereas the market risk premium is 6 percent. If the beta of Lenz, Inc., stock is 1.8, then what is the expected return on Lenz When the United States entered World War II in Europe, where were American forces first sent on a major offensive?Question 9 options:A) North AfricaB) Eastern EuropeC) Northern EuropeD) South America Na3N decomposes to form sodium and nitrogen gas at STP. If 13.7 L of nitrogen is producedhow many moles of Na3N was used? (22.4 L = 1 mole of any gas)2Na3N --> 6Na + N2 If the signal is going through a 2 MHz Bandwidth Channel, what will be the maximum bit rate that can be achieved in this channel? What will be the appropriate signal level? What set of transformations are applied to parallelogram ABCD to create A'B'C'D'?Parallelogram formed by ordered pairs A at negative 4, 1, B at negative 3, 2, C at negative 1, 2, D at negative 2, 1. Second parallelogram transformed formed by ordered pairs A prime at negative 4, negative 1, B prime at negative 3, negative 2, C prime at negative 1, negative 2, D prime at negative 2, negative 1. Reflected over the x-axis and rotated 180 Reflected over the y-axis and rotated 180 Reflected over the x-axis and rotated 90 counterclockwise Reflected over the y-axis and rotated 9 In the 1788 reading by Patrick Henry, he asserts that the foundation of America wasA. Free market economyB. Geographic Expansion C. Freedom of religion D. Individual liberty In normal DNA,what controls the growth rate of cells?a) Tumor suppressor genesb) NeoplasmsC) Oncogenesd) Repair genes A fallacy that makes a claim that is supported with only one or two weak examples iscalled straw man.TrueFalse Blank DVD's are sold in packages of 50 for $17.95 if your company will need 2700 blank divide these next year how much money must your budget for blank dvd's given the figure below, what is the value of x? f Write any functions of collenchyma tissue Which is a tool that you can use to write a gripping concluding statement?A. You can use a challenging quotation.B. You can sum up your key points.C. You can restate your thesis statement.D. You can add a new twist to your main idea. education in city is better than town a number decreased by 22% is 117. What is the number? Click to review the online content. Then answer the question(s) below, using complete sentences. ScrollOnline Content: Site 1Describe the importance of the clay sculpture when creating bronze sculptures. (Site 1) x + 3 = 5. Find the value of x. Find (f9)(x). A.B.C.D. CAN SOMEONE HELP ME ASAP!!! Name the type of classifications of tissue formed by combination of cell.a) Red Blood Cell:b) Muscle Cell:c) Nerve Cell: