Answer:
x = 2/5
General Formulas and Concepts:
Pre-Algebra
Distributive Property
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
-1/2(6x - 10) = 1/3(6x + 9)
Step 2: Solve for x
[Distributive Property] Distribute parenthesis: -3x + 5 = 2x + 3[Subtraction Property of Equality] Subtract 2x on both sides: -5x + 5 = 3[Subtraction Property of Equality] Subtract 5 on both sides: -5x = -2[Division Property of Equality] Divide -5 on both sides: x = 2/5I need help for this math question!
Answer:
D
Step-by-step explanation:
Assuming that the expression is referring to sin²(2πft) and not sin²(2)πft, we can solve as follows:
One trigonometric identity states that sin²x+cos²x = 1. We want to express this in terms of cos²x, so we need to solve for sin²x. Subtracting cos²x from both sides, we get 1-cos²x = sin²x. Plugging (2πft) for x, we get
1-cos²(2πft) = sin²(2πft)
We can plug that into our equation to get
P = I₀²R(1-cos²(2πft)), or D
The initial population of the town was estimated to be 12,500 in 2005. The population has increased by about 5.4% per year since 2005.
Formulate the equation that gives the population, A(x) , of the town x years since 2005. If necessary, round your answer to the nearest thousandth.
A(x)=__(_)^x
Answer:
[tex]A(x) = 12500(1.054)^x[/tex]
Step-by-step explanation:
Exponential equation for population growth:
Considering a constant growth rate, the population, in x years after 2005, is given by:
[tex]A(x) = A(0)(1 + r)^x[/tex]
In which A(0) is the population in 2005 and r is the growth rate, as a decimal.
The initial population of the town was estimated to be 12,500 in 2005.
This means that [tex]A(0) = 12500[/tex]
The population has increased by about 5.4% per year since 2005.
This means that [tex]r = 0.054[/tex]
So
[tex]A(x) = A(0)(1 + r)^x[/tex]
[tex]A(x) = 12500(1 + 0.054)^x[/tex]
[tex]A(x) = 12500(1.054)^x[/tex]
Will give brainliest
A tablet at a local electronics store is in high demand and will only be available to customers for a limited time. The store initially has 4 cases of the tablet on hand. The store manager receives new supplies of the tablet each week. At the beginning of week 1, the store manager receives an additional order from the distributor of 5 cases of tablets. At the beginning of week 6, the manager receives another order of 10 cases. Which of the following equations best models the scenario for how many cases of the tablet the store can expect to receive each week?
a. y=4
b. y=x+4
c. y=-6x
If you are dealt 4 cards from a shuffled deck of 52 cards, find the probability of getting 2 queens and 2 kings.
The probability is ___.
(Round to six decimal places as needed.)
Answer:
1.083
Step-by-step explanation:
Exact form: 13/12
Decimal form: 1.083 (put a line above the 3)
Mixed number form: 1 1/12
II. Round to the nearest hundred.
11. 582
12. 1,234
13. 640
14. 770
15. 1,104 can you please tell what the answer?
Answer:
582-600
1,234-1,200
640-600
770-800
1,104-1,100
If a $6 per unit tax is introduced in this market, then the new equilibrium quantity will be
Answer:
soory i dont know just report me if you angry
Drag the tiles to the correct boxes to complete the pairs.
Given that x= 3 + 81 and y= 7 - 1 match the equivalent expressions.
-15 + 19
58 + 106
-&
411
-29 - 531
I. 2y
-
y
–50 ty
23 - 3y
9514 1404 393
Answer:
58 +106i-29 -53i-8 -41i-15 +19iStep-by-step explanation:
For the purpose of selecting the appropriate tile, it is only necessary to figure the real part of the sum or product.
We notice that the second product (-xy) is -1/2 times the first product (2xy). This can let you find the answers on that basis alone. The only tiles with a (-1) : (2) relationship are (-29 -53i) : (58 +106i).
__
The sum -5x +y has a real part of -5(3) +7 = -8.
The sum 2x -3y has a real part of 2(3) -3(7) = 6 -21 = -15.
Hence the sequence of answers needed on the right side is as shown above.
_____
Additional comment
You know that arithmetic operations with complex numbers (multiplication and addition) are identical to those operations performed on any polynomials. That is, "i" can be treated as a variable. The simplification comes at the end, where any instances of i² can be replaced by -1.
xy = (3 +8i)(7 -i) = 3·7 -3·i +8·7·i -8·i·i = 21 +53i -8i²
= (21 +8) +53i . . . . replaced i² with -1, so -8i² = +8
= 29 +53i
The cost of producing pens with the company logo printed on them consists of a onetime setup fee of $265.00 plus $0.95 for each pen produced. This cost can be calculated using the formula C=265.00+0.95p, where p represents the number of pens produced and C is the cost. Use the formula to calculate the cost of producing 2900 pens.
The rationalisation factor of 2 + √3 is
step by step for BRAINLIST
Answer:
rationalising factor wud be
2 - root3
as on multiying both and applying identity we end up
2^2 - (root3)^2
4 - 3 = 1
we got a rational number so rationalisng factor is
2 - root3
Suppose that we ask n randomly selected people whether they share your birthday. (a) Give an expression in terms of n for the probability that no one shares your birthday (ignore leap years). $$ Correct: Your answer is correct. (b) What is the least number of people we need to select so that the probability is at least 0.8 that at least one person shares your birthday
Using the binomial distribution, it is found that:
a) The expression is [tex]\left(\frac{364}{365}\right)^{n}[/tex]
b) You need to select at least 587 people.
For each person, there are only two possible outcomes, either they share your birthday, or they do not. The probability of a person sharing your birthday is independent of any other person, hence, the binomial distribution is used to solve this question.
Binomial probability distribution
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
x is the number of successes. n is the number of trials. p is the probability of a success on a single trial.There are 365 days in a non-leap year, hence, the probability of each person sharing your birthday is [tex]p = \frac{1}{365}[/tex]
Item a:
This probability is P(X = 0), hence:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{n,0}.\left(\frac{1}{365}\right)^{0}.\left(\frac{364}{365}\right)^{n} = \left(\frac{364}{365}\right)^{n}[/tex]
Hence, the expression is [tex]\left(\frac{364}{365}\right)^{n}[/tex]
Item b:
The probability that at least one person shares your birthday is:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
We want that:
[tex]P(X \geq 1) \geq 0.8[/tex]
Hence:
[tex]1 - P(X = 0) \geq 0.8[/tex]
[tex]P(X = 0) \leq 0.2[/tex]
Hence:
[tex]\left(\frac{364}{365}\right)^{n} \leq 0.2[/tex]
[tex]n\log{\left(\frac{364}{365}\right)} \leq \log{0.2}[/tex]
[tex]n \geq \frac{\log{0.2}}{\log{\left(\frac{364}{365}\right)}}[/tex]
[tex]n \geq 586.6[/tex]
Rounding up: You need to select at least 587 people.
To learn more about the binomial distribution, you can take a look at https://brainly.com/question/24863377
A meat packaging plant uses a machine that packages chicken livers in six pound portions. A sample of 91 packages of chicken livers has a standard deviation of 0.47. Construct the 98% confidence interval to estimate the standard deviation of the weights of the packages prepared by the machine. Round your answers to two decimal places.
Lower endpoint______ Upper endpoint__
Answer:
it simple as look
Step-by-step explanation:
He y I a m r a v I t ha n k S
Wowowowowowowowowk
A person invests 3500 dollars in a bank. The bank pays 4.75% interest compounded
quarterly. To the nearest tenth of a year, how long must the person leave the money
in the bank until it reaches 5800 dollars?
9514 1404 393
Answer:
10.7 years
Step-by-step explanation:
The formula for the balance in an account earning compound interest is ...
A = P(1 +r/n)^(nt)
where principal P is invested at annual rate r compounded n times per year for t years. We want to solve for t.
5800 = 3500(1 +0.0475/4)^(4t)
58/35 = 1.011875^(4t) . . . divide by 3500 and simplify a bit
log(58/35) = 4t·log(1.011875) . . . . take logs
t = log(58/35)/(4·log(1.011875)) . . . . divide by the coefficient of t
t ≈ 10.6966 ≈ 10.7
The person must leave the money n the bank for about 10.7 years for it to reach $5800.
How do you make 2.318181818 a mixed number
The function f is defined by f(x) = 4x + 1. What is the value of f(3)?
O 13
O 17
O 65
O 82
Answer:
13
Step-by-step explanation:
f(x) = 4x + 1
Let x= 3
f(3) = 4*3+1
= 12+1
= 13
Find the volume of the figure. Round your answers to the nearest tenth. It is recommended you use the π button on your calculator to solve.
Answer:
628 mi^3
Step-by-step explanation:
the volume of a cylinder is given by:
V = base area x height
thus,
V = (3.14)(5)^2(8)
V = (3.14)(25)(8)
V = 628 mi^3
the volume of the cylinder is 628 cubic miles
The volume of the cylinder is 628 cubic miles.
We have a cylinder of radius 5 mi and height 8 mi.
We have to find the volume of the figure and round it to nearest tenth.
What is the volume of cylinder?The volume of cylinder is given by the formula -
Volume [tex]=\pi r^{2} h[/tex]
We can use the above formula to calculate the volume of cylinder. In our case -
r = 5 mi
h = 8 mi
Substituting the values in the formula -
Volume [tex]=\pi\times5^{2}\times 8\\\\[/tex] = 628 cubic miles.
Hence, the volume of the cylinder is 628 cubic miles.
To solve more questions on finding the volume of cylinder, visit the link below -
https://brainly.com/question/16134180?referrer=searchResults
#SPJ2
PLEASE HELP!! WHOEVER HELPS FIRST AND GETS IT CORRECT GETS BRAILIEST!! By the way, TWO people need to answer so I can mark brainliest.
Answer:
0.045
Step-by-step explanation:
(0,4x0,5x0,3)-(0,2x0,5x0,15)
f (x) = sqrt(x)+ 2, g(x)=x^2+ 1
find f(g(x))
and g(f(x))
Answer:
[tex]f(x) = \sqrt{x} + 2 \\ \\ g(x) = {x}^{2} + 1 \\ \\ f{g(x)} = \sqrt{ {x}^{2} + 1 } + 2 \\ \\ g{f(x)} = {( \sqrt{x} + 2 )}^{2} + 1[/tex]
Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends on various biomechanical properties of the human nasal periosteum and fascia. An article reported that for a sample of 10 (newly deceased) adults, the mean failure strain (%) was 24.0, and the standard deviation was 3.2.
Required:
a. Assuming a normal distribution for failure strain, estimate true average strain in a way that converys information about precision and reliability.
b. Predict the strain for a single adult in a way that conveys information about precision and reliability. How does the prediction compare to the estimate calculated in part (a)?
Solution :
Given information :
A sample of n = 10 adults
The mean failure was 24 and the standard deviation was 3.2
a). The formula to calculate the 95% confidence interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times \frac{s}{\sqrt n}$[/tex]
Here, [tex]$t_{\alpha/2,n-1} = t_{0.05/2,10-1}$[/tex]
= 2.145
Substitute the values
[tex]$24 \pm 2.145 \times \frac{3.2}{\sqrt {10}}$[/tex]
(26.17, 21.83)
When the [tex]\text{sampling of the same size}[/tex] is repeated from the [tex]\text{population}[/tex] [tex]n[/tex] infinite number of [tex]\text{times}[/tex], and the [tex]\text{confidence intervals}[/tex] are constructed, then [tex]95\%[/tex] of them contains the [tex]\text{true value of the population mean}[/tex], μ in between [tex](26.17, 21.83)[/tex]
b). The formula to calculate 95% prediction interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times s \sqrt{1+\frac{1}{n}}$[/tex]
[tex]$24 \pm 2.145 \times 3.2 \sqrt{1+\frac{1}{10}}$[/tex]
(31.13, 16.87)
The expression y + y + 2y is equivalent to ??
because ??
Answer:
4y
They would have the same value if a number was substituted for y
Step-by-step explanation:
y+y+2y =
Combine like terms
4y
These are all like terms
They would have the same value if a number was substituted for y
Let y = 5
5+5+2(5) = 5+5+10 = 20
4(5) =20
The sum of a number and its inverse is 3 29 / 52. Find the number?
A sample of 13 sheets of cardstock is randomly selected and the following thicknesses are measured in millimeters. Give a point estimate for the population standard deviation. Round your answer to three decimal places. 1.96,1.81,1.97,1.83,1.87,1.84,1.85,1.94,1.96,1.81,1.86,1.95,1.89
===============================================
Explanation:
Add up the values to get
1.96+1.81+1.97+1.83+1.87+1.84+1.85+1.94+1.96+1.81+1.86+1.95+1.89= 24.54
Then divide over 13 (the number of values) to get 24.54/13 = 1.8876923 which is approximate.
So the mean is approximately 1.8876923
---------------------
Now make a spreadsheet as shown below
We have the first column as the x values, which are the original numbers your teacher provided. The second column is of the form (x-M)^2, where M is the mean we computed earlier. We subtract off the mean and square the result.
After we compute that column of (x-M)^2 values, we add them up to get what is shown in the highlighted yellow cell at the bottom of the column.
That sum is approximately 0.04403076924
Next, we divide that over n-1 = 13-1 = 12
0.04403076924 /12 = 0.00366923077
That is the sample variance. Apply the square root to this to get the sample standard deviation. This is the point estimate of the population standard deviation. As the name implies, it works for samples that estimate population parameters.
sqrt(0.00366923077) = 0.06057417576822
This rounds to 0.061 which is the final answer.
Use the compound interest formula to find the annual interest rate, r, if in 2 years an investment of 4,000 grows to 4410 The rate is %.
Answer:
5%
Step-by-step explanation:
Bank amount=PA*(1+r/100)^t
4410=4000*(1+x/100)^2
1.05=(1+x/100), x=5%
A solid is formed by rotating the region bounded by y = x − x^2 and y = 0 about the line x = 2 . Use the shell method to find the volume of the solid.
Answer:
The volume of the resulting solid is π/2 cubic units.
Step-by-step explanation:
Please refer to the diagram below.
The shell method is given by:
[tex]\displaystyle V = 2\pi \int _a ^b r(x) h(x)\, dx[/tex]
Where the representative rectangle is parallel to the axis of revolution, r(x) is the distance from the axis of revolution to the center of the rectangle, and h(x) is the height of the rectangle.
From the diagram, we can see that r(x) = (2 - x) and that h(x) is simply y. The limits of integration are from a = 0 to b = 1. Therefore:
[tex]\displaystyle V = 2\pi \int_0^1\underbrace{\left(2-x\right)}_{r(x)}\underbrace{\left(x - x^2\right)}_{h(x)}\, dx[/tex]
Evaluate:
[tex]\displaystyle \begin{aligned} V&= 2\pi \int_0 ^1 \left(2x-2x^2-x^2+x^3\right) \, dx\\ \\ &= 2\pi\int _0^1 x^3 -3x^2 + 2x \, dx \\ \\ &= 2\pi\left(\frac{x^4}{4} - x^3 + x^2 \Bigg|_0^1\right) \\ \\ &= 2\pi \left(\frac{1}{4} - 1 + 1 \right) \\ \\ &= \frac{\pi}{2}\end{aligned}[/tex]
The volume of the resulting solid is π/2 cubic units.
Answer:
pi/2
Step-by-step explanation:
I always like to draw an illustration for these problems.
For shells method think volume of cylinder=2pi×r×h
Integrate(2pi(2-x)(x-x^2) ,x=0...1)
Multiply
Integrate(2pi(2x-2x^2-x^2+x^3 ,x=0...1)
Combine like terms
Integrate(2pi(2x-3x^2+x^3) ,x=0...1)
Begin to evaluate
2pi(2x^2/2-3x^3/3+x^4/4) ,x=0...1
2pi(x^2-x^3+x^4/4), x=0...1
2pi(1-1+1/4)
2pi/4
pi/2
What is the x intercept of the graph that is shown below? Please help me
Answer:
(-2,0)
Step-by-step explanation:
The x intercept is the value when it crosses the x axis ( the y value is zero)
x = -2 and y =0
(-2,0)
Choose the system of inequalities that best matches the graph below. A. B. C. D.
The system of inequalities that is graphed is:
y ≤ - (2/3)*x
y < x - 3
So the correct option is B.
Which system of inequalities is the graphed one?First, we can see that for both of the inequalities the shaded part is below the lines.
You also can see that the solid line (correspondent to the symbol ≤) is the one with a negative slope, and the dashed line (correspondent with the line <) is the one with a positive slope.
Only with that, we conclude that the correct option is B.
y ≤ - (2/3)*x
y < x - 3
If you want to learn more about inequalities:
https://brainly.com/question/24372553
#SPJ1
Susan randomly selected a sample of plants to determine the average height of the total 35 plants in her garden. She measured the heights (in inches) of 12 randomly selected plants and recorded the data:
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
What is the sample mean of the heights of the plants in Susan's garden?
Answer:
3.5 inches
Step-by-step explanation:
Sample mean basically means that we need to find the average of the samples.
So the formula for finding average is
Number of observations/ Number of Occurrences
So when we add the values together we get
42.
So there are 12 numbers
So, 42/12 =
3.5 inches
The sample mean of the heights of the plants in Susan's garden is
3.5 inches.
Here,
Susan randomly selected a sample of plants to determine the average height of the total 35 plants in her garden.
She measured the heights (in inches) of 12 randomly selected plants and recorded the data:
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
We have to find the sample mean of the heights of the plants in Susan's garden.
What is Average?
Average value in a set of given numbers is the middle value, calculate as dividing the total of all values by the number of values.
Now,
The recorded data is;
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
To find the sample mean of the heights of the plants in Susan's garden we have to find the average of the recorded data.
Formula for average = [tex]\frac{sum of number of observation}{ number of occurrence}[/tex]
Hence, Average = [tex]\frac{1.0+ 1.4+1.8+2.0+ 2.5+3.5+4.2+4.5+ 4.8+ 5.0+ 5.3+ 6.0}{12} = \frac{42}{12} = 3.5[/tex]
Therefore, The sample mean of the heights of the plants in Susan's garden is 3.5 inches.
Learn more about the average visit:
https://brainly.com/question/22905678
#SPJ2
the value of M such that 3 3 M + 3 = 9 M + 4
Step-by-step explanation:
If you like my answer than please mark me brainliest
[tex]\\ \sf\longmapsto 33M+3=9M+4[/tex]
Interchange sides[tex]\\ \sf\longmapsto 33M-9M=4-3[/tex]
[tex]\\ \sf\longmapsto (33-9)M=1[/tex]
[tex]\\ \sf\longmapsto 24M=1[/tex]
[tex]\\ \sf\longmapsto M=\dfrac{1}{24}[/tex]
Three Nissans, two Fords, and four Chevrolets can be rented for $106 per day. At the same rates two Nissans, four Fords, and three Chevrolets cost $107 per day, whereas four Nissans, three Fords, and two Chevrolets cost $102 per day. Find the rental rate for the Fords.
Answer:
The rental rate for the Fords is of $12 per day.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the cost of a Nissan.
y is the cost of a Ford.
z is the cost of a Chevrolet.
Three Nissans, two Fords, and four Chevrolets can be rented for $106 per day.
This means that:
[tex]3x + 2y + 4z = 106[/tex]
Two Nissans, four Fords, and three Chevrolets cost $107 per day
This means that:
[tex]2x + 4y + 3z = 107[/tex]
Four Nissans, three Fords, and two Chevrolets cost $102 per day.
This means that:
[tex]4x + 3y + 2z = 102[/tex]
From the first equation:
[tex]4z = 106 - 3x - 2y[/tex]
[tex]2z = 53 - 1.5x - y[/tex]
[tex]z = 26.5 - 0.75x - 0.5y[/tex]
Replacing into the third equation:
[tex]4x + 3y + 53 - 1.5x - y = 102[/tex]
[tex]2.5x + 2y = 49[/tex]
From the second equation:
[tex]2x + 4y + 3z = 107[/tex]
[tex]2x = 107 - 4y - 3z[/tex]
[tex]x = 53.5 - 2y - 1.5z[/tex]
[tex]x = 53.5 - 2y - 1.5(26.5 - 0.75x - 0.5y)[/tex]
[tex]x - 1.125x = 53.5 - 2y - 39.75 + 0.75y[/tex]
[tex]-0.125x = 13.75 - 1.25y[/tex]
[tex]0.125x = 1.25y - 13.75[/tex]
[tex]x = \frac{1.25y - 13.75}{0.125}[/tex]
[tex]x = 10y - 110[/tex]
Find the rental rate for the Fords.
We have to find y, so:
[tex]2.5x + 2y = 49[/tex]
[tex]2.5(10y - 110) + 2y = 49[/tex]
[tex]25y - 275 + 2y = 49[/tex]
[tex]27y = 324[/tex]
[tex]y = \frac{324}{27}[/tex]
[tex]y = 12[/tex]
The rental rate for the Fords is of $12 per day.
Describe the following sequence using an algebraic expression as a rule 0; 2,4; 6
Answer:
Step-by-step explanation:
I assume the sequence is 0, 2, 4, 6
nth term = 2(n-1)
whats the scale factor of this one please?????
Answer:
0.5
Step-by-step explanation:
E to E'
(0, 3) to (0, 1.5) each term of E' is ½ of the corresponding term of E
N to N'
(-1, 1) to (-0.5, 0.5) each term of N' is ½ of the corresponding term of N
U to U'
(2, -2) to (1, -1) each term of U' is ½ of the corresponding term of U
V to V'
(1, -3) to (0.5, -1.5) each term of V' is ½ of the corresponding term of V