Answer:
Pb + 2H2O --> PbO2 + 2H2
Explanation:
Products:
Solid metal; PbO2
Hydrogen; H
Reactants:
Metal; Pb
Steam; H2O
Reactants --> Products
Pb + H2O --> PbO2 + H2
Upon balancing we have;
Pb + 2H2O --> PbO2 + 2H2
Given that π = n M R T, rearrange the equation to solve for V
Answer:
V= n/M
Explanation:
From;
π = nRT/V = MRT
Where;
n= number of moles
R= gas constant
T= absolute temperature
M= molar mass
V= volume of the solution
π= osmotic pressure
Thus;
nRT/V = MRT
nRT = VMRT
V= nRT/MRT
V= n/M
A simplified version of photosynthesis can be represented as carbon dioxide combining with water to form glucose and oxygen: 6CO2+6H20 C6H12O6+6O2 In this reaction, ________ is oxidized. 1.Carbon dioxide 2.Hydrogen 3.Carbon 4.Oxygen
Answer:
2, hydrogen
Explanation:
i think
Answer:
Answer is not hydrogen
Explanation:
did the test and got it wrong
28.What is the correct IUPAC name for the following compound?A)12-crown-5B)12-crown-4C)4-crown-12D)12-crown-12E)Cyclododecane tetraether
Answer:
12-crown-4
Explanation:
We must recall that any structural moiety in organic chemistry having the R-O-R unit is an ether. If the oxygen form a ring in which they are sandwiched in between carbon atoms, the compound is known as a crown ether. The name emanates from the close resemblance of the compound to an actual crown.
If we want to name the crown ether, we first count the number of carbon atoms present and the number of oxygen atoms present. The correct name is now, total number of carbon + oxygen atoms -crown- number of oxygen atoms, in this case; 12-crown-4, hence the answer.
Answer:
12-crown-4
Explanation:
The standard entropy of a substance refers to its entropy at:__________.
a. absolute zero and 1 bar
b. 0°C and 1 bar
c. 25 °C and 1 bar
d. 25 °C and 0 bar
Answer:
b. 0°C and 1 bar
Explanation:
Hello,
In this case, the STP conditions are standard temperature and pressure sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data, it means that a specific pressure and temperature is assigned to analyze the properties of a substance. Such conditions are strictly 0°C and 1 bar because a large number of physical, chemical and thermodynamic properties are measured at them, therefore the standard entropy of a substance refers to its entropy at: b. 0°C and 1 bar.
Best regards.
Which of the following is most likely a heavier stable nucleus? (select all that apply) Select all that apply: A nucleus with a neutron:proton ratio of 1.05
The question is incomplete, the complete question is;
Which of the following is most likely a heavier stable nucleus? (select all that apply) Select all that apply: A nucleus with a neutron:proton ratio of 1.05 A nucleus with a A nucleus with a neutron:proton ratio of 1.49 The nucleus of Sb-123 A nucleus with a mass of 187 and an atomic number of 75
Answer:
A nucleus with a A nucleus with a neutron:proton ratio of 1.49
A nucleus with a mass of 187 and an atomic number of 75
Explanation:
The stability of a nucleus depends on the number of neutrons and protons present in the nucleus. For many low atomic number elements, the number of protons and number of neutrons are equal. This implies that the neutron/proton ratio = 1
Elements with higher atomic number tend to be more stable if they have a slight excess of neutrons as this reduces the repulsion between protons.
Generally, the belt of stability for chemical elements lie between and N/P ratio of 1 to an N/P ratio of 1.5.
Two options selected have an N/P ratio of 1.49 hence they are heavy stable elements.
Answer:
-A nucleus with a neutron:proton ratio of 1.49
-The nucleus of Sb-123
-A nucleus with a mass of 187 and an atomic number of 75
Both chlorine and fluorine are represented by a green modeling piece that has 4 holes. Is using the same piece for two different atoms acceptable? Why or why not
Answer:
Yes, same piece can be used.
Explanation:
The same piece can be used for two different atoms are acceptable because both atoms has 7 electrons in their outermost valance shell. Both atoms belong to same group i. e. halogens so same piece can be used for both atoms. If the atoms belong to different groups and they have different number of electrons in their outermost shell so using same piece will be a problem so it is recommended to use different pieces for different atoms.
The use of the same modeling piece for chlorine and fluorine has been accepted as it has consisted of the same properties and belongs to the same group.
Chlorine and fluorine have been the elements of group 17. The elements are halogens with the presence of 7 valence electrons.
The elements have been belonging to the same group and have the same number of valence electrons thus resembling each other in the chemical properties.
Since both the elements are similar to each other, the use of the same piece for two different atoms has been acceptable.
For more information about the modeling piece, refer to the link:
https://brainly.com/question/701369
What would happen to the rate of a reaction with rate law rate = k [NO]2[Hz] if
the concentration of NO were doubled?
Answer:
The rate would have doubled
Explanation:
A chemical reaction that has the general formula of nA → (A)n is best classified as a ____ reaction. A. synthesis B. polymerization C. decomposition D. oxidation E. replacement
Answer:
B.
Explanation:
A chemical reaction that has the general formula of nA → (A)n is best classified as a polymerization reaction.
Answer:
B. Polymerization
Explanation:
I'm just smart
Give the formula of each coordination compound. Include square brackets around the coordination complex. Do not include the oxidation state on the metal. Use parentheses only around polyatomic ligands.
For ethylenediamine, use (en) in the formula.
a) sodium hexachloroplatinate(IV)
b) dibromobis(ethylenediamine)cobalt(III) bromide
c) pentaamminechlorochromium(III) chloride
Answer:
sodium hexachloroplatinate(IV)- Na2[PtCl6]
dibromobis(ethylenediamine)cobalt(III) bromide- [Co(en)2Br2]Br
pentaamminechlorochromium(III) chloride-[Cr(NH3)5Cl]Cl2
Explanation:
The formulas of the various coordination compounds can be written from their names taking cognisance of the metal oxidation state as shown above. The oxidation state of the metal will determine the number of counter ions present in the coordination compound.
The number ligands are shown by subscripts attached to the ligand symbols. Remember that bidentate ligands such as ethylenediamine bonds to the central metal ion via two donors.
of their
(c) Ethanol is an alcoholic beverage which can be brewed
from cassava. Outline the process by which ethanol can
be prepared.
[3]
(d) Ethanol is used as a fuel.construct a balanced chemical
equation for its complete combustion.
[2]
[Total:10 Marks]
s?
Answer:
the chemical equation of ethanol as fuel is
C2H5OH(l)+3 02(g)------2CO2(g)+3H2O(g)
the preparation process of ethanol from cassava is
cassava flour---liquification---saccharification---cooling---fermentation---distillation---ethanol
a sample of gas occupies a volume of 2.62 liters at 25 C and 1.00 atm. what will be the volume at 50 C and 2 atm
Answer:2.62 L
Explanation:
A sample of gas occupies a volume of 2.62 liters at 25° C and 1.00 atm. and the volume at 50° C and 2 atm then volume is 2.62 liters.
What is ideal gas law ?The equation of state for a fictitious perfect gas is known as the ideal gas law, sometimes known as the generic gas equation. Although it has significant drawbacks, it is a decent approximation of the behavior of many gases under various situations.
An ideal gas is one in which there are no intermolecular attraction forces and all collisions between atoms or molecules are entirely elastic. It may be seen as a group of perfectly hard spheres that collide but do not else interact with one another.
By using ideal gas equation,
P₁ V ₁ ÷ T = P₂V₂ ÷ T
1 × 2.62 ÷ 25 = 2 × V₂ ÷ 50
V₂ = 1 × 2.62 × 50 ÷ 25 × 2
V₂ = 2.62 liters.
Thus, a sample of gas occupies a volume of 2.62 liters at 25° C and 1.00 atm. and the volume at 50° C and 2 atm then volume is 2.62 liters.
To learn more about ideal gas law follow the link below;
https://brainly.com/question/6534096
#SPJ5
For which one of the following reactions will the enthalpy change be approximately equal to the internal energy change?
A. H2 + I2 → 2HI
B. PCl5(g) → PCl3(g) + Cl2
C. 2H2O2 → 2H2O2 + O2
D. C(s) + O2(g) → CO2(g)
Answer: A. [tex]H_{2}_{(g)}+I_{2}_{(g)}=>2HI_{(g)}[/tex] and D.[tex]C_{(s)}+O_{2}_{(g)}=>CO_{2}_{(g)}[/tex]
Explanation: The relationship between internal energy change and enthalpy change during a chemical reaction occurs according to the following formula:
[tex]\Delta H=\Delta E+\Delta(PV)[/tex]
So, for changes in enthalpy and internal energy to be equal volume or pressure has to be constant, i.e., zero.
Change in the number of moles of gas during the reaction can make the difference between [tex]\Delta H[/tex] and [tex]\Delta E[/tex] be larger, so for them to be equal and pressure constant, number of moles must be the same in reagents and products.
Analysing each reaction above:
Reaction A has the same number of moles in reagents and products, so enthalpy change and internal energy change will be equal;
Reactions B and C don't have the same number of moles at both sides, so enthalpy and energy will be different.
Reaction D, although reagent side have 2 compounds, carbon is solid, so reaction have the same number of moles in both sides. Enthalpy and Energy will be equal.
Provide the name(s) for the tertiary alcohol(s) with the chemical formula C6H14O that have a 4-carbon chain. Although stereochemistry may be implied in the question, DO NOT consider stereochemistry in your name. Alcohol #1______ Alcohol #2: ______Alcohol #3______
Answer:
Explanation:
A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.
Based on the question, the only tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain is
2-hydroxy-2,3-dimethylbutane
H OH H H
| | | |
H - C - C - C - C - H
| | | |
H CH₃ CH₃ H
From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain
Calculate the silver ion concentration in a saturated solution of silver(I) sulfate (K sp = 1.4 × 10 –5). 1.5 × 10–2 M 1.4 × 10–5 M 3.0 × 10–2 M 2.4 × 10–2 M None of the above.
Answer:
3.0x10⁻²M
Explanation:
Silver sulfate, Ag₂SO₄, has a product constant solubility equilbrium of:
Ag₂SO₄(s) ⇄ 2Ag⁺ + SO₄²⁻
When an excess of silver sulfate is added, some Ag₂SO₄ will react producing Ag⁺ and SO₄²⁻ until reach the equilbrium determined for the formula:
ksp = 1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]
Assuming the Ag₂SO₄ that react until reach equilibrium is X, we can replace in Ksp expression:
1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]
1.4x10⁻⁵ = [2X]² [X]
1.4x10⁻⁵ = 4X³
3.5x10⁻⁶ = X³
0.015 = X
As [Ag⁺] is 2X:
[Ag⁺] = 0.030 = 3.0x10⁻²M
The answer is:
3.0x10⁻²MIdentify a homogeneous catalyst. Identify a homogeneous catalyst. Pd in H2 gas N2 and H2 catalyzed by Fe SO2 over vanadium (V) oxide Pt with methane H2SO4 with concentrated HCl
Answer:
H2SO4 with concentrated HCl
Click on ALL of the following that use sound waves to communicate with their surroundings and find their way! bats cars dolphins whales birds submarines buses school
There are approximately 2 × 1022 molecules and atoms in each breath we take and the concentration of CO in the air is approximately 9 ppm. How many CO molecules are in each breath we take? solution
Answer:
1.8x10¹⁷ molecules of CO are in each breath we take
Explanation:
Parts per million, ppm, is an unit of concentration in chemistry used for very diluted solutions.
A 9ppm of X in a solution means in 1 million of molecules (1x10⁶) you have only 9 molecules of X.
In a breath we have 2x10²² molecules and 9 ppm are CO. Thus, CO molecules in each breath are:
2x10²² molecules × (9 molecules CO / 1x10⁶ molecules) =
1.8x10¹⁷ molecules of CO are in each breath we take[tex]1.8\times 10^{17}[/tex] molecules of CO are in each breath we take
The calculation is as follows:A 9ppm of X in a solution represent in 1 million of molecules[tex](1\times10^6)[/tex]you have only 9 molecules of X.
Now CO molecules in each breath is
[tex]= 2\times 10^{22}\ vmolecules \times (9\ molecules\ CO \div 1\times 10^6 molecules) \\\\= 1.8\times 10^{17}[/tex]
Learn more: https://brainly.com/question/10309631?referrer=searchResults
a jogger runs a mile in 8.92 minutes. 1 mi=1609m; calculate her speed in km/hr
Answer:
[tex]Speed = 3.30 \frac{km}{hr}[/tex]
Explanation:
Given
Distance = 1 mile
Time = 8.92 minutes
Required
Calculate Speed in km/hr
Speed is calculated as thus;
[tex]Speed = \frac{Distance}{Time}[/tex]
Substitute 1 mile for distance and 8.92 minutes for time
[tex]Speed = \frac{1\ mile}{8.92\ minutes}[/tex]
Convert Miles to Kilometres
If
[tex]1\ mile = 1609\ m[/tex];
Then
[tex]1\ mile = \frac{1609\ km}{1000}[/tex]
[tex]1\ mile = 1.609\ km[/tex] --- (1)
Convert minutes to hour
[tex]1\ minutes = 0.0167\ hour[/tex]
Multiply both sides by 8.92
[tex]8.92 * 1\ minutes = 0.0167\ hour * 8.92[/tex]
[tex]8.92 \ minutes = 0.148964\ hour[/tex] ---- (2)
By substituting (1) and (2) in [tex]Speed = \frac{1\ mile}{8.92\ minutes}[/tex], we have
[tex]Speed = \frac{1.609\ km}{0.48694\ hour}[/tex]
[tex]Speed = 3.304309 \frac{km}{hr}[/tex]
[tex]Speed = 3.30 \frac{km}{hr}[/tex] -- Approximated
What is the balanced equation for the reaction of aqueous cesium sulfate and aqueous barium perchlorate?
Answer:
The balanced chemical reaction is given as:
[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]
Explanation:
When aqueous cesium sulfate and aqueous barium perchlorate are mixed together it gives white precipitate barium sulfate and aqueous solution od cesium perchlorate.
The balanced chemical reaction is given as:
[tex]Cs_2SO_4(aq)+Ba(ClO_4)_2(aq)\rightarrow BaSO_4(s)+2CsClO_4(aq)[/tex]
According to reaction, 1 mole of cesium sulfate reacts with 1 mole of barium perchlorate to give 1 mole of a white precipitate of barium sulfate and 2 moles of cesium perchlorate.
A man weighs 185 lb. What is his mass in grams?
Please show work.
Thank you
Answer:
83914.52 grams
Explanation:
Given that,
Weight of a man is 185 lb
We need to find his weight in grams
For this, we must know the relation between lb and grams.
We know that,
1 lb = 453.592 grams
To find the mass of man in grams, the step is :
185 lb = (453.592 × 185) grams
= 83914.52 grams
So, the mass of a man is 83914.52 grams.
After combining hydrogen ions and hydroxide ions combine to form water molecules, the next step in balancing a redox reaction under basic conditions is to: ______
Explanation:
After combining hydrogen ions and hydroxide ions combine to form water molecules, the next step is the last step when balancing a redox reaction under basic condition.
The last step is to cancel all common terms that arises as a result of the formation of the water molecule. Usually, there's need to balance the water molecules in the reactant and product side of the reaction.
Of the following two gases, which would you predict to diffuse more rapidly? PLZZ HELPP PLZ PLZ PLZ
Answer:
CO2 will diffuse more rapidly.
Explanation:
From Graham's law of diffusion, we understood that the rate of diffusion of a gas is inversely proportional to the square root of its density as shown below:
Rate (R) & 1/√Density (d)
R & 1/√d
But, the density of a gas is directly proportional to the relative molecular mass (M) of the gas.
Thus, we can say that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. This can be represented mathematically as:
Rate (R) & 1/√Molar mass (M)
R & 1/√M
From the above illustration, we can say that the lighter the gas, the faster the rate of diffusion and the heavier the gas, the slower the rate of diffusion.
Now, to answer the question given above,let us determine the molar mass of Cl2 and CO2.
This is illustrated below:
Molar mass of Cl2 = 2 x 35.5 = 71 g/mol
Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol
Summary
Gas >>>>>> Molar mass
Cl2 >>>>>> 71 g/mol
CO2 >>>>> 44 g/mol
From the illustration above, we can see that CO2 is lighter than Cl2.
Therefore, CO2 will diffuse more rapidly.
Answer: CO2
Explanation:
What volume (in mL) needs to be added to 69.6 mL of 0.0887 M MgF2 solution to make a 0.0224 M MgF2 solution
Answer:
The correct answer is 206 ml.
Explanation:
Based on the given information, the molarity or M₁ of MgF₂ solution is 0.0887 M, the molarity or M₂ of the final solution given is 0.0224 M. The initial volume of V₁ of the solution is 69.6 ml, for finding the final volume of V₂ of the solution, the formula to be used is,
M₁V₁ = M₂V₂
Now putting the values in the formula we get,
0.0887 × 69.6 = 0.0224 M × V₂
V₂ = 0.0887 × 69.6 / 0.0224
V₂ = 275.6 ml
Therefore, the volume in ml added to the initial volume of 69.6 ml to make the molarity of the solution 0.0224 will be,
= 275.6 ml - 69.6 ml = 206 ml
Using the data: C2H4(g), = +51.9 kJ mol-1, S° = 219.8 J mol-1 K-1 CO2(g), = ‑394 kJ mol-1, S° = 213.6 J mol-1 K-1 H2O(l), = ‑286.0 kJ mol-1, S° = 69.96 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = 205 J mol-1 K-1 calculate the maximum amount of work that can be obtained, at 25.0 °C, from the process: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(l)
Answer:
The correct answer is 1332 KJ.
Explanation:
Based on the given information,
ΔH°f of C2H4 is 51.9 KJ/mol, ΔH°O2 is 0.0 KJ/mol, ΔH°f of CO2 is -394 KJ/mol, and ΔH°f of H2O is -286 KJ/mol.
Now the balanced equation is:
C2H4 (g) + 3O2 (g) ⇔ 2CO2 (g) + 2H2O (l)
ΔH°rxn = 2 × ΔH°f CO2 + 2 × ΔH°fH2O - 1 × ΔH°fC2H4 - 3×ΔH°fO2
ΔH°rxn = 2 (-394) + 2(-286) - 1(51.9) - 3(0)
ΔH°rxn = -1411.9 KJ
Now, the given ΔS°f of C2H4 is 219.8 J/mol.K, ΔS°f of O2 is 205 J/mol.K, ΔS°f of CO2 is 213.6 J/mol.K, and ΔS°f of H2O is 69.96 J/mol.K.
Now based on the balanced chemical reaction,
ΔS°rxn = 2 × ΔS°fCO2 + 2 ΔS°fH2O - 1 × ΔS°f C2H4 - 3 ΔS°fO2
ΔS°rxn = 2 (213.6) + 2(69.96) - 1(219.8) -3(205)
ΔS°rxn = -267.68 J/K or -0.26768 KJ/K
T = 25 °C or 298 K
Now putting the values of ΔH, ΔS and T in the equation ΔG = ΔH-TΔS, we get
ΔG = -1411.9 - 298.0 × (-0.2677)
ΔG = -1332 KJ.
Thus, the maximum work, which can obtained is 1332 kJ.
Testbank Question 47 Consider the molecular orbital model of benzene. In the ground state how many molecular orbitals are filled with electrons?
Answer:
There are fifteen molecular orbitals in benzene filled with electrons.
Explanation:
Benzene is an aromatic compound. Let us consider the number of bonding molecular orbitals that should be present in the molecule;
There are 6 C-C σ bonds, these will occupy six bonding molecular orbitals filled with electrons.
There are 6 C-H σ bonds, these will occupy another six molecular orbitals filled with electrons
The are 3 C=C π bonds., these will occupy three bonding molecular pi orbitals.
All these bring the total number of bonding molecular orbitals filled with electrons to fifteen bonding molecular orbitals.
The entropy of a substance above absolute zero will always be:
a. Negative
b. Positive
c. Neither Negative nor positive
What is the value of the equilibrium constant, K, for a reaction for which ∆G° is equal to –5.20 kJ at 50°C?
Answer:
6.93
Explanation:
Step 1: Given data
Standard Gibbs free energy (∆G°): -5.20 kJTemperature (T): 50°CEquilibrium constant (K): ?Step 2: Convert the temperature to the Kelvin scale
We will use the following expression.
K = °C + 273.15
K = 50°C + 273.15
K = 323 K
Step 3: Calculate K
We will use the following expression.
∆G° = -R × T × ln K
-5.20 × 10³ J = -(8.314 J/mol.K) × 323 K × ln K
K = 6.93
What subatomic particles surround the nucleus? Question 1 options: protons neutrons atoms electrons
Answer:
Electrons "surround"
Explanation:
Protons and neutrons "make up" the nucleus so they are contained "within" the nucleus meaning that electrons would "surround" the nucleus as they orbit around the nucleus
Answer:
Electrons
Explanation:
Protons and nuetrons are present inside the nucleus of an atom while the electron revolve around the nucleus in different energy levels.
If the heat of combustion for a specific compound is −1320.0 kJ/mol and its molar mass is 30.55 g/mol, how many grams of this compound must you burn to release 617.30 kJ of heat?
Answer:
14.297 g
Explanation:
From the question;
1 mo of the compound requires 1320.0 kJ
From the molar mass;
1 ml of the compound weighs 30.55g
How many grams requires 617.30kJ?
1 ml = 1320
x mol = 617.30
x = 617.30 / 1320
x = 0.468 mol
But 1 mol = 30.55
0.468 mol = x
x = 14.297 g
Which of the following pieces of information is given in a half-reaction?
O A. The number of electrons transferred in the reaction
B. The compounds that the atoms in the reaction came from
C. The state symbol of each compound in the reaction
D. The spectator ions that are involved in the reaction
Answer:
The number of electrons transferred in the reaction
Explanation:
Answer:
A
Explanation: