The given equation can be written as:(1/2)log(x) - 28 = 0(1/2)log(x) = 28Multiplying both sides by 2,log(x) = 56Taking antilog of both sides ,x = antilog(56)x = 10^56Thus, the value of x is 10^56.
Given expression is 22-7(2) = -12 h. i.e. 8 = -12hMultiplying both sides by -1/12,-8/12 = h or h = -2/3We have to solve log √x - 30 + 2 = 0 to get the value of x
Here, log(x) = y is same as x = antilog(y)Here, we have log(√x) = (1/2)log(x)
Thus, the given equation can be written as:(1/2)log(x) - 28 = 0(1/2)log(x) = 28Multiplying both sides by 2,log(x) = 56Taking antilog of both sides ,x = antilog(56)x = 10^56Thus, the value of x is 10^56.
to know more about equation visit :
https://brainly.com/question/24092819
#SPJ11
In a laboratory experiment, the count of a certain bacteria doubles every hour. present midnighe a) At 1 p.m., there were 23 000 bacteria p How many bacteria will be present at r b) Can this model be used to determine the bacterial population at any time? Explain. 11. Guy purchased a rare stamp for $820 in 2001. If the value of the stamp increases by 10% per year, how much will the stamp be worth in 2010? Lesson 7.3 12. Toothpicks are used to make a sequence of stacked squares as shown. Determine a rule for calculating t the number of toothpicks needed for a stack of squares n high. Explain your reasoning. 16. Calc b) c) 17. As de: 64 re 7 S
Lab bacteria increase every hour. Using exponential growth, we can count microorganisms. This model assumes ideal conditions and ignores external factors that may affect bacterial growth.
In the laboratory experiment, the count of a certain bacteria doubles every hour. This exponential growth pattern implies that the bacteria population is increasing at a constant rate. If we know the initial count of bacteria, we can determine the number of bacteria at any given time by applying exponential growth.
For example, at 1 p.m., there were 23,000 bacteria. Since the bacteria count doubles every hour, we can calculate the number of bacteria at midnight as follows:
Number of hours between 1 p.m. and midnight = 11 hours
Since the count doubles every hour, we can use the formula for exponential growth
Final count = Initial count * (2 ^ number of hours)
Final count = 23,000 * (2 ^ 11) = 23,000 * 2,048 = 47,104,000 bacteria
Therefore, at midnight, there will be approximately 47,104,000 bacteria.
However, it's important to note that this model assumes ideal conditions and does not take into account external factors that may affect bacterial growth. Real-world scenarios may involve limitations such as resource availability, competition, environmental factors, and the impact of antibiotics or other inhibitory substances. Therefore, while this model provides an estimate based on exponential growth, it may not accurately represent the actual bacterial population under real-world conditions.
Learn more about exponential here:
https://brainly.com/question/29160729
#SPJ11
Calculate: e² |$, (2 ² + 1) dz. Y $ (2+2)(2-1)dz. 17 dz|, y = {z: z = 2elt, t = [0,2m]}, = {z: z = 4e-it, t e [0,4π]}
To calculate the given expressions, let's break them down step by step:
Calculating e² |$:
The expression "e² |$" represents the square of the mathematical constant e.
The value of e is approximately 2.71828. So, e² is (2.71828)², which is approximately 7.38906.
Calculating (2² + 1) dz:
The expression "(2² + 1) dz" represents the quantity (2 squared plus 1) multiplied by dz. In this case, dz represents an infinitesimal change in the variable z. The expression simplifies to (2² + 1) dz = (4 + 1) dz = 5 dz.
Calculating Y $ (2+2)(2-1)dz:
The expression "Y $ (2+2)(2-1)dz" represents the product of Y and (2+2)(2-1)dz. However, it's unclear what Y represents in this context. Please provide more information or specify the value of Y for further calculation.
Calculating 17 dz|, y = {z: z = 2elt, t = [0,2m]}:
The expression "17 dz|, y = {z: z = 2elt, t = [0,2m]}" suggests integration of the constant 17 with respect to dz over the given range of y. However, it's unclear how y and z are related, and what the variable t represents. Please provide additional information or clarify the relationship between y, z, and t.
Calculating 17 dz|, y = {z: z = 4e-it, t e [0,4π]}:
The expression "17 dz|, y = {z: z = 4e-it, t e [0,4π]}" suggests integration of the constant 17 with respect to dz over the given range of y. Here, y is defined in terms of z as z = 4e^(-it), where t varies from 0 to 4π.
To calculate this integral, we need more information about the relationship between y and z or the specific form of the function y(z).
Learn more about calculus here:
https://brainly.com/question/11237537
#SPJ11