Using the concept of parabola, the quadratic inequality represented by the graph can be written as:
y = x² -2x +2.
Define parabola?An equation of a curve that has a point on it that is equally spaced from a fixed point and a fixed line is referred to as a parabola.
The parabola's fixed point is referred to as the focus, and its fixed line is referred to as the directrix.
The general equation for a parabola is given as:
y = a(x-h) ² + k
Now here we have:
(x,y) = (2,5)
(h,k) = (1,1)
Putting these values in the equation,
5 = a (2-1) ² + 1
a = 5-1
=4
Substituting the values:
y = (x-1) + 1
y = x² -2x +2
Therefore, the quadratic inequality can be written as: y = x² -2x +2.
To know more about parabola, visit:
https://brainly.com/question/4074088
#SPJ1
Question 13 (2 points)
Suppose you flip a coin and then roll a die. You record your result. What is the
probability you flip heads or roll a 3?
1/2
3/4
7/12
1
Step-by-step explanation:
a probability is always the ratio
desired cases / totally possible cases
we have 2 possible cases for the coin and 6 possible cases for the die.
so, we have 2×6 = 12 combined possible cases :
heads, 1
heads, 2
heads, 3
heads, 4
heads, 5
heads, 6
tails, 1
tails, 2
tails, 3
tails, 4
tails, 5
tails, 6
out of these 12 cases, which ones (how many) are desired ?
all first 6 plus (tails, 3) = 7 cases
so, the correct probability is
7/12
formally that is calculated :
1/2 × 6/6 + 1/2 × 1/6 = 6/12 + 1/12 = 7/12
the probability to get heads combined with the probability to roll anything on the die, plus the probability to get tails combined with the probability to roll 3.
What was your recommended intake of carbohydrates (grams), and how far were you from it? Show the mathActual Intake Recommended Intake Percentage159.00 115-166 100%
The actual intake of carbohydrates is 138% as compare to recommended intake.
Recommended intake of carbohydrates or any other nutrient are,
Based on the information provided,
Consumed 159 grams of carbohydrates,
Recommended intake is between 115 and 166 grams.
Calculate the percentage of actual intake compared to the recommended intake, use the following formula,
Percentage = (Actual Intake / Recommended Intake) x 100%
Substituting the values in the formula we have,
⇒Percentage = (159 / 115) x 100%
⇒Percentage ≈ 138.3%
Therefore, the actual intake of carbohydrates is about 138% of the recommended intake, indicating that consumption of more carbohydrates than recommended.
learn more about carbohydrates here
brainly.com/question/10052351
#SPJ4
During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.
answer options
1. No
2. Yes
From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?
The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.
Step 1:
The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:
P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38
= (38/38) - (26/38) = 12/38 = 0.316
So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.
Step 2:
The average waiting time can be calculated by finding the expected value of the probability density function:
E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt
= [(t²)/(238)] from 0 to 38
= (38²)/(238) = 19
Therefore, the average waiting time is 19 minutes.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
What is the slope of the line in the following graph?
Answer:
1/3
Step-by-step explanation:
using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3
Tell me which brand or which size is a better buy.
Answer:
The answer is brand B
Step-by-step explanation:
You divide $14.88 by 24 which equals 68 cents per item.
Then brand B is 60 cents per item which is the better buy!
What is the end behavior of the polynomial function?
Answer: D. As x → -∞, y → -∞.
Step-by-step explanation:
The graph shows the function approaching negative infinity on the x-axis (left side). When the x-axis is decreasing, the y-axis is also decreasing towards negative infinity.
the c on the left has blank1 - word answer please type your answer to submit electron geometry and a bond angle of
The CH3-CIOI-CNI molecule contains three carbon atoms with different electron geometries and bond angles. The CH3 and CIOI carbon atoms have tetrahedral geometry with a bond angle of approximately 109.5 degrees, while the CNI carbon atom has a trigonal planar geometry with a bond angle of approximately 120 degrees.
Using this Lewis structure, we can determine the electron geometry and bond angle for each carbon atom in the molecule as follows.
The carbon atom in the CH3 group has four electron domains (three bonding pairs and one non-bonding pair). The electron geometry around this carbon atom is tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CIOI group has four electron domains (two bonding pairs and two non-bonding pairs). The electron geometry around this carbon atom is also tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CNI group has three electron domains (one bonding pair and two non-bonding pairs). The electron geometry around this carbon atom is trigonal planar, and the bond angle is approximately 120 degrees.
Therefore, the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI are:
CH3 carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CIOI carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CNI carbon atom trigonal planar geometry, bond angle of approximately 120 degrees
To know more about electron geometry:
https://brainly.com/question/7558603
#SPJ4
_____The given question is incomplete, the complete question is given below:
Determine the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI
Use the power of a power property to simplify the numeric expression.
(91/4)^7/2
Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8
Given the expression
(9¹⁺⁴)⁷⁺²
To simplify this expression using the power of a power property, we need to multiply the exponents:
(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)
Simplifying the exponents in the parentheses:
(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8
Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).
Read more about expression at
https://brainly.com/question/4344214
#SPJ1
are the ratios 2:1 and 20:10 equivalent
Yes, there is an analogous ratio between 2:1 and 20:10.
What ratio is similar to 2 to 1?We just cancel by a common factor. So 4:2=2:1 . The simplest representation of the ratio 4 to 2 is the ratio 2 to 1. Also, since each pair of numbers has the same relationship to one another, the ratios are equivalent.
By dividing the terms of each ratio by their greatest common factor, we may simplify both ratios to explain why.
As the greatest common factor for the ratio 2:1 is 1, additional simplification is not necessary.
The greatest common factor for the ratio 20:10 is 10. When we multiply both terms by 10, we get:
20 ÷ 10 : 10 ÷ 10
= 2 : 1
As a result, both ratios have the same reduced form, 2:1, making them equal.
To know more about ratio visit:-
https://brainly.com/question/13419413
#SPJ1
Give the interval(s) on which the function is continuous.
g(t) = 1/√16-t^2
The function g(t) is defined as:
g(t) = 1/√(16-t^2)
The function is continuous for all values of t that satisfy the following conditions:
The denominator is non-zero:
The denominator of the function is √(16-t^2). Therefore, the function is undefined when 16-t^2 < 0, or when t is outside the interval [-4,4].
There are no vertical asymptotes:
The function does not have any vertical asymptotes, because the denominator is always positive.
Thus, the function g(t) is continuous on the interval [-4,4].
Help me find the value of x
Answer:
x = 30
Step-by-step explanation:
We know
The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.
2x + 3x + 10 = 160
5x + 10 = 160
5x = 150
x = 30
Parts A-D. What is the value of the sample mean as a percent? What is its interpretation? Compute the sample variance and sample standard deviation as a percent as measures of rotelle for the quarterly return for this stock.
The sample mean is 2.1, the sample variance is 212.5% and the standard deviation is 14.57%
What is the sample mean?a. The sample mean can be computed as the average of the quarterly percent total returns:
[tex](11.2 - 20.5 + 13.2 + 12.6 + 9.5 - 5.8 - 17.7 + 14.3) / 8 = 2.1[/tex]
So the sample mean is 2.1%, which can be interpreted as the average quarterly percent total return for the stock over the sample period.
b. The sample variance can be computed using the formula:
[tex]s^2 = sum((x - mean)^2) / (n - 1)[/tex]
where x is each quarterly percent total return, mean is the sample mean, and n is the sample size. Plugging in the values, we get:
[tex]s^2 = (11.2 - 2.1)^2 + (-20.5 - 2.1)^2 + (13.2 - 2.1)^2 + (12.6 - 2.1)^2 + (9.5 - 2.1)^2 + (-5.8 - 2.1)^2 + (-17.7 - 2.1)^2 + (14.3 - 2.1)^2 / (8 - 1) = 212.15[/tex]
So the sample variance is 212.15%. The sample standard deviation can be computed as the square root of the sample variance:
[tex]s = \sqrt(s^2) = \sqrt(212.15) = 14.57[/tex]
So the sample standard deviation is 14.57%.
c. To construct a 95% confidence interval for the population variance, we can use the chi-square distribution with degrees of freedom n - 1 = 7. The upper and lower bounds of the confidence interval can be found using the chi-square distribution table or calculator, as follows:
upper bound = (n - 1) * s^2 / chi-square(0.025, n - 1) = 306.05
lower bound = (n - 1) * s^2 / chi-square(0.975, n - 1) = 91.91
So the 95% confidence interval for the population variance is (91.91, 306.05).
d. To construct a 95% confidence interval for the standard deviation (as percent), we can use the formula:
lower bound = s * √((n - 1) / chi-square(0.975, n - 1))
upper bound = s * √((n - 1) / chi-square(0.025, n - 1))
Plugging in the values, we get:
lower bound = 6.4685%
upper bound = 20.1422%
So the 95% confidence interval for the standard deviation (as percent) is (6.4685%, 20.1422%).
Learn more on sample mean here;
https://brainly.com/question/26941429
#SPJ1
.2 In the diagram below, given that XY = 3cm, XZY = 30° and YZ = x, is it possible to solve for x using the theorem of Pythagoras? Motivate your answer. Show Calculations
Sin 30 =3/x
1/2=3/x
x=6
Due today!! Pls helppp
if we that Abby spent 50% of her time on School, 30% on Work, and 20% on Sleep, we can estimate that she spent:
100% - (50% + 30% + 20%) = 100% - 100% = 0% on Other.
What do you mean by spending?If Abby divided her time into four categories (School, Work, Other, and Sleep), the percentage she spent on Other would be 100% less the sum of the percentages she spent on School, Work, and Sleep.
So, assuming Abby spending 50% of her time at school, 30% at work, and 20% sleeping, we can estimate she spent:
On Other, 100% - (50% + 30% + 20%) = 100% - 100% = 0%.
However, this is just a guess based on assumptions about how Abby spent her time. It's difficult to provide a more accurate estimate without more information.
To know more about spending visit:
brainly.com/question/15587297
#SPJ1
Question 6 of 10
Based only on the information given in the diagram, which congruence
theorems or postulates could be given as reasons why ACDE AOPQ?
Check all that apply.
AA
A. AAS
B. ASA
C. LL
OD. HL
E. LA
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
what is triangle ?Having three straight sides and three angles where they intersect, a triangle is a closed, two-dimensional shape. It is one of the fundamental geometric shapes and has a number of characteristics that can be used to study and resolve issues that pertain to it. The triangle inequality theory states that the sum of a triangle's interior angles is always 180 degrees, and that the longest side is always the side across from the largest angle. Triangles can be used to solve a wide range of mathematical issues in a variety of disciplines and can be categorised based on the length of their sides and the measurement of their angles.
given
We can use the following congruence theories or postulates based on the data in the diagram:
A. ASA
B. AAS
C. LL (corresponding angles hypothesis)
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
Please answer Full question
(1) 4y-7z is a binomial.
(2) 8-xy² is a binomial.
(3) ab-a-b can be written as ab - (a + b) which is a binomial.
(4) z²-3z+8 is a trinomial.
What are monomials, binomials and trinomials?In algebra, monomials, binomials, and trinomials are expressions that contain one, two, and three terms, respectively.
A monomial is an algebraic expression with only one term. A monomial can be a number, a variable, or a product of numbers and variables.
A binomial is an algebraic expression with two terms that are connected by a plus or minus sign. For example, 2x + 3y and 4a - 5b are both binomials.
A trinomial is an algebraic expression with three terms that are connected by plus or minus signs.
Learn more about monomial on;
https://brainly.com/question/29047865
#SPJ1
Classify into monomials, binomials and trinomials.
(1) 4y-7z
(1) 8-xy²
(v) ab-a-b
(ix) z2-3z+8
Two cars, one going due east at the rate of 90 km/hr and the other going to south at the rate of 60 km/hr are traveling toward the intersection of two roads. At what rate the two cars approaching each other at the instant when the first car is 0.2 km and the second car is 0.15 km from the intersection ?
The two cars are approaching each other at a rate of 36 km/hr at the given instant.
We can solve this problem by using the Pythagorean theorem and differentiating with respect to time. Let's call the distance of the first car from the intersection "x" and the distance of the second car from the intersection "y". We want to find the rate at which the two cars are approaching each other, which we'll call "r".
At any moment, the distance between the two cars is the hypotenuse of a right triangle with legs x and y, so we can use the Pythagorean theorem
r^2 = x^2 + y^2
To find the rates of change of x and y, we differentiate both sides of this equation with respect to time
2r(dr/dt) = 2x(dx/dt) + 2y(dy/dt)
Simplifying and plugging in the given values
dr/dt = (x(dx/dt) + y(dy/dt)) / r
dr/dt = (0.2 x 90 + 0.15 x (-60)) / sqrt((0.2)^2 + (0.15)^2)
dr/dt = (18 - 9) / sqrt(0.04 + 0.0225)
dr/dt = 9 / sqrt(0.0625)
dr/dt ≈ 36 km/hr
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4
P, Q, R, S, T and U are different digits.
PQR + STU = 407
Step-by-step explanation:
There are many possible solutions to this problem, but one possible set of values for P, Q, R, S, T, and U is:
P = 2
Q = 5
R = 1
S = 8
T = 9
U = 9
With these values, we have:
PQR = 251
STU = 156
And the sum of PQR and STU is indeed 407.
To the nearest hundredth, what is the volume of the sphere? (Use 3.14 for pie.)
Therefore, the volume of the sphere to the nearest hundredth is 724,775.70 cubic millimeters.
What is volume?Volume is a measurement of the amount of space occupied by a three-dimensional object. It is often expressed in units such as cubic meters (m³), cubic centimeters (cm³), cubic feet (ft³), or gallons (gal), depending on the context. The volume of a solid object can be calculated by multiplying its length, width, and height or using a specific formula depending on the shape of the object. For example, the volume of a rectangular box can be calculated as length x width x height, while the volume of a cylinder can be calculated as π x radius² x height. In general, volume is an important concept in many fields, including physics, chemistry, engineering, and architecture. It is often used to describe the capacity of containers, the displacement of fluids, and the amount of material used in construction or manufacturing.
Here,
The formula for the volume of a sphere is given as V = (4/3)πr³, where r is the radius of the sphere and π is approximately 3.14.
Substituting the given value of the radius, we get:
V = (4/3) x 3.14 x 48³
V ≈ 724,775.68 cubic millimeters
Rounding this value to the nearest hundredth, we get:
V ≈ 724,775.68 ≈ 724,775.70 cubic millimeters (rounded to two decimal places)
To know more about volume,
https://brainly.com/question/12237641
#SPJ1
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (1, 2) such that f'(c)> 0.
How do we know?Applying the Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:
f'(c) = (f(b) - f(a)) / (b - a)
In the scenario above, we have that f is differentiable, and that f(1) < f(2).
choosing a = 1 and b = 2.
Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:
f'(c) = (f(2) - f(1)) / (2 - 1)
f'(c) = f(2) - f(1)
We have that f(1) < f(2), we have:
f(2) - f(1) > 0
We can conclude by saying that there exists a number c in the interval (1, 2) such that:
f'(c) = f(2) - f(1) > 0
Learn more about Mean Value Theorem at: https://brainly.com/question/19052862
#SPJ1
How do you compute the sum of squared errors
Answer:
Relating SSE to Other Statistical Data
Variance = SSE/n, if you are calculating the variance of a full population.Variance = SSE/(n-1), if you are calculating the variance of a sample set of data.
If A B C are three matric such that AB=AC such that A=C then A is
Answer:
invertible
Step-by-step explanation:
If A is invertible then ∣A∣ =0
Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?
There are 92 elements in A but not in B.
What are sets?In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.
Empty or zero quantity:
Items not included. example:
A = {} is a null set.
Finite sets:
The number is limited. example:
A = {1,2,3,4}
Infinite set:
There are myriad elements. example:
A = {x:
x is the set of all integers}
Same sentence:
Two sets with the same members. example:
A = {1,2,5} and B = {2,5,1}:
Set A = Set B
Subset:
A set 'A' is said to be a subset of B if every element of A is also an element of B. example:
If A={1,2} and B={1,2,3,4} then A ⊆ B
Universal set:
A set that consists of all the elements of other sets that exist in the Venn diagram. example:
A={1,2}, B={2,3}, where the universal set is U = {1,2,3}
n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)
Hence, There are 92 elements in A but not in B.
learn more about sets click here:
https://brainly.com/question/13458417
#SPJ1
According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)
The required probability that a household in Maryland with annual income of ,
$90,000 or more is equal to 0.3377.
$50,000 or less is equal to 0.2218.
Annual household income in Maryland follows a normal distribution ,
Median = $75,847
Standard deviation = $33,800
Probability of household in Maryland has an annual income of $90,000 or more.
Let X be the random variable representing the annual household income in Maryland.
Then,
find P(X ≥ $90,000).
Standardize the variable X using the formula,
Z = (X - μ) / σ
where μ is the mean (or median, in this case)
And σ is the standard deviation.
Substituting the given values, we get,
Z = (90,000 - 75,847) / 33,800
⇒ Z = 0.4187
Using a standard normal distribution table
greater than 0.4187 as 0.3377.
P(X ≥ $90,000)
= P(Z ≥ 0.4187)
= 0.3377
Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).
Probability that a household in Maryland has an annual income of $50,000 or less.
P(X ≤ $50,000).
Standardizing X, we get,
Z = (50,000 - 75,847) / 33,800
⇒ Z = -0.7674
Using a standard normal distribution table
Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,
P(X ≤ $50,000)
= P(Z ≤ -0.7674)
= 0.2218
Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.
Therefore, the probability with annual income of $90,000 or more and $50,000 or less is equal to 0.3377 and 0.2218 respectively.
learn more about probability here
brainly.com/question/24111146
#SPJ4
The Nutty Professor sells cashews for $6.80 per pound and Brazil nuts for $4.20 per pound. How much of each type should be used to make a 35 pound mixture that sells for $5.31 per pound?
The Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts tο make a 35 pοund mixture that sells fοr $5.31 per pοund.
Assume the Nutty Prοfessοr makes a 35-pοund mixture with x pοunds οf cashews and (35 - x) pοunds οf Brazil nuts.
The cashews cοst $6.80 per pοund, sο the tοtal cοst οf x pοunds οf cashews is $6.8x dοllars.
Similarly, Brazil nuts cοst $4.20 per pοund, sο (35 - x) pοunds οf Brazil nuts cοst 4.2(35 - x) dοllars.
The tοtal cοst οf the mixture equals the sum οf the cashew and Brazil nut cοsts, which is:
6.8x + 4.2(35 - x) (35 - x)
When we simplify, we get:
6.8x + 147 - 4.2x
2.6x + 147
The mixture sells fοr $5.31 per pοund, sο the tοtal revenue frοm selling 35 pοunds οf the mixture is:
35(5.31) = 185.85
When we divide the tοtal cοst οf the mixture by the tοtal revenue, we get:
2.6x + 147 = 185.85
Subtractiοn οf 147 frοm bοth sides yields:
2.6x = 38.85
When we divide by 2.6, we get:
x ≈ 14.94
Tο make a 35-pοund mixture that sells fοr $5.31 per pοund, the Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts.
To know more pοunds visit:
https://brainly.com/question/29145297
#SPJ1
show that if 16 people are seated in a row of 20 chairs, then some group of 4 consecutive chairs must be occupied.
The process to show that if 16 people are seated in a row of 20 chairs, then some group of 4 consecutive chairs must be occupied is shown below.
We prove this using the Pigeonhole Principle, which states that if n items are placed into m containers, and n > m, then at least one container must contain more than one item.
Let us consider the 16 people seated in a row of 20 chairs. Each person occupies one chair, so there are 20 - 16 = 4 empty chairs in the row.
We assume that empty chairs as containers, and people as items that need to be placed into containers.
Since there are more items (people) than containers (empty chairs), there must be at least one group of 2 or more consecutive empty chairs.
Now, let's consider the complement of this statement: Suppose there are no groups of 4 consecutive chairs that are occupied. Then, each group of 4 consecutive chairs contains at most 3 people.
We partition the row of chairs into groups of 4 consecutive chairs.
So, there are 20 - 3 = 17 such groups. By the statement above, each of these groups contains at most 3 people. Therefore, the total number of people seated in the row is at most 17×3 = 51.
But, we know that there are actually 16 people seated in the row. This is a contradiction, since 51 < 16. Therefore, our assumption that there are no groups of 4 consecutive chairs that are occupied must be false, and we have proved that some group of 4 consecutive chairs must be occupied.
Learn more about Pigeonhole Principle here
https://brainly.com/question/30322724
#SPJ4
state the third congruence statement that is needed to prove that FGH is congruent to LMN using the ASA congruence therom
Answer:
a
Step-by-step explanation:
What gravitational force does the moon produce on the Earth if their centers are 3.88x108 m apart and the moon has a mass of 7.34x1022 kg?
The gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
What is gravitational force?
Gravitational force is the force of attraction that exists between any two objects in the universe with mass. This force is directly proportional to the masses of the objects and inversely proportional to the square of the distance between their centers.
The gravitational force that the moon produces on the Earth can be calculated using the formula:
[tex]F = G \cdot \frac{m_1 \cdot m_2}{r^2}[/tex]
where:
[tex]G$ = gravitational constant = $6.67430 \times 10^{-11}\ \mathrm{N(m/kg)^2}$[/tex]
[tex]m_1$ = mass of the moon = $7.34 \times 10^{22}\ \mathrm{kg}$[/tex]
[tex]m_2$ = mass of the Earth = $5.97 \times 10^{24}\ \mathrm{kg}$ (approximate)[/tex]
[tex]r$ = distance between the centers of the Earth and the moon = $3.88 \times 10^8\ \mathrm{m}$[/tex]
Substituting these values into the formula, we get:
[tex]F &= 6.67430 \times 10^{-11} \cdot \frac{7.34 \times 10^{22} \cdot 5.97 \times 10^{24}}{(3.88 \times 10^8)^2} \&= 1.98 \times 10^{20}\ \mathrm{N}[/tex]
Therefore, the gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
To learn more about gravitational force visit:
https://brainly.com/question/29328661
#SPJ1
A simple random sample with n = 25 provided a sample mean of 30 and a sample standard deviation of 4. Assume the population is approximately normal. a. Develop a 90% confidence interval for the population mean. b. Develop a 95% confidence interval for the population mean. c. Develop a 99% confidence interval for the population mean. d. What happens to the margin of error and the confidence interval as the confidence level is increased?
Conversely, as the confidence level decreases, the margin of error becomes smaller, and the confidence interval becomes narrower.
What is confidence interval?In statistics, a confidence interval is a range of values that is likely to contain the true value of a population parameter (such as a mean or a proportion), based on a sample from that population. The confidence interval is typically expressed as an interval around a sample statistic, such as a mean or a proportion, and is calculated using a specified level of confidence, typically 90%, 95%, or 99%.
Here,
To develop a confidence interval, we need to use the following formula:
Confidence Interval = sample mean ± margin of error
where the margin of error is calculated as:
Margin of Error = z* (sample standard deviation/ √n)
where z* is the critical value from the standard normal distribution table based on the chosen confidence level.
a. For a 90% confidence interval, the critical value (z*) is 1.645. Thus, the margin of error is:
Margin of Error = 1.645 * (4 / √25) = 1.317
So, the 90% confidence interval for the population mean is:
30 ± 1.317, or (28.683, 31.317)
b. For a 95% confidence interval, the critical value (z*) is 1.96. Thus, the margin of error is:
Margin of Error = 1.96 * (4 / √25) = 1.568
So, the 95% confidence interval for the population mean is:
30 ± 1.568, or (28.432, 31.568)
c. For a 99% confidence interval, the critical value (z*) is 2.576. Thus, the margin of error is:
Margin of Error = 2.576 * (4 / √25) = 2.0656
So, the 99% confidence interval for the population mean is:
30 ± 2.0656, or (27.9344, 32.0656)
d. As the confidence level increases, the margin of error also increases, because we need to be more certain that our interval includes the true population mean. This means that the confidence interval becomes wider as the confidence level increases.
To know more about confidence interval,
https://brainly.com/question/28969535
#SPJ1