Answer:
1. 3x^3 - 2x^2 - x
2. -4x^2 + x
Step-by-step explanation:
Help please !!!!!!!!!
Answer: (a): Good course, (b): Bad course
Step-by-step explanation:
Firstly, because the standard deviation of the good course results is lower, there is less variation so he performs more consistently there.
Secondly, the trick with the second question is that while the mean of the bad course is slightly less, the standard deviation is quite a lot higher than that of the good course, so it's more likely that the highest single test score belongs to the bad course.
HELP ANSWER ASAP. what is the radius of a circle in which a 30 arc is 2pi inches long?
Answer:
I believe it's 12 in.
Step-by-step explanation:
hope this helps you!
What percent of 500 is 125
Answer:
25%
Step-by-step explanation:
125 of 500 can be written as: 125 /500
To find a percentage, we need to find an equivalent fraction with the denominator 100. Multiply both numerator & denominator by 100.
125 /500 × 100 /100
= ( 125 × 100/ 500 ) × 1 /100 = 25 /100
Answer:
25%
Step-by-step explanation:
Of means multiply and is means equals
P *500 = 125
Divide each side by 500
P = 125/500
P = .25
Change to percent form
P = 25%
Daphne borrows $2500 from a financial institution that charges 6% annual interest, compounded monthly, for 2 years. The amount that Daphne will need to pay back at the end of the term is
Ао
D
B
120°
Angle A =
degrees.
Answer:
A = 120
Step-by-step explanation:
Angle A is a vertical angle to 120 and vertical angles are equal
A = 120
[tex]\Large\rm\underbrace{{\green{ \: Angle \: A \: = \: 120 \degree}}}[/tex]
Because vertically opposite angles are always equal.
3x + ky = 8
X – 2ky = 5
are simultaneous equations where k is a constant.
b) Given that y = 1/2 determine the value of k.
Answer:
(a): x is 3 and ky is -1
(b): k is -2
Step-by-step explanation:
Let: 3x + ky = 8 be equation (a)
x - 2 ky = 5 be equation (b)
Then multiply equation (a) by 2:
→ 6x + 2ky = 16, let it be equation (c)
Then equation (c) + equation (b):
[tex] { \sf{(6 + 1)x + (2 - 2)ky = (16 + 5)}} \\ { \sf{7x = 21}} \\ { \sf{x = 3}}[/tex]
Then ky :
[tex]{ \sf{2ky = 3 - 5}} \\ { \sf{ky = - 1}}[/tex]
[tex]{ \bf{y = \frac{1}{2} }} \\ { \sf{ky = - 1}} \\ { \sf{k = - 2}}[/tex]
Simultaneous equations are used to represent a system of related equations.
The value of k when [tex]y = \frac 12[/tex] is -2
Given that:
[tex]3x + ky = 8[/tex]
[tex]x - 2ky = 5[/tex]
[tex]y = \frac 12[/tex]
Substitute [tex]y = \frac 12[/tex] in both equations
[tex]3x + ky = 8[/tex]
[tex]3x + k \times \frac 12 = 8[/tex]
[tex]3x + \frac k2 = 8[/tex]
[tex]x - 2ky = 5[/tex]
[tex]x - 2k \times \frac 12 = 5[/tex]
[tex]x - k = 5[/tex]
Make x the subject in [tex]x - k = 5[/tex]
[tex]x = 5 + k[/tex]
Substitute [tex]x = 5 + k[/tex] in [tex]3x + \frac k2 = 8[/tex]
[tex]3(5 + k) + \frac k2 = 8[/tex]
Open bracket
[tex]15 + 3k + \frac k2 = 8[/tex]
Multiply through by 2
[tex]30 + 6k + k = 16[/tex]
[tex]30 + 7k = 16[/tex]
Collect like terms
[tex]7k = 16 - 30[/tex]
[tex]7k = - 14[/tex]
Divide both sides by 7
[tex]k = -2[/tex]
Hence, the value of constant k is -2.
Read more about simultaneous equations at:
https://brainly.com/question/16763389
X^4+x^3-6x^2-14x-12=0 Make a list of possible rational roots. Test the possible roots until you find one that produces a remainder of 0 Write the resulting cubic function. Use synthetic division to find a second root that will reduce the cubic expression to a quadratic expression
Step-by-step explanation:
The Rational Roots Test states that for a polynomial with integer coefficients, the factors of the constant / the factors of the leading coefficient are the possible rational roots.
Here, the constant (the value without an x attached to it) is -12 and the leading coefficient (the value that the x to the highest degree is multiplied by) is 1 as x⁴ is multiplied by 1. The factors of -12 are
±(1, 2, 3, 4, 6, 12), so the possible rational roots are ±(1, 2, 3, 4, 6, 12)/1 (as 1 is the only factor of 1).
Trying out a few roots until we get one that works using synthetic division, we can try
x+1 (the root is x=-1)
-1 | 1 1 -6 -14 -12
| -1 0 6 8
__________________________
1 0 -6 -8 -4
the remainder is -4, so this does not work
x+2 (the root is x=-2)
-2 | 1 1 -6 -14 -12
| -2 2 8 12
__________________________
1 -1 -4 -6 0
Therefore, x=-2 is a root and x+2 is a factor of the polynomial. The quotient of the polynomial and x+2 is
-6 + (-4)x + (-1)* x² + 1 * x³ = x³-x²-4x-6
Using the rational roots theorem, the possible roots of x³-x²-4x-6 are
±(1,2,3,6)
Starting with
x-1 (root is x=1), we have
1 | 1 -1 -4 -6
| 1 0 -4
_____________________
1 0 -4 -10
there is a remainder, so this is not a root
next, x-2 (root is x=2)
2 | 1 -1 -4 -6
| 2 2 -4
_____________________
1 1 -2 -10
there is a remainder, so this is not a root
next, x-3 (root is x=3)
3| 1 -1 -4 -6
| 3 6 6
_____________________
1 2 2 0
x-3 is a factor and 3 is a root. the quotient of (x³-x²-4x-6)/(x-3) is x²+2x+2
Y = 2x - 4
(0, 4)
(3, -1)
(-1, -5)
(-4, 9)
Answer:
Y = 2x - 4
(2,-4)
gradient= 2
y-intersept = -4
If a sine curve has a vertical shift down 19 units with an amplitude of 21, what will the minimum and maximum values be? (i.e. how high and low will the graph go?)
Min Value:
Max Value:
Given:
Amplitude = 21
Vertical shift = 19 units down
To find:
The maximum and the minimum value.
Solution:
The general form of sine function is:
[tex]y=A\sin (Bx+C)+D[/tex]
Where, |A| is amplitude, [tex]\dfrac{2\pi}{B}[/tex] is period, [tex]-\dfrac{C}{B}[/tex] is phase shift and D is the vertical shift.
Here,
[tex]Maximum=D+A[/tex]
[tex]Minimum=D-A[/tex]
We have,
Amplitude: [tex]A = 21[/tex]
Vertical shift: [tex]D=-19[/tex]
Negative sign means shifts downwards.
Now,
[tex]Maximum=D+A[/tex]
[tex]Maximum=-19+21[/tex]
[tex]Maximum=2[/tex]
And,
[tex]Minimum=D-A[/tex]
[tex]Minimum=-19-21[/tex]
[tex]Minimum=-40[/tex]
Therefore, the minimum value is -40 and the maximum value is 2.
Find the value of x in the triangle shown below.
Answer:
x ≈ 55.5°
Step-by-step explanation:
Using the Sine rule in the triangle
[tex]\frac{5}{sinx}[/tex] = [tex]\frac{5.7}{sin70}[/tex] ( cross- multiply )
5.7 sinx = 5 sin70° ( divide both sides by 5.7 )
sin x = [tex]\frac{5sin70}{5.7}[/tex] , then
x = [tex]sin^{-1}[/tex] ([tex]\frac{5sin70}{5.7}[/tex] ) ≈ 55.5° ( to the nearest tenth )
Answer:
[tex]x =55[/tex]°
Step-by-step explanation:
An isosceles triangle is a triangle with two congruent sides. One can see that the given triangle is an isosceles triangle, as two sides have a side length of (5) units. One property of an isosceles triangle is the base angles theorem. This theorem states that the angles opposite the congruent sides of an isosceles triangle are congruent. In this situation, this means that two angles have a measure of (x) degrees. As a given, the sum of angles in any triangle is (180) degrees. Thus, one can form an equation, and solve for the unknown, (x):
[tex]x + x + 70 = 180[/tex]
Simplify,
[tex]2x + 70 =180[/tex]
Inverse operations,
[tex]2x + 70 =180[/tex]
[tex]2x = 110[/tex]
[tex]x =55[/tex]
A company's stock price flucated over a period of four days. The table shows the change in stock price per day. The net change in the company's stock price over the four days
Answer:
The net change is -.30
Step-by-step explanation:
increase means add
decrease means subtract
+3.50
-3.70
+3.30
-3.40
-------------
-.30
The net change is -.30
What is the equation of the line that passes through (-12,6) and (-6,1)?
Question 8 If f (2) = (1 + 3) and g (2) VO+ 7, find g (f (x)). 9(f()) = 1 + 10 O g(f ()) = VI + 3 +7 Og(f (x)) = v= + 10 Og(f (2)) = 2? + 10
Answer:
x+10
Step-by-step explanation:
f(x) = (x+3)^2 and g(x) = sqrt(x)+7
g(f(x)) =
Replace f(x) in for x in the function g(x)
= sqrt((x+3)^2)+7
= x+3 +7
= x+10
Find the measure of the indicated angle.
Answer:
i think it the measured of the indicated angle is 55
the circumference of a circle is 11pi ft. find its diameter, in feet
Answer:
The diameter would be 11 feet
Step-by-step explanation:
C = pi * d
we don't know D so we rearrange the equation to solve for D by dividing both sides by pi:
C/pi = d
Now we plug in everything
11pi/pi = d
The pi cancel each other out leaving with 11 feet
Therefore D = 11 feet
Which of the following characteristics best describes the given function of f(x) = 3x - 6?
A) exponential function, always increasing, linear
B) linear absolute value function, always increasing, linear, maximum
C) linear function, always increasing, straight lines, no maximum or minimum
D) exponential function, always decreasing, linear
Answer:
C
Step-by-step explanation:
degree 1 ( linear function
PLS HELP ME ON THIS QUESTION I WILL MARK YOU AS BRAINLIEST IF YOU KNOW THE ANSWER!!
Answer:
The distribution is positively skewed.
Step-by-step explanation:
It's not symmetric because the distribution in the chart isn't equally shown or marked. It's not negative skewed either because for it to be negative the graph would have to go down in a negative direction, usually the left, but in the picture you posted the graph is going down in the right direction. Lastly, positively skewed graphs or charts look like the one you posted. They go down in the right direction, hence why they're called "positively" skewed. The right tail of the distribution is longer in positively skewed graphs or charts.
A hot air balloon is released into the air. During its straight ascent, the angle of elevation was 15° and, 3 minutes later, the angle of elevation increased 20°. How fast is the balloon traveling, in km/h, if the angle measurements were taken 300m away from the launch site?
Answer:
The speed of the balloon is 0.16 m/s.
Step-by-step explanation:
CD = 300 m
Let AD = x
AB = y
time, t = 3 min
Triangle, ADC
[tex]tan 15 = \frac{AD}{BC}\\\\0.27 \times 300 = x \\\\x = 80.4 m[/tex]
Triangle, BCD
[tex]tan 20 = \frac{BD}{BC}\\\\0.36 \times 300 = x + y \\\\x + y = 109.2 m[/tex]
So, y = 109.2 - 80.4 = 28.8 m
Speed = 28.8/180 = 0.16 m/s
what is the answer to
(35+5)[16+(12÷ 4)]
Hi there!
»»————- ★ ————-««
I believe your answer is:
760
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
[tex]\boxed{\text{Calculating the answer...}}\\\\(35+5)[16+(12\div 4)]\\------------------\\\text{Follow \textbf{PEMDAS}}\\\\\rightarrow 35+ 5 = 40\\\\40[16+(12\div 4)]\\\\\rightarrow 12\div4 = 3\\\\\rightarrow 16 + 3 = 19\\\\40(19)\\\\\rightarrow 40 * 19\\\\\boxed{760}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Someone help asappppp
Answer:
all have "bases" less than one which is a decay...
only "C" is greater than 1 (1.01)
"C" is the answer
Step-by-step explanation:
please help with me
Answer:
217
Step-by-step explanation:
53 + 44 + 46 = 143
360 - 143 = 217
Utilize graphing to find the solution to
the following system of equations.
4x + 3y = 25 AND y = -5x + 1
([?], [])
Answer:
you guess any value of x and then you substitute any three values for example for the first equation you can guess the value of x to be 1 or 2 or 3
AB←→||CD←→. Find the measure of ∠BFG.
Answer:
Value of ∠ BFG = 135°
Step-by-step explanation:
Given:
AB || CD
∠ AFG = (3x + 15)°
∠ FGD = (5x - 5)°
Find:
∠ BFG
Computation:
We know that;
∠ AFG = ∠ FGD
3x + 15 = 5x - 5
3x - 5x = - 5 - 15
- 2x = - 20
2x = 20
x = 10
Value of ∠ AFG = 3x + 15
Value of ∠ AFG = 3(10) + 15
Value of ∠ AFG = 45°
∠ BFG = 180° - Value of ∠ AFG
∠ BFG = 180° - 45°
∠ BFG = 135°
Value of ∠ BFG = 135°
Kenya solved the equation below. Negative 6 (x minus 2) + 3 x = negative 3 (x + 3) + 21 What is the solution to Kenya's equation? –4 12 no solution infinitely many solutions
Answer: No solution
Step-by-step explanation:
-6(x - 2) + 3x = -3(x + 3) + 21
-6x + 12 + 3x = -3x - 9 + 21
Collect like terms
-6x + 3x + 3x = -9 + 21 - 12
-6x + 6x = - 9 + 9
0 = 0
In this scenario, it can be deduced that there is no solution to Kenya's equation.
Answer:
infinitely many solutions
Step-by-step explanation:
i got it right
Write an equation that represents the statement "the
product of a number, x, and the number 7 is 42."
Answer:
7x = 42
Step-by-step explanation:
"Product" refers to multiplication and "is" refers to equal to.
Hi! I'm happy to help!
This equation will be written like this
x×7=42
To make this easier to solve, we can use the inverse operation, division.
42÷7=x
42 divided by 7 is 6, so the answer is 6.
I hope this was helpful, keep learning! :D
Will give us many points as possible thank you very much
Answer:
27 1/2 cm^2
Step-by-step explanation:
The area of a parallelogram is
A = bh
A = 5 * 5 1/2
Change to an improper fraction
A = 5 * (2*5+1)/2
A = 5*11/2
A = 55/2
Change back to a mixed number
A = 27 1/2
The volume of a prism with side lengths measured in millimeters is 20. How could this measurement be written? Check all that apply.
20 millimeters
20 mm3
20 mm2
20 square millimeters
20 cubic millimeters
Answer:
20 mm^3, 20 cubic millimeters
Step-by-step explanation:
The volume of a prism is length times width times height.
Length, width, and height can have units of mm.
mm * mm * mm = mm^3
The units of a volume must be cubic units.
Answer: 20 mm^3, 20 cubic millimeters
Instructions: Find the angle measures given the figure is a rhombus.
Answer:
m <1 = 147
m <2 = 90
Step-by-step explanation:
In rhombus diagonals are perpendicular to each other so
m <2 = 90
m < 1 = 180- 33
= 147
Answered by Gauthmath
The required angle of the rhombus m∠1 = 57° and m∠2 = 90°.
Given that,
A figure of a rhombus is shown,
An angle of 33° is given,
m∠1 and m∠2 is to be determined.
The triangle is a geometric shape that includes 3 sides and sum of the interior angle should not greater than 180°.
The angle can be defined as the one line inclined over another line.
Here, the rhombus has been shown with an angle of 33° of the side with one of the diagonal.
Since the diagonal of the rhombus bisect each other at an angle of 90 so the angle m∠2 = 90 and the sum of the interior angle of a triangle is 180. So,
m∠1 + 33 + 90 = 180
m∠1 = 180 - 123
m∠1 = 57
Thus, the required angle of the rhombus m∠1 = 57° and m∠2 = 90°.
Learn more about Angles here:
https://brainly.com/question/13954458
#SPJ5
After getting RM24 from his mother, Samuel had 3 times as much as he had previously. How much did he have previously?
Answer:
Samuel had RM8 previously
Step-by-step explanation:
24÷3=8
The exchange rate between dollars ($) and pounds (£) is $1 = £0.65 . The exchange rate between euros (€) and pounds is €1 = £0.74 . Khan changes €520 into pounds. He spends £260 and then changes the rest into dollars. Work out how many dollars he receives
Answer:
€520=£442.83
=£442.83-£260
=£182.83 into dollars=$251.52
Therefore he receives $251.52