Explanation:
here's the answer to your question
Which of the following best describes physical science?
0...
OA.
the study of motion
OB.
the study of matter and energy
O C.
the study of Earth's structure and processes
OD.
the study of reactions
O E.
the study of living things
Reset
Ne
B. The study of matter and energy.
Because physical science is everything that doesn't include organic things.
The study of matter and energy among the following best describes physical science.
What is matter?
Matter in chemistry, is defined as any kind of substance that has mass and occupies space that means it possess volume .Matter is composed up of atoms which may or not be of same type.
Atoms are further made up of sub atomic particles which are the protons ,neutrons and the electrons .The matter can exist in various states of substances such as solids, liquids and gases depending on the conditions of the temperature and the pressure.
The states of matter are inter convertible into each other by changing the parameters of temperature and pressure.Matter is always conserved by law of conservation of matter.The law was proposed by Antoine Lavoisier.
Learn more about matter,here:
https://brainly.com/question/9477180
#SPJ7
What is the oxidation state for bh3
Answer:
As hydrogen is more electronegative than boron, in BH3 the oxidation number of hydrogen should be taken as -1. (E. N. of B = 2.0 & E. N. of H = 2.1)
Suppose, oxidation number of B is x.
So, we can write, x + 3*(-1) = 0
=> x = +3
Therefore, oxidation num
Explanation:
As hydrogen is more electronegative than boron, in BH3 the oxidation number of hydrogen should be taken as -1. (E. N. of B = 2.0 & E. N. of H = 2.1)
Suppose, oxidation number of B is x.
So, we can write, x + 3*(-1) = 0
=> x = +3
Therefore, oxidation num
The freezing point of a substance is -20°C. Its boiling point is 120°C.
a. At 80°C the substance is in the state
b. At -50°C the substance is in the state.
C. At 140°C the substance is in the state.
Answer:
a. liquid
b. solid
c. gas, (should be at it's boiling point)
Explanation: If the normal melting point of a substance is below room temperature, the substance is a liquid at room temperature. Benzene melts at 6°C and boils at 80°C; it is a liquid at room temperature. If both the normal melting point and the normal boiling point are above room temperature, the substance is a solid.
if you need an explanation to each lmk
The mass of a container is determined to be 1.2 g. A sample of a compound is transferred to this container, and the mass of the compound plus the container is determined to be 3.06 g. The mass of the compound should be reported as:__.
Answer:
Sorry I don't know what you
According to law of conservation of mass as mass is neither created nor destroyed mass of compound should be reported as 1.86 g that is by subtracting mass of compound from mass of compound and container.
What is law of conservation of mass?According to law of conservation of mass, it is evident that mass is neither created nor destroyed rather it is restored at the end of a chemical reaction .
Law of conservation of mass and energy are related as mass and energy are directly proportional which is indicated by the equation E=mc².Concept of conservation of mass is widely used in field of chemistry, fluid dynamics.
Law needs to be modified in accordance with laws of quantum mechanics under the principle of mass and energy equivalence.This law was proposed by Antoine Lavoisier in the year 1789.
Learn more about law of conservation of mass,here:
https://brainly.com/question/13383562
#SPJ2
6) Hydrogen gas can be generated from the reaction between aluminum metal and hydrochloric acid:
2 Al(s) + 6 HCl(aq) + 2 AICI3, (aq) + 3 H2(g)
a. Suppose that 3.00 grams of Al are mixed with excess acid. If the hydrogen gas produced is directly collected
into a 850 mL glass flask at 24.0 °C, what is the pressure inside the flask (in atm)?
b. This hydrogen gas is then completely transferred from the flask to a balloon. To what volume (in L) will the
balloon inflate under STP conditions?
c. Suppose the balloon is released and rises up to an altitude where the temperature is 11.2 °C and the pressure is
438 mm Hg. What is the new volume of the balloon (in L)?
Stoichiometry refers to the relationship between the moles of reactants and products.
This question must be solved using both stoichiometry and the gas laws
The reaction equation is;
2 Al(s) + 6 HCl(aq) --------> 2 AICI3, (aq) + 3 H2(g)
Using stoichiometryNumber of moles of Al = 3g/27g/mol = 0.11 moles
According to the reaction equation;
2 moles of Al yields 3 moles of H2
0.11 moles of Al yields 0.11 * 3/2 = 0.165 moles
Using the gas lawsFrom the ideal gas equation;
PV=nRT
P = ?
n= 0.165 moles
V = 0.85 L
T = 297 K
R = 0.082 atmLK-1mol-1
P= nRT/V
P = 0.165 * 0.082 * 297/0.85
P= 4.73 atm
Under STP conditions;P1 = 4.73 atm
T1 = 297 K
V1 = 0.85 L
P2 = 1 atm
T2 =273 K
V2 =?
From the general gas equation;P1V1/T1 = P2V2/T2
P1V1T2 = P2V2T1
V2 = P1V1T2/P2T1
V2 = 4.73 * 0.85 * 273/1 * 297
V2 = 3.69 L
P1 = 760 mmHg
T1 = 273 K
V1 = 3.69
P2 = 438 mm Hg
T2 = 284.2 K
V2 =?
P1V1/T1 = P2V2/T2
P1V1T2 = P2V2T1
V2 = P1V1T2/P2T1
V2 = 760 * 3.69 * 284.2/438 *273
V2 = 797010.48/119574
V2= 6.67 L
https://brainly.com/question/1190311
WHAT WOULD THE RIGHT OPTION??
how many resonance structures of benzene are known?
A) 3
B) 4
C) 5
D) 6
Answer:
C) 5
Step-by-step explaination:
Benzene has 5 resonance structures.
a. You have a stock solution of 14.8 M NH3. How many milliliters of this solution should you dilute to make 1000.0 mL of 0.250 M NH3?
b. If you take a 10.0 mL portion of the stock solution and dilute it to a total volume of 0.500 L, what will be the concentration of the final solution?
Answer:A) V = 16.892 ml
Explanation:
M1 * V1 = M2 * V2
14.8 M * V1 =0.250 M * 1000 ml
V1 = 16.892 ml
a. The volume of 16.89 milliliters of the stock solution of 14.8 M should be diluted to make 1000.0 mL of 0.250 M.
b. The concentration of the final solution is 0.296 M.
What is the dilution law?The concentration or the volume of the concentrated or dilute solution can be calculated by using the equation:
M₁V₁ = M₂V₂
where M₁ and V₁ are the concentration and volume of the concentrated solution respectively and M₂ and V₂ are the concentration and volume of the dilute solution.
A stock solution is a solution that has a high concentration and that will be diluted to a low concentration by the addition of water in it.
Given, a stock solution of concentration, M₁ = 14.8 M
The concentration of the diluted solution, M₂ = 0.250 M
The volume of diluted solution, V₂ = 1000ml
Substitute the value of the molarity and volume in equation (1):
(14.8)× (V₁) = (1000) × (0.250)
V₁ = 16.89 ml
Similarly, for part (b): M₁ = 14.8 M, V₁ = 10 ml and V₂ = 0.5L = 500 ml
(14.8)× (10) = (500) × (M₂)
M₂ = 0.296 M
Learn more about dilution law, here:
https://brainly.com/question/15718488
#SPJ5
A chunk of a metal alloy displaces 0.58 L of water and has a mass of 2.9 kg. What is the density of the alloy in g/cm3?
Answer:
5g/cm3
Explanation:
firstly convert the litres and kilograms to grams and centimeters.
1l is equivalent to 1000cm3
0.58×1000
580cm3
and 1kg is equivalent to 1000g
2.9×1000
2900
then find the density by using the formula
density=mass/volume
=2900g/580cm3
=5g/cm3
I hope this helps
một chất hữu cơ có cấu tạo c2h2 cho khí br2 vào ta được hỗn hợp khí
Answer:
C2H2 + Br2 → C2H2Br2
Explanation:
Each 5-ml teaspoon of Extra Strength Maalox Plus contains 450 mg of magnesium hydroxide and 500 mg of aluminum hydroxide. How many moles of hydronium ions H3O are neutralized by 1 teaspoon of antacid product?
Answer:
0.0347 moles of hydronium ions
Explanation:
The equation of the neutralization reaction between hydroxide and hydronium ions is given below:
H₃O+ (aq) + OH- (aq) ----> 2 H₂O (l)
From the equation above, 1 mole of hydroxide ions will neutralize one mole hydronium ions.
The moles of hydroxide ions present in 1 teaspoon or 5 mL of antacid product is calculated as follows:
Number of moles = mass / molar mass
Molar mass of Magnesium hydroxide, Mg(OH)₂ = 58 g/mol
Molar mass of aluminium hydroxide, Al(OH)₃ = 78 g/mol
Mass of magnesium hydroxide = 450 g = 0.45 g
Mass of aluminium hydroxide = 500 mg = 0.5 g
Moles of magnesium hydroxide = (0.45/58) moles
Moles of aluminium hydroxide = (0.5/78) moles
Equation of the ionization of magnesium hydroxide and aluminium hydroxide is given below:
Mg(OH)₂ (aq) ----> Mg²+ (aq) + 2 OH- (aq)
Al(OH)₃ (aq) ---> Al³+ (aq) + 3 OH- (aq)
Number of moles of hydroxide ions present in (0.45/58) moles of magnesium hydroxide = 2 × (0.45/58) moles = 0.0155 moles
Number of moles of hydroxide ions present in (0.5/78) moles of aluminium hydroxide = 3 × (0.5/78) moles = 0.0192 moles
Total moles of hydroxide ions = 0.0155 + 0.0192 = 0.0347 moles hydroxide ions
Therefore, 0.0347 moles of hydroxide ions will neutralize 0.0347 moles of hydronium ions.
If you dissolve 0.1 mol of formic acid in 1 L of water, ther esulting solution contains 0.004 mol of H₃O+. Based on this information, is formic acid a strong acid, or is it a weak acid?
Please explain!
In an ideal case, the acid would completely protonate. such an acid would be a strong acid. Dissociation of Formic acid looks like:
HCOOH + H₂O → COOH⁻ + H₃O⁺
one mole of formic acid should give one mole of Hydronium(H₃O⁺) ions
similarly, 0.1 moles of formic acid should produce 0.1 moles of hydronium ions. but we know that it is not the case, a much lesser amount is actually formed.
Which means that Formic acid did not completely dissociate into COOH⁻ and H⁺ ions.
Hence, Formic Acid is a weak acid
We know
Any acid
Containing carbon is weak Containing no carbon is strongFormic acid stands for HCOOH
It contains C means dissociation is less .
The dissociation of H+ is less means acidity is less.
Weak acidDetermine which choice is an example of an endothermic process.
O A. Lighting a match
B. Respiration
C. Running a gas engine
D. Baking bread
Answer:
D. Baking bread
Explanation:
In this process, energy is absorbed and in an endothermic process energy is absorbed too.
Baking bread is an example of an endothermic process, therefore option (d) is correct .
What do you mean by endothermic process ?Endothermic reactions are chemical processes in which the reactants absorb heat from the environment to produce products.
An endothermic reaction is accompanied by an absorption of heat.
Endothermic reactions cause a cooling effect by lowering the temperature of the surrounding environment.
A decrease in temperature can be observed with the progression of the reaction. The reaction is non-spontaneous in endothermic reactions .
Baking bread is an example of an endothermic process, hence option (d) is correct .
Learn more about endothermic process ,here:
https://brainly.com/question/23184814
#SPJ5
Which is the best interpretation of the two flat portions of the graph?
In those portions, the heat supplied to the substance by the heater does not lead to a temperature rise as intermolecular forces are broken.
When a substance is heated, we normally expect that its temperature will rise as a consequence.
However, heat may be supplied to a substance but its temperature does not rise owing to the fact that the heat energy supplied is used to break intermolecular bonds.
This occurs during fusion and boiling. The heat supplied at these point does not result in temperature rise since it is used to break intermolecular bonds. The temperature remains steady during these processes as shown by the two flat portions on the graph in the image attached to the question. This heat supplied is known as the latent heat.
For more about latent heat, see:
https://brainly.com/question/19863536
Answer:
The answer for me was "These show where changes of state are occuring"
Explanation:
I got it right
what is the bond energy required to break one mole of carbon-carbon bonds
Answer:
100 kcal of bond energy
The elementary reaction 2H2O(g)↽−−⇀2H2(g)+O2(g) proceeds at a certain temperature until the partial pressures of H2O, H2, and O2 reach 0.0900 bar , 0.00100 bar , and 0.00350 bar respectively. What is the value of the equilibrium constant at this temperature?
Answer:
3.89 ×10^-5
Explanation:
Since they are gaseous reactants, we obtain the equilibrium constant from the given partial pressures;
p(H2O) = 0.0900 bar
p(H2) = 0.00100 bar
p(O2) = 0.00350 bar
The equation of the reaction is;2H2O(g)⇄2H2(g)+O2(g)
Kp= p(H2) . p(O2)/p(H2O)
Kp= 0.00100 × 0.00350/0.0900
Kp= 3.89 ×10^-5
A central atom has two lone pairs on opposite sides and four single bonds. What is the molecule geometry of the result?
A. octahedral
B. tetrahedral
C. square planar
D. linear
The correct answer is C. square planar
According to the Valence Shell Electron Pair Repulsion Theory(VSEPR), The shape of a molecule depends on the number of electron pairs in the molecule.
VSEPR theory was first coined by Gillespie and Nyhlom in 1957 as an improvement over the Sidgwick - Powell theory.
According to this theory, the shape of a molecule is determined by the number of electron pairs that surround the valence shell of the central atom in the molecule. The electron pairs are positioned as far apart in space as possible to minimize repulsion of electron pairs.
However, the presence of lone pairs distorts the shape anticipated for the molecule on the basis of VSEPR.
For a molecule having six electron pairs, an octahedral geometry is expected(electron domain geometry). However, the presence of two lone pairs which are positioned at opposite side of the four single bonds leads to an observed square planar molecular geometry.
https://brainly.com/question/13591921
Answer:
square planar
Explanation:
How did Kepler's discoveries contribute to astronomy?
O They supported the heliocentric model.
O They established the laws of planetary motion.
O They explained how the Sun rises and sets.
O They made astronomy accessible to people who spoke Italian.
They made astronomy accessible to people who spoke italian
Answer:
"They established the laws of planetary motion"
Explanation:
Mr. Kepler was the astronomer who came up with the "Laws of Planetary Motion."
I don’t know what Ksp and Kf are stand for?
Answer:
Sorry but I know only what ksf stand for
Explanation:
Ksf stand for solubility product constant
Answer:
ksp stands for solubility product constant .
kf stands for molal freezing point depression constant ..
Explanation:
KSP = The solubility product constant, Ksp, is the equilibrium constant for a solid substance dissolving in an aqueous solution. It represents the level at which a solute dissolves in solution. The more soluble a substance is, the higher the Ksp value it has .
KF = Kf is a constant for a given solvent. Kf is called the molal freezing point depression constant and represents how many degrees the freezing point of the solvent will change when 1.00 mole of a nonvolatile nonionizing (nondissociating) solute dissolves in one kilogram of solvent.
how is the Sun classified?
A as a giant star
B as a medium star
C as a white star as a neutron star
D as a white dwarf
Answer:
As a giant star.
Explanation:
A
Forcus on the yellow highlighted texts, your help is appreciated.
[tex]{ \sf{ \red{no \: pranks}}}[/tex]
Answer:
Transition temperature is the temperature at which a substance changes from one state to another.
Allotropy is the existence of an element in many forms.
At what velocity (m/s) must a 20.0g object be moving in order to possess a kinetic energy of 1.00J
Answer:
10 ms-1
Explanation:
Kinetic energy = 1/2 × m × v^2
1 = 1/2× 20 ×10^ -3 × v^2
v ^ 2 = 100
v = 10 ms-1
note : convert grams in to kg before substitution as above
Given:
Kinetic energy,
K.E = 1.00 JMass,
m = 20.0 gWe know the formula,
→ [tex]K.E = \frac{1}{2} mv^2[/tex]
By putting the values, we get
[tex]1 = \frac{1}{2}\times 20\times 10^{-3}\times (v)^2[/tex]
[tex]v^2 = 100[/tex]
[tex]v = \sqrt{100}[/tex]
[tex]v = 10 \ m/s[/tex]
Thus the above response is correct.
Learn more about K.E here:
https://brainly.com/question/24997625
Two common methods to generate an aldehyde is by oxidation of an alcohol and through ozonolysis.
a. True
b. False
Answer:
a. True.
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of ethanol:
[tex]{ \bf{CH _{3} CH_{2}OH \: \: \frac{Ag/O_{2} }{500 \degree C} > \: \:CH _{3} CHO}}[/tex]
[tex]{ \sf{CH _{3} CHO \: \: is \: ethanal}} [/tex]
By ozonolysis:
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
Answer:
A. True
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of ethanol:
By ozonolysis:
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
Determine the number of moles of aluminum in 2.154 x 10-1 kg of Al. Group of answer choices 5816 mol 7.984 mol 6.02 X 1023 mol 4.801 mol 8.783
Answer:
Avogadro's number is 1 mol = 6.02 * 10^23 elements
It means that 1 mol of atoms is 6.02 * 10^23 atoms
1 mol of atoms = 6.02 * 10^23 atoms
From there, if you divide both sides by 1 mol of atoms, you get
1 = 6.02 * 10^23 atoms / 1 mol of atoms.
That means, that to pass from a number of moles of atoms to number of atoms you have to multipby by the conversion factor
6.02*10^23 atoms Al/ 1 mol Al
That is the second option of the list.
Explanation:
How many grams of H₂SO₄ are contained in 2.00 L of 6.0 M H₂SO₄?
Please explain and show work.
Answer:
1176 grams
Explanation:
nH2SO4 =2*6=12 mol
mH2SO4=12*98=1176 grams
Answer:
solution given:
molarity of H₂SO₄=6 M
volume=2L
no of mole =6M*2=12mole
we have
mass =mole* actual mass=12*98=1176g
the mass is 1176g.
When hydrogen gas reacts with oxygen gas, water vapour is formed according to the
reaction 2H2 + O2 2H2O. If 3.00 mol of hydrogen gas react with 3.00 mol
of oxygen gas, which reactant will be the reactant in excess?
Explanation:
here's the answer to the question
A nuclease enzyme breaks the covalent bond originally connecting the phosphate to the 5' carbon in a nucleic acid. After allowing this enzyme to completely digest the nucleic acid down to monomers, you perform tests to determine where the phosphate is attached to each monomer. Where do you expect to find this phosphate
Answer:
The phosphate will remain attached to the 5' carbon of the deoxy or the ribose sugar in the nucleic acid monomers.
Explanation:
The structure of nucleic acid polymers is built up from monomers of nucleotides.
A nucleotide consists of a sugar backbone which is either a ribose or deoxyribose sugar, a nitogenous base which is either a purine or pyrimidine, and a phosphate group. The nitrogenous base is attached to the carbon number 1 or C-1 of the sugar backbone by a covalent bond. The phosphate group on the other hand is covalently attached to the carbon number 5 or 5' carbon of the sugar backbone.
When polymers of nucleic acids are formed, the phosphate at the 5' carbon of the sugar backbone is covalently linked in a phosphodiester bond to the 3' carbon of the sugar backbone in another nucleotide molecule, thus extending the strands of the nucleic acid molecule.
Nucleases are enzymes that break down the phosphodiseter bonds in nucleic acids resulting in nucleotide monomers. After complete digestion ofmthe nucleic acid polymer by nucleases, the phosphate will remain attached to the 5' carbon of the deoxy or the ribose sugar in the nucleic acid monomers.
Write balanced equations for the reaction of each of the following carboxylic acids with NaOH. Part A formic acid Express your answer as a chemical equation. A chemical reaction does not occur for this question. Request Answer Part B 3-chloropropanoic acid Express your answer as a chemical equation. nothing A chemical reaction does not occur for this question.
Answer:
Part A
HCOOH(aq) + NaOH(aq) → HCOONa(aq) + H2O(l)
Part B
ClCH2CH2CO2H(aq) + NaOH(aq) ------> ClCH2CH2CO2Na(aq) + H2O(l)
Explanation:
The reaction between an alkanoic acid and a base is a neutralization reaction. The reaction occurs as follows;
RCOOH + NaOH ----> RCOONa + H2O
We have to note the fact that the net ionic reaction still remains;
H^+(aq) + OH^-(aq) ---> H2O(l)
In both cases, the reaction can occur and they actually do occur as written.
The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum.
a. True
b. False
Answer:
a. True
Explanation:
The main information that gives an infrared absorption spectrum is the type of functional groups that are present in an organic compound. The infrared (IR) spectroscopy is based on the fact that functional groups absorb light in the IR region of the electromagnetic spectrum (approximately at 2,500-16,000 nm) and induces a vibrational excitation of the covalently bonded atoms in the group. The vibration of the atoms can be of different types, such as stretching, bending, etc. Each functional group (such as the carbonyl group) in an organic compound absorbs at a specific IR frequency so they can be distinguished from an IR spectrum.
Draw a formula for Thr-Gly-Ala (T-G-A) in its predominant ionic form at pH 7.3. You may assume for the purposes of this question that the pKa values of the acidic groups of amino acid residues in the peptide are the same as in the amino acid itself.
Answer:
gggggggggg
Explanation:
gggggggg
The tripeptide formed from threonine, glycine and alanine is neutral at the pH of 7.3. The carboxylic end is negative charged by donating its proton to form the NH₃⁺ group.
What is peptide?Peptides are protein units formed from two or more amino acids bonded through peptide bonds. There are essential and non-essential amino acids. Essential amino acids have to be uptake from food and non-essential amino acids are synthesized inside the body.
Threonine is an essential amino acid with a CH₃CHOH side group. Glycine has the simplest side group hydrogen and alanine has CH₃ side chain. Both glycine and alanine are non-essential amino acids.
Each amino acids are represented with a three letter code or one letter symbol. Thus threonine is T, G for glycine and A for alanine. At a pH of 7.3 the peptide formed from these amino-acids contains a negatively charged carboxylic end.
A positively charged amino end made by protonation from the acid group make the overall charge zero. The structure of the peptide is given in the uploaded image.
To find more about peptides, refer the link below:
https://brainly.com/question/11843803
#SPJ2
Consider the reaction: A(aq) + 2B (aq) === C (aq). Initially 1.00 mol A and 1.80 mol B
were placed in a 5.00-liter container. The mole of B at equilibrium was determined to
be 1.00 mol. Calculate K value.
0.060
5.1
25
17
Ugh
Answer:
17
Explanation:
Step 1: Calculate the needed concentrations
[A]i = 1.00 mol/5.00 L = 0.200 M
[B]i = 1.80 mol/5.00 L = 0.360 M
[B]e = 1.00 mol/5.00 L = 0.200 M
Step 2: Make an ICE chart
A(aq) + 2 B(aq) ⇄ C(aq)
I 0.200 0.360 0
C -x -2x +x
E 0.200-x 0.360-2x x
Then,
[B]e = 0.360-2x = 0.200
x = 0.0800
The concentrations at equilibrium are:
[A]e = 0.200-0.0800 = 0.120 M
[B]e = 0.200 M
[C]e = 0.0800 M
Step 3: Calculate the concentration equilibrium constant (K)
K = [C] / [A] × [B]²
K = 0.0800 / 0.120 × 0.200² = 16.6 ≈ 17