would someone help me out with this question? I got it wrong the first time but I don't understand how.
Answers:
Choice 2) Angle ABC is bisected by ray BD.
Choice 3) BC = 1/2 AC
Choice 5) 2*(angle DBC) = angle ABC
================================================
Explanation:
Since B is the midpoint of AC, this means that AC is cut in half to form the smaller equal pieces AB and BC
We can then say
AB+BC = AC
BC+BC = AC
2BC = AC
BC = (1/2)*AC
which shows why choice 3 is one of the answers
----------------------
Angle ABD is shown to be 90 degrees. Let's say we didn't know angle DBC is also 90. Lets call it x
(angle ABD) + (angle DBC) = 180
90 + x = 180
x = 180 - 90
x = 90
So angle DBC is also 90.
We can see that the 180 degree angle (ABC) is cut in half into two smaller 90 degree angles (ABD and DBC). Therefore, angle ABC has been cut in half and that's why choice 2 is another answer.
------------------------
Using the angle addition postulate, we know that,
(angle ABD) + (angle DBC) = angle ABC
(angle DBC) + (angle DBC) = angle ABC
2*(angle DBC) = angle ABC
Showing why choice 5 is the third answer.
------------------------
Choice 1 isn't true since ray BD helps form angle DBC.
Choice 4 isn't true because there isn't a tickmark on segment BD to indicate it's the same length as BC.
What are the domain and range of the function represented by the set of
ordered pairs?
{(-16, 0), (-8, -11), (0, 12), (12,4)}
Answer:
domain:-16,-8,0,12
range:0,-11,12,14
Identify the domain of the function shown in the graph.
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
Answer:
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
The null and alternative hypothesis would be: H 0 : μ M = μ F H 1 : μ M < μ F H 0 : μ M = μ F H 1 : μ M > μ F H 0 : p M = p F H 1 : p M ≠ p F H 0 : p M = p F H 1 : p M < p F H 0 : p M = p F H 1 : p M > p F H 0 : μ M = μ F H 1 : μ M ≠ μ F
The test is:
right-tailed
left-tailed
two-tailed
Based on a sample of 40 men, 25%Based on a sample of 40 men, 25% owned cats
Based on a sample of 40 women, 40% owned cats
The test statistic is:
The p-value is:
Based on this we:
Reject the null hypothesis
Fail to reject the null hypothesis
Your money grows at a rate of 8% a year if you originally invest $2,000 what is the function that represents your money after t years
Answer:
2000*(1.08)^t where t is years after deposit
Step-by-step explanation:
Solve algebraically.
6(t-2) + 15t < 5(5 + 3t)
With work shown please!!
Step-by-step explanation:
6t-12+15t | 25+15t
21t-12 | 25+15t
21t-12 < 25+15t
hence proved..
Answer:
21t - 12 < 25 + 15t
Step-by-step explanation:
6( t - 2 ) + 15t < 5 ( 5 + 3t )
Distribute .6t - 12 + 15t < 25 + 15t
Combine like terms.21t - 12 < 25 + 15t.
Hence , Proved.
the cost of 7 shirts is $63. find the cost of 5 shirts
1. $35
2. $45
3. $52
4. $70
Find the values of X and Y that makes these triangles congruent by the HL theorem
Answer:
C. x = 3, y = 2
Step-by-step explanation:
If both triangles are congruent by the HL Theorem, then their hypotenuse and a corresponding leg would be equal to each other.
Thus:
x + 3 = 3y (eqn. 1) => equal hypotenuse
Also,
x = y + 1 (eqn. 2) => equal legs
✔️Substitute x = y + 1 into eqn. 1 to find y.
x + 3 = 3y (eqn. 1)
(y + 1) + 3 = 3y
y + 1 + 3 = 3y
y + 4 = 3y
y + 4 - y = 3y - y
4 = 2y
Divide both sides by 2
4/2 = 2y/2
2 = y
y = 2
✔️ Substitute y = 2 into eqn. 2 to find x.
x = y + 1 (eqn. 2)
x = 2 + 1
x = 3
How do I do this equation
This question requires the manipulation of the Ideal Gas formula. By moving the variables around, you'll get :
V = nRT/P
n = PV/RT
I need help with this question
9514 1404 393
Answer:
x = 22, y = 123
Step-by-step explanation:
The sum of angles in a triangle is 180°.
(2x +13)° +57° +3x° = 180°
5x +70 = 180 . . . . . . . . . . . . . collect terms, divde by °
5x = 110 . . . . . . . . . . . subtract 70
x = 22 . . . . . . . . divide by 5
__
Angles in a linear pair are supplementary.
y° + 57° = 180°
y = 123 . . . . . . . . divide by °, subtract 57
PLEASE HELP!!! WILL GIVE BRAINLIEST!!!!!!
Answer:
78.93 yan ats yung sagot hula ko
Answer:
it is 78.93 yun
hope this will help you
A salesman receives a salary of RM 2000 per month. He wis receive a commission of RM 800 for each car he sells. If he sells n cars in a particular month,
a. Find his monthly salary when n = 18.
b. Express his salary in terms of n.
Answer:
a) month salary = RM(18×800+2000)
= RM 16400
b) his salary = RM(800n+2000)
Hope it helps
Adult men have heights with a mean of 69.0 inches and a standard deviation of 2.8 inches. Find the z-score of a man 71.2 inches tall. (to 2 decimal places)
Answer:
0.7857
Step-by-step explanation:
Given :
Mean = 69 inches
Standard deviation, = 2.8 inches
The Zscore of a man who is 71.2 inches
The ZSCORE is obtained using the relation :
Zscore = (Score, x - mean) / standard deviation
Zscore = (71.2 - 69) / 2.8
Zscore = 2.2 / 2.8
Zscore = 0.7857
A flight leaves the airport at 22:00 hours. It is an 11 hours and 45 minutes flight. There is a 2-hour time difference. What time will they arrive at their destination, assuming the time difference is 2 hours ahead
Answer:
It's on the next day at 11.45am
Step-by-step explanation:
I hope it helps
Based on the time the plane left, the length of the flight, and the time difference, the plane will arrive at 11 : 45 am the next day.
Because the time is 2 hours ahead, adjust the departure time by 2 hours:
= 22:00 + 2
= 00:00
With the plane leaving by 12 am, the time of arrival is:
= 00:00 + 11 hours 45 mins
= 11 : 45 am
In conclusion, the plane will arrive at 11:45 am.
Find out more at https://brainly.com/question/25150454.
Find a power series representation for the function. (Assume a>0. Give your power series representation centered at x=0 .)
f(x)=x2a7−x7
Answer:
Step-by-step explanation:
Given that:
[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]
[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]
[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]
since [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]
Then, it implies that:
[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]
[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]
A trucking company buys 25,275 gallons of gasoline. The federal excise tax is $0.195 per gallon. Find the amount of excise tax due. (Round your answer to the nearest cent if necessary)
Answer: 5,055
Step-by-step explanation
multiply the amount of gallons purchased by tax and round up
$4928.625 is the answer.
An Excise tax is an indirect tax, usually paid by the manufacturer or retailer of the product. then passes along in the price of the product to the consumer.
Amount of gasoline = 25,375 gallons.
The Excise tax = $0-195/gallon.
The amount of Excise tax dece = 25.875 X $0.195
= $4928.625
Se the amount of Excise tax due for 25975 gallons of gasoline is $ 4928.625
what is Excise tax?Excise tax is generally a tax levied on the sale of a particular good or service or for a particular purpose. State excise taxes are usually levied on the sale of gasoline, air tickets, heavy trucks, road tractors, tanning beds, tires, cigarettes, and other goods and services.
Excise can be used to charge prices for externalities or to discourage the consumption of goods by others. They can also be used as royalties to generate income from people who use certain government services. Income should be used to maintain those government services.
Learn more about excise tax here:https://brainly.com/question/2871942
#SPJ2
Use a Maclaurin series to obtain the Maclaurin series for the given function.
f(x)= 14x cos(1/15x^2)
Answer:
[tex]14x cos(\frac{1}{15}x^{2})=14 \sum _{k=0} ^{\infty} \frac{(-1)^{k}x^{4k+1}}{(2k)!15^{2k}}[/tex]
Step-by-step explanation:
In order to find this Maclaurin series, we can start by using a known Maclaurin series and modify it according to our function. A pretty regular Maclaurin series is the cos series, where:
[tex]cos(x)=\sum _{k=0} ^{\infty} \frac{(-1)^{k}x^{2k}}{(2k)!}[/tex]
So all we need to do is include the additional modifications to the series, for example, the angle of our current function is: [tex]\frac{1}{15}x^{2}[/tex] so for
[tex]cos(\frac{1}{15}x^{2})[/tex]
the modified series will look like this:
[tex]cos(\frac{1}{15}x^{2})=\sum _{k=0} ^{\infty} \frac{(-1)^{k}(\frac{1}{15}x^{2})^{2k}}{(2k)!}[/tex]
So we can use some algebra to simplify the series:
[tex]cos(\frac{1}{15}x^{2})=\sum _{k=0} ^{\infty} \frac{(-1)^{k}(\frac{1}{15^{2k}}x^{4k})}{(2k)!}[/tex]
which can be rewritten like this:
[tex]cos(\frac{1}{15}x^{2})=\sum _{k=0} ^{\infty} \frac{(-1)^{k}x^{4k}}{(2k)!15^{2k}}[/tex]
So finally, we can multiply a 14x to the series so we get:
[tex]14xcos(\frac{1}{15}x^{2})=14x\sum _{k=0} ^{\infty} \frac{(-1)^{k}x^{4k}}{(2k)!15^{2k}}[/tex]
We can input the x into the series by using power rules so we get:
[tex]14xcos(\frac{1}{15}x^{2})=14\sum _{k=0} ^{\infty} \frac{(-1)^{k}x^{4k+1}}{(2k)!15^{2k}}[/tex]
And that will be our answer.
Which System of inequalities has this graph as its solution?
A. y<2x-3
y<1/3x+4
B. y>2x-3
y>1/3x+4
C. y>2x-3
y<1/3x+4
D. y<2x-3
y>1/3x+4
Answer: B
Step-by-step explanation:
The line [tex]y=2x+3[/tex] is dotted and shaded above.
Eliminate A and D.Similarly, the line [tex]y=\frac{1}{3}x+4[/tex] is also shaded above.
Eliminate C.This leaves B as the correct answer.
Graph 9x + 15y = 15.
If p = 7, q = 2, r = 4; find the value of q (5p - r).
Answer: 62
Step-by-step explanation:
Given
p = 7, q = 2, r = 4
Solve
q ( 5p - r )
Substitute
(2) (5(7) - (4))
Simplify
(2) (35 - 4)
(2) (31)
62
Hope this helps!! :)
Please let me know if you have any questions
Lightbulbs. A company produces lightbulbs. We know that the lifetimes (in hours) of lightbulbs follow a bell-shaped (symmetric and unimodal) distribution with a mean of 7,161 hours and a standard deviation of 564 hours. Use the Empirical Rule (68-95-99.7 rule) to answer the following question: The shortest lived 2.5% of the lightbulbs burn out before how many hours
Answer:
Please find the complete question and its solution in the attached file.
Step-by-step explanation:
Shortest had survived after 6741 hours [tex]2.5\%[/tex] of the lights burnt.
[tex]\to 0.15\% + 2.35\% = 2.50\%[/tex]
Simplify -|-5 + 2|
someone help quick
Answer:
-3
Step-by-step explanation:
I want my answer please help
Answer:
This is pretty simple
Step-by-step explanation:
So the only thing you need to know about negatives and positives is that if your multiplying or dividing a number with 1 negative in the expreession/equation The answer will always result in a negative. If its 2 negatives its always positive. Thats all you need to know and then just solve it from there.
Answer:
See explanation and picture below.
Step-by-step explanation:
In both multiplication and division of 2 numbers, different signs give you negative and equal signs give you positive.
In other words, positive & positive or negative and negative give you a positive answer.
Negative and positive or positive and negative give you negative answer.
A researcher believes that 9% of males smoke cigarettes. If the researcher is correct, what is the probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%
Answer:
0.0070 = 0.70% probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A researcher believes that 9% of males smoke cigarettes.
This means that [tex]p = 0.09[/tex]
Sample of 664
This means that [tex]n = 664[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{664}} = 0.011[/tex]
What is the probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%?
Proportion below 9 - 3 = 6% or above 9 + 3 = 12%. Since the normal distribution is symmetric, these probabilities are equal, so we find one of them and multiply by 2.
Probability the proportion is below 6%
P-value of Z when X = 0.06. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.011}[/tex]
[tex]Z = -2.7[/tex]
[tex]Z = -2.7[/tex] has a p-value of 0.0035
2*0.0035 = 0.0070
0.0070 = 0.70% probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%
Find the number of integers n that satisfy n^2 < 100.
Answer:
n=-9,-8,-7
Step-by-step explanation:
n<100
but that is the positive square root
\(-10 n is between the negative and positive square root of 100
thus, n=-9,-8,-7
The solution of the inequality n² < 100 will be less than 10.
What is inequality?Inequality is defined as an equation that does not contain an equal sign. Inequality is a term that describes a statement's relative size and can be used to compare these two claims.
The definition of simplicity is making something simpler to achieve or grasp while also making it a little less difficult.
The inequality is given below.
n² < 100
Simplify the equation, then we have
n² < 100
n² < 10²
n < 10
The solution of the inequality n² < 100 will be less than 10.
More about the inequality link is given below.
https://brainly.com/question/19491153
#SPJ2
Side CA of the right triangle CAT is 3cm long. The hypotenuse is 5cm long. How many
square centimeters is the area of CAT?
Answer:
8
Step-by-step explanation:
By taking the number "3" and plus together with the number 5
I need help with this
Answer:
156 degrees
Step-by-step explanation:
Bisects meand to cut into two equal halves.
That means 4x-2=3x+18.
Subtracting 3x on both sides gives x-2=18
Adding 2 on both sides gives x=20
If x=20, then 4x-2 equals 4(20)-2=78.
The other half is also 78 since the two angles were comgruent.
The whole angle is 78+78=156.
The solution set of the inequality 1 + 2y
Answer:
is it four I am not quite sure
Complete the angle addition postulate for the following angle
Answer:
measurement m<GEM+m<MEO=m<GEO
A telephone exchange operator assumes that 7% of the phone calls are wrong numbers. If the operator is accurate, what is the probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%
Answer:
0.0118 = 1.18% probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A telephone exchange operator assumes that 7% of the phone calls are wrong numbers.
This means that [tex]p = 0.07[/tex]
Sample of 459 phone calls:
This means that [tex]n = 459[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.07[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\sqrt{\frac{0.07*0.93}{459}}} = 0.0119[/tex]
What is the probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%?
Proportion below 0.07 - 0.03 = 0.04 or above 0.07 + 0.03 = 0.1. Since the normal distribution is symmetric, these probabilities are the same, which means that we find one of them and multiply by 2.
Probability the proportion is below 0.04.
p-value of Z when X = 0.04. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.04 - 0.07}{0.0119}[/tex]
[tex]Z = -2.52[/tex]
[tex]Z = -2.52[/tex] has a p-value of 0.0059
2*0.0059 = 0.0118
0.0118 = 1.18% probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%