False because $1 =$1 not $3
True. The expected value of the bet is positive ($0.2),
What is probability?Probability is defined as the possibility of an event being equal to the ratio of the number of favorable outcomes and the total number of outcomes.
Let's calculate the expected value of the bet for both outcomes:
If your team wins: You get paid $1, so the expected value is 0.8 × $1 = $0.8
If your friend's team wins: You pay $3, so the expected value is 0.2 × -$3 = -$0.6
The overall expected value of the bet is the sum of these two outcomes: $0.8 + (-$0.6) = $0.2
Since the expected value of the bet is positive ($0.2), this means that on average, you can expect to win money if you take this bet. Therefore, the bet is in your favor.
Learn more about probability here:
brainly.com/question/11234923
#SPJ2
Y
X
Pls help me you’ll get 29 points
Answer:
x = 60
Step-by-step explanation:
The sum of the angles of a triangle add to 180
x+x+x = 180
3x = 180
Divide by 3
3x/3 =180/3
x = 60
Helen is constructing a room. She is preparing a scale drawing of her room as 1 cm = 2.5 feet. Find the actual dimensions with the given model dimensions of 8 cm×5 cm.
20 feet×12.5 feet
15 feet×5.5 feet
10 feet×8 feet
8 feet×6.5 feet
Answer: 20 ft × 12.5 ft
Step-by-step explanation:
Since 1 cm = 2.5 ft,
8 cm = 8 · 2.5 = 20 ft5 cm = 5 · 2.5 = 12.5 ftTherefore, 8 cm × 5 cm = 20 ft × 12.5 ft
1/2 of 12=1/4 of?
1/3 of 90=2/3of?
Answer:
24 and 45
Step-by-step explanation:
Okay, now that I can answer this question with the right answers:
The easy way to do this is to first solve the left hand side of the equation.
1/2 of 12 is the same as 12/2 = 6.
So 6 = 1/4 * x
To solve for that unknown x, just multiply both sides by 4 to cancel out the fraction:
6*4 = 4* 1/4*x
24 = x
For the other equation, do the same thing:
1/3 * 90 = 90/3 = 30
30 = 2/3*x
30*3 = 3* 2/3 *x
90 = 2x
90/2 = 2x/2
45 = x
A test has 6 multiple choice questions , each with four possible answers . How man different answer keys are possible?
Answer:
24
Step-by-step explanation:
6 x 4 = 24
Answer:
Step-by-step explanation:
4⁶=4096
Suppose that the value of a stock varies each day from $12.82 to $28.17 with a uniform distribution.
Find the third quartile; 75% of all days the stock is below what value? (Enter your answer to the nearest cent.)
Answer: 24.33
======================================================
Explanation:
The range is
range = max - min
range = 28.17 - 12.82
range = 15.35
This is the width of this particular uniform distribution.
Apply 75% to this value
75% of 15.35 = 0.75*15.35 = 11.5125
Then finally, add that to the min
12.82 + 11.5125 = 24.3325 which rounds to 24.33
We can see that 75% of the values are below 24.33 which makes it the 3rd quartile (Q3).
If y is 2,851, 1% of Y is
Excellent question, but let's rephrase it.
Suppose you have a square of surface area of 2851.
What would be a hundredth of such square?
What would be surface area of that hundredth.
Why hundredth? Because percent denotes hundredths cent is a latin word for hundred. You would usually encounter similar word that describes 100 years: century.
Well it is actually very easy. Just divide 2851 into 100 pieces and look at what is the area of one piece.
[tex]2851/100=285.1=y[/tex]
So a single piece has an area of 258.1.
Hope this helps. :)
Find the critical numbers (x-values) of the function y equals 2 x to the power of 5 plus 5 x to the power of 4 minus 19. Enter your answers as a comma-separated list. Round answers to 2 decimal places, if necessary.
Answer:
[tex]x=0,x=-2[/tex]
Step-by-step explanation:
From the question we are told that:
[tex]y=2x^5+5x^4-19[/tex]
Generally the equation if differentiated is mathematically given by
[tex]y'=10x^4+20x^3-0[/tex]
Where
y'=0
[tex]10x^4+20x^3=0[/tex]
Factorizing,We have
[tex]x=0,x=-2[/tex]
Therefore
The critical points are
[tex]x=0,x=-2[/tex]
4. Five cards are randomly chosen from a deck of 52 (13 denominations with 4 suits). a. How many ways are there to receive 5 cards from a deck of 52
Answer:
There are 2,598,960 ways to receive 5 cards from a deck of 52.
Step-by-step explanation:
The order in which the cards are chosen is not important, which means that the combinations formula is used to solve this question.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
a. How many ways are there to receive 5 cards from a deck of 52?
[tex]C_{52,5} = \frac{52!}{5!(47)!} = 2598960[/tex]
There are 2,598,960 ways to receive 5 cards from a deck of 52.
can you please answer this????
Answer:
x = 5
Step-by-step explanation:
I'm taking all bases as b so not typing it
2/3 log 125 = log (125^2/3) = log 25
1/2 log 9 = log (9^1/2) = log 3
So we can rewrite the equation as,
log x = log 25 + log 3 - log 15
or, log x = log (25×3) - log 15
or, log x = log 75 - log 15
or, log x = log (75/15)
or, log x = log 5
or, x = 5
Answered by GAUTHMATH
Given the number 2376.458 rounded to the following place values: 1) Rounded to the nearest hundred, 2) Rounded to the nearest whole unit, 3) Rounded to the nearest hundredth,
Answer:
1)2400
is the result of rounding 2376.458 to the nearest 100.
2) 2376
is the result of rounding 2376.458 to the nearest integer.
3)2376.46
is the result of rounding 2376.458 to the nearest 0.01
I hope this is right and it helps !!!!!!!!!!!!!!!!
Answer:
1(2400)
2(2376)
3(2376.46)
Step-by-step explanation:
it's just your fraction skills
Please help! Identify the recursive formula for the sequence 20, 28, 36, 44, . . . .
Answers below in picture:
Option A
Answered by GauthMath if you like please click thanks and comment thanks
Solve the inequality (help please)
Answer:
v<1 23/25
Step-by-step explanation:
The inequality simplifies to 48/25, which is equivalent to 1 23/25.
A system of vertices connected in pairs
by edges. Definition
Use the unit circle to find tan 60°.
a. square root 3/3
c. 2 square root 3/3
b. square root 3/2
d. square root 3
Please select the best answer from the choices provided
A
B
C
D
the answer is d ( square root 3 )
tan = oposite / adjacent
tan 60° = √3 / 1
= √3
calculate the volume of a cone knowing that it has a radius of 6cm and a height of 18cm
Answer:
V≈678.58cm³
Step-by-step explanation:
V=πr^2h/3=π·6^2·18/3≈678.58401cm³
Hope this helps! :D
Question 8 of 53
How much would $700 be worth after 8 years, if it were invested at 5%
interest compounded continuously? (Use the formula below and round your
answer to the nearest cent.)
A(t) = P•e^rt
A. $5887.12
B. $1044.28
C. $6432.11
D. $38,218.71
9514 1404 393
Answer:
B. $1044.28
Step-by-step explanation:
Putting the given numbers into the given formula, we have ...
A(8) = $700•e^(0.05•8) ≈ $1044.28
5. Sam wrote the expression below.
10 +15k
Rami said that this expression is equivalent to 5(3k + a)
Kenneth said this expression is equivalent toyk+6+8k+4.
Who is correct and why? Explain your thinking clearly,
Answer:
see below
Step-by-step explanation:
10 + 15k
Factor out the greatest common factor 5
5( 2+3k)
Rewriting
5(3k+2)
Rami is correct if a=2 then his expression is 5(3k+2)
Kenneth
yk+6+8k+4
Add the terms together
k(y+8) + 10
If y =7 then Kenneth is correct otherwise he is incorrect
generate a table of values for the equation y = -4.5x - 0.5. Use values for x from -2 to 2, increment by 1 in each row
Answer:
x = -2: y = 8.5
x = -1: y = 4
x = 0: y = -0.5
x = 1: y = -5
x = 2: y = -9.5
Step-by-step explanation:
We find the numeric values for the function from x = -2 to x = 2.
x = -2:
[tex]y = -4.5(-2) - 0.5 = 9 - 0.5 = 8.5[/tex]
x = -1:
[tex]y = -4.5(-1) - 0.5 = 4.5 - 0.5 = 4[/tex]
x = 0:
[tex]y = -4.5(0) - 0.5 = 0 - 0.5 = -0.5[/tex]
x = 1:
[tex]y = -4.5(1) - 0.5 = -4.5 - 0.5 = -5[/tex]
x = 2:
[tex]y = -4.5(2) - 0.5 = -9 - 0.5 = -9.5[/tex]
Sam's monthly bills are normally distributed with mean 2700 and standard deviation 230.9. He receives two paychecks of $1500 each in a month, post taxes and withholdings. What is the probability that his expenses will exceed his income in the following month?Ð) 10%. B) 16%.C) 21%.D) 29%.E) 37%.
Answer:
A) 10%
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Sam's monthly bills are normally distributed with mean 2700 and standard deviation 230.9.
This means that [tex]\mu = 2700, \sigma = 230.9[/tex]
What is the probability that his expenses will exceed his income in the following month?
Expenses above 2*1500 = $3000, which is 1 subtracted by the p-value of Z when X = 3000.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{3000 - 2700}{230.9}[/tex]
[tex]Z = 1.3[/tex]
[tex]Z = 1.3[/tex] has a p-value of 0.9032.
1 - 0.9032 = 0.0968 that is, close to 10%, and thus the correct answer is given by option A.
Which equation is correct?
cos x° = opposite ÷ hypotenuse
sin x° = hypotenuse ÷ opposite
cos x° = hypotenuse ÷ opposite
sin x° = opposite ÷ hypotenuse
Answer:
sin x° = opposite ÷ hypotenuse
Step-by-step explanation:
SOH - CAH - TOA
SOH: Sin(θ) = Opposite / Hypotenuse
CAH: Cos(θ) = Adjacent / Hypotenuse
TOA: Tan(θ) = Opposite / Adjacent
Answer:
last option
Step-by-step explanation:
Sin is opposite/negative
Computers from a certain manufacturer have a mean lifetime of 62 months, with a standard deviation of 12 months. The distribution of lifetimes is not assumed to be symmetric. Between what two lifetimes does Chebyshev's Theorem guarantee that we will find at least approximately 75% of the computers
Answer:
Between 38 and 86 months.
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by [tex]100(1 - \frac{1}{k^{2}})[/tex].
In this question:
Mean of 62, standard deviation of 12.
Between what two lifetimes does Chebyshev's Theorem guarantee that we will find at least approximately 75% of the computers?
Within 2 standard deviations of the mean, so:
62 - 2*12 = 38
62 + 2*12 = 86
Between 38 and 86 months.
By examining past tournaments, it's possible to calculate the probability that a school wins their first game in the national college basketball tournament. Each school's rank going into the tournament is a strong indicator of their likelihood of winning their first game.
Find the linear regression equation that models this data.
The linear regression model which models the data is :
y = -6.41053X + 103.83509
Obtaining the regression equation could be performed using either the formula method or using technology (excel, calculator, online regression calculators )
Using technology :
• Enter the data into the columns provided ;
The regression equation obtained for the data is : y = -6.41053X + 103.83509
Where ;
Slope = -6.41053
Intercept = 103.83509
X = Rank
y = probability percentage
Hence, from the linear regression equation obtained, we could see that a negative linear relationship exists between rank and probability as implied from it's negative slope value.
Learn more on linear regression : https://brainly.com/question/12164389
Suppose that the functions and g are defined for all real numbers x as follows.
f(x)=x+6
g(x) = 2x + 6
Write the expressions for (f-g)(x) and (fg)(x) and evaluate (f+g)(1).
Answer:
Step-by-step explanation:
Given functions are,
f(x) = x + 6
g(x) = 2x + 6
(f - g)(x) = (x + 6) - (2x + 6)
= -x
(f . g)(x) = f(x) × g(x)
= (x + 6)(2x + 6)
= 2x² + 6x + 12x + 36
= 2x² + 18x + 36
(f + g)(x) = (x + 6) + (2x + 6)
= 3x + 12
(f + g)(1) = 3(1) + 12
= 15
Blood pressure values are often reported to the nearest 5 mmhg (100, 105, 110, etc.). the actual blood pressure values for nine randomly selected individuals are given below.
108.6 117.4 128.4 120.0 103.7 112.0 98.3 121.5 123.2
Required:
a. What is the median of the reported blood pressure values?
b. Suppose the blood pressure of the second individual is 117.7 rather than 117.4 (a small change in a single value). What is the new median of the reported values?
c. What does this say about the sensitivity of the median to rounding or grouping in the data?
Answer:
Step-by-step explanation:
Arranging the data in the ascending order:
108.6 98.3 103.7 112 117.4 120 121.5 123.2 128.4
The median is the middle value of the data set:
a)
Hence,
median = 117.4
b)
When the value of blood pressure is 117.7 instead of 117.4 then the median will be:
Median = 117.7
c)
This indicates that the median of a well sorted set of data is depends upon the middle value of the data set.
821) The integon which is 15 more than - 55 is
Answer:
-40
Step-by-step explanation:
-55 + 15 = x
-40 =x
30 POINTS PLEASE HELP
Answer:
Answer:
Solution given:
f(x)=5x-3
let
y=f(x)
y=5x-3
interchanging role of x and y
x=5y-3
x+3=5y
y=[tex]\frac{x+3}{5}[/tex]
$o,
f-¹(x)=[tex]\frac{x+3}{5}[/tex]
we conclude that
f-¹(x)≠g(x)
Each pair of function are not inverses.
g(x)=x/5+3
let g(x)=y
y=x/5+3
interchanging role of x and y
x=y/5+3
x-3=y/5
doing crisscrossed multiplication
5(x-3)=y
y=5x-15
g-¹(x)=5x-15
So
g-¹(x)≠f-¹(x)
Each pair of function are not inverses.
What is the slope of the line?
-3
-1/3
1/3
3
Answer:
D) 3
Step-by-step explanation:
Rise/run, rise is 3, run is 1
Answer:
3
Step-by-step explanation:
Pick two points on the line
(0,0) and ( 1,3)
The slope is found by
m = ( y2-y1)/(x2-x1)
= ( 3-0)/(1-0)
= 3/1
= 3
Simplify -3[5 - (-8 + 6)]
Answer: -21
[tex]-3[5 - (-8 + 6)]\\=-3[5 - (-2)]\\=-3[5+2]\\=-3(7)\\=-21[/tex]
Answer:
-21
Step-by-step explanation:
-3[5 - (-8 + 6)]
Inner parentheses first
-3[5 - (-2)]
Then remaining parentheses
-3[5 +2]
-3(7)
Multiply
-21
Identify the first 4 terms in the arithmetic sequence given by the explicit formula ƒ(n) = 8 + 3(n – 1).
Answer:
Step-by-step explanation:
f(n) = 8 + 3(n) - 3
f(n) = 5 + 3n
f(1) = 5 + 3(1)
f(1) = 8
f(2) = 5 + 3(2)
f(2) = 5 + 6
f(2) = 11
f(3) = 5 + 3*3
f(3) = 14
f(4) = 5 + 3*4
f(4) = 17
Solve: 1/3a^2-1/a=1/6a^2
Step-by-step explanation:
there are two answers for a
Answer:
The ANSWER IS 1/6
Step-by-step explanation: