Answer:
44.72m/s
Explanation:
use th formula:vf²=vi²at
and then substitute the values
remember the units
If there is no air resistance, the speed of the free falling object from the same height will be the same. Therefore, the ratio of speed of the stone to that of rock for 2 seconds falling will be 1 : 1.
What is free falling ?An object freely falling under the force of gravitation is called the free falling body. Here, the acceleration of the object is the acceleration due to gravity.
For a freely falling body, the velocity v = g t
where g is the acceleration due to gravity and for earth g is 9.8 m/s².
Everybody falls with the same rate freely under the acceleration due to gravity if there is no air resistance at all.
Here, the time t = 2 s
then v = 9.8 m/s² × 2 s = 19.6 m/s.
the speed of both the rock and stone will be 19.6 m/s in the absence of air resistance. Hence, the ratio of their speed is 1 : 1.
Find more on free falling:
https://brainly.com/question/13299152
#SPJ7
13. How many electrons does a complete third electron shell hold?
Answer:
A) 8A complete third electron shell holds 8 electrons
---------------------------
hope it helps...
have a great day!!
Answer:
8
Explanation:
help asap PLEASE I will give u max everything all that
steps if possible
Explanation:
2. [tex]R_T = R_1 + R_2 + R_3 = 625\:Ω + 330\:Ω + 1500\:Ω[/tex]
[tex]\:\:\:\:\:\:\:= 2455\:Ω = 2.455\:kΩ[/tex]
3. Resistors in series only need to be added together so
[tex]R_T = 8(140\:Ω) = 1120\:Ω = 1.12\:kΩ[/tex]
A uniform copper wire has a resistance of 100 ohms. If the wire is cut into 10 equal lengths, what will be the resistance of each piece
Answer:
Since resistance is proportional to length R = K L / A
the resistance of each piece would be R / 10 = 10 ohms
A copper wire is the conductor wire. If the wire is cut into 10 equal lengths, the resistance of each piece will be 10 ohms.
What is resistance?Resistance is the opposition to the flow of electrons in the conductor wire.
Given is the total resistance of the wire is 100 ohms.
Resistance is directly proportional to the length of the wire. When the wire is cut into 10 pieces, the new resistance will be
[tex]\dfrac{R}{10} =\dfrac{100}{10} =10 \:\rm ohms[/tex]
Hence, the resistance of each piece will be 10 ohms.
Learn more about Resistance.
https://brainly.com/question/11431009
#SPJ2
Consider a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum
Answer:
2.8 seconds
Explanation: Given that a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum
The parameters given are :
Length = 2 m
Mass = 5kg
Using the formula below
T = 2 pi × sqrt ( L / g )
Substitute all the parameters into the formula.
T = 2 × 3.143 × sqrt ( 2 / 9.8 )
T = 2 × 3.143 × 0.4517
T = 2.838 s
Therefore, the period of oscillation for this simple pendulum is 2.8 s approximately.
Which of the following describes the relationship between the weight of fluid
displaced by an object and the buoyant force exerted on the object?
A. Archimedes' principle
B. Flow rate equation
C. Pascal's principle
D. Bernoulli's principle
A child on a tricycle is moving at a speed of 1.40 m/s at the start of a 2.25 m high and 12.4 m long incline. The total mass is 48.0 kg, air resistance and rolling resistance can be modeled as a constant friction force of 41.0 N, and the speed at the lower end of the incline is 6.50 m/s. Determine the work done (in J) by the child as the tricycle travels down the incline.
Answer:
The work done by the child as the tricycle travels down the incline is 416.96 J
Explanation:
Given;
initial velocity of the child, [tex]v_i[/tex] = 1.4 m/s
final velocity of the child, [tex]v_f[/tex] = 6.5 m/s
initial height of the inclined plane, h = 2.25 m
length of the inclined plane, L = 12.4 m
total mass, m = 48 kg
frictional force, [tex]f_k[/tex] = 41 N
The work done by the child is calculated as;
[tex]\Delta E_{mech} = W - f_{k} \Delta L\\\\W = \Delta E_{mech} + f_{k} \Delta L\\\\W = (K.E_f - K.E_i) + (P.E_f - P.E_i) + f_{k} \Delta L\\\\W = \frac{1}{2} m(v_f^2 - v_i^2) + mg(h_f - h_i) + f_{k} \Delta L\\\\W = \frac{1}{2} \times 48(6.5^2 - 1.4^2) + 48\times 9.8(0-2.25) + (41\times 12.4)\\\\W = 966.96 \ - \ 1058.4 \ + \ 508.4\\\\W = 416.96 \ J[/tex]
Therefore, the work done by the child as the tricycle travels down the incline is 416.96 J
The heat capacity of sodium metal is 1500 JK-1, if the mass of the sodium metal is 75 kg, the specific
heat capacity would be
Explanation:
the answer is in the image above
A cement block accidentally falls from rest from the ledge of a 53.4-m-high building. When the block is 19.4 m above the ground, a man, 2.00 m tall, looks up and notices that the block is directly above him. How much time, at most, does the man have to get out of the way
Answer:
The time required by the man to get out of the way is 0.6 s.
Explanation:
height of building, H = 53.4 m
height of block, h = 19.4 m
height of man, h' = 2 m
Let the velocity of the block at 19.4 m is v.
use third equation of motion
[tex]v^2 = u^2 + 2 gh\\\\v^2 = 0 + 2 \times 9.8 \times (53.4 - 19.4)\\\\v = 25.8 m/s[/tex]
Now let the time is t.
Use second equation of motion
[tex]h = u t + 0.5 gt^2\\\\19.4 - 2 = 25.8 t + 4.9 t^2\\\\4.9 t^2 + 25.8 t - 17.4= 0 \\\\t = \frac{-25.8\pm\sqrt{665.64 + 341.04}}{9.8}\\\\t = \frac{-25.8\pm31.7}{9.8}\\\\t = 0.6 s, - 5.9 s[/tex]
Time cannot be negative so time t = 0.6 s.
nariz (am
miria amy
0 = 0 +260 + (0)
U= 29 mb
6= ut +1 (04)
Car I was sitting at rest when it nous hit from
the rear by car 2 of identical mass. Both cant had
their heaks on and they stidled together Guy
in the original directioned of motion. If the stopping
force is notx (Combined weight of the cars), die
u=0 to find the approximate speed of car a just
before the collision took place on
Answer:
33 mph
Explanation:
My best guess
Give the missing ammeter reading a and b. suggest why more current flow through some bulbs than through others Grade 10 question and Answer
Answer:
becaude of electricity
Equilibrium of forces
Answer:
If the size and direction of the forces acting on an object are exactly balanced, then there is no net force acting on the object and the object is said to be in equilibrium. Because the net force is equal to zero, the forces in Example 1 are acting in equilibrium.
Equilibrium of forces means that the net force is 0. It can either be when there is no force acting on the object or when the force acting on the object are balanced.
If you are driving a car with a velocity of -25 m/s and you have an acceleration of -2 m/s^2, are you speeding up or slowing down? Why?
Answer:
Hmmm...
This is a bit tricky
Ok...
Negative Velocity means you're Moving in the Opposite direction....
Negative Acceleration (deceleration) means you're slowing down.
Deceleration would mean slowing down if you were Moving with a Positive velocity.
But In this case...
You're Moving with negative velocity and Negative acceleration...
This simply means that the acceleration and velocity vector are in the same direction....
Its means that...
"YOU'RE SPEEDING UP"
Just that you're doing it in the opposite direction.
Hope this helps.
1. a. What is the pressure on a surface when a force of 500 N acts on an area of 2 m2
250 pascal
Explanation:
Pressure is defined as the force me unit area
Mathematically:
Pressure = Force/area
i.e = P=F/A
A rock is pulled back in a slingshot as shown in the diagram below. The elastic on the slingshot is displaced 0.2 meters from its initial position. The rock is pulled back with a force of 10 newtons.
When the rock is released, what is its kinetic energy?
Answer:
id
Explanation:
i don't know
The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
What will be the speed of the rock?Initial speed of the rock, u = 40m/s
Final position of the rock s = 0m taking the release point as reference. The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
Nuclear energy is a useful source of power but has disadvantages. The disadvantage of nuclear energy is it produces dangerous waste.
Initial speed of the rock, u = 40m/s
Final position of the rock s = 0m taking the release point as reference
From the second equation of motion:
solving above we get:
t = 0s or t = 8.16s, t =0 seconds is neglected since it represents the initial position which is the same as the final position at t = 8.16s
So, the rock takes 8.16 seconds to return to the release point.
Therefore, The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
Learn more about speed of rock on:
brainly.com/question/11049671
#SPJ2
steps btw if possible
asap pls I will give u everyting
Answer:
(4) 50 ohms (5) 11.76 ohms
Explanation:
In the parallel combination, the equivalent resistance is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+....[/tex]
4. When three 150 ohms resistors are connected in parallel, the equivalent is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}\\\\R=50\ \Omega[/tex]
5. Three resistors of 20 ohms, 40 ohms and 100 ohms are connected in parallel, So,
[tex]\dfrac{1}{R}=\dfrac{1}{20}+\dfrac{1}{40}+\dfrac{1}{100}\\\\=11.76\ \Omega[/tex]
Hence, this is the required solution.
why material selection is important to design and manufacturing?
Answer:
. You want your product to be as strong and as long lasting as possible. There are also the safety implications to consider. You see, dangerous failures arising from poor material selection are still an all too common occurrence in many industries. yep that the answer have a Great day
Explanation:
(◕ᴗ◕✿)
An investigator collects a sample of a radioactive isotope with an activity of 490,000 Bq.48 hours later, the activity is 110,000 Bq. Part A For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution What is the half-life of the sample?
Answer:
The correct answer is "22.27 hours".
Explanation:
Given that:
Radioactive isotope activity,
= 490,000 Bq
Activity,
= 110,000 Bq
Time,
= 48 hours
As we know,
⇒ [tex]A = A_0 e^{- \lambda t}[/tex]
or,
⇒ [tex]\frac{A}{A_0}=e^{-\lambda t}[/tex]
By taking "ln", we get
⇒ [tex]ln \frac{A}{A_0}=- \lambda t[/tex]
By substituting the values, we get
⇒ [tex]-ln \frac{110000}{490000} = -48 \lambda[/tex]
⇒ [tex]-1.4939=-48 \lambda[/tex]
[tex]\lambda = 0.031122[/tex]
As,
⇒ [tex]\lambda = \frac{ln_2}{\frac{T}{2} }[/tex]
then,
⇒ [tex]\frac{ln_2}{T_ \frac{1}{2} } =0.031122[/tex]
⇒ [tex]T_\frac{1}{2}=\frac{ln_2}{0.031122}[/tex]
[tex]=22.27 \ hours[/tex]
can some one tell the answers
plz answer the question
Answer:
Ray A = Incidence ray
Ray B = Reflected ray
Explanation:
From the law of reflection,
Normal: This is the line that makes an angle of 90° with the reflecting surface.
Ray A is the incidence ray: This is the ray that srikes the surface of a reflecting surface. The angle formed between the normal and the incidence ray is called the incidence angle
Ray B is the reflected ray: This is the ray leaves the surface of a reflecting surface. The angle formed between the reflected ray and the normal is called reflected angle
A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together and move 1.97 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.
Answer:
The coefficient of friction between the cars and the road is 0.859.
Explanation:
The two cars collide each other inelastically, then we can determine the resulting velocity by the Principle of Momentum Conservation:
[tex]m_{A}\cdot v_{A} + m_{B}\cdot v_{B} = (m_{A} + m_{B})\cdot v[/tex] (1)
Where:
[tex]m_{A}[/tex], [tex]m_{B}[/tex] - Masses of the cars, in kilograms.
[tex]v_{A}[/tex], [tex]v_{B}[/tex] - Initial velocities of the cars, in meters per second.
[tex]v[/tex] - Velocity of the resulting system, in meters per second.
If we know that [tex]m_{A} = 2120\,kg[/tex], [tex]v_{A} = 13.4\,\frac{m}{s }[/tex], [tex]m_{B} = 2810\,kg[/tex] and [tex]v_{B} = 0\,\frac{m}{s}[/tex], then the velocity of the resulting system:
[tex]v = \frac{m_{A}\cdot v_{A}+m_{B}\cdot v_{B}}{m_{A}+m_{B}}[/tex]
[tex]v = \frac{(2120\,kg)\cdot \left(13.4\,\frac{m}{s} \right)+(2810\,kg)\cdot \left(0\,\frac{m}{s} \right)}{2120\,kg + 2810\,kg}[/tex]
[tex]v = 5.762\,\frac{m}{s}[/tex]
By Principle of Energy Conservation and Work-Energy Theorem, we understand that the initial translational kinetic energy ([tex]K[/tex]), in joules, is dissipated due to work done by friction ([tex]W_{f}[/tex]), in joules, that is to say:
[tex]K = W_{f}[/tex] (2)
[tex]\frac{1}{2}\cdot (m_{A}+m_{B})\cdot v^{2} = \mu\cdot (m_{A}+m_{B})\cdot g \cdot s[/tex]
[tex]\frac{1}{2}\cdot v^{2} = \mu \cdot g\cdot s[/tex] (2b)
Where:
[tex]\mu[/tex] - Coefficient of friction, no unit.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]s[/tex]- Travelled distance, in meters.
If we know that [tex]v = 5.762\,\frac{m}{s}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]s = 1.97\,m[/tex], then the coefficient of friction is:
[tex]\mu = \frac{v^{2}}{2\cdot g\cdot s}[/tex]
[tex]\mu = \frac{\left(5.762\,\frac{m}{s} \right)^{2}}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (1.97\,m)}[/tex]
[tex]\mu = 0.859[/tex]
The coefficient of friction between the cars and the road is 0.859.
c) You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. (a)
What speed, period, and radial acceleration will it have? (b) How much work must be done to the
satellite to put it in orbit? (c) How much additional work would have to be done to make the
Answer:
Scalar
Explanation:
No direction
1. Why does the shape of the lens in your eye change?
To alter the amount of light that enters the eye
to focus the light
to alter the image sent to the brain
Answer:
to focus the link light
Explanation:
Because the lens is flexible and elastic, it can change its curved shape to focus on objects and people that are either nearby or at a distance. ... The ciliary muscles, which are part of the ciliary body, are attached to the lens and contract or release to change the lens shape and curvature.
Answer:
to focus the link light
Explanation:
vote brainliest I never got voted brainliest plssss
12. What type of lens is pictures below?
Oconverging lens
diverging lens
This is convex lens .
hence It's a converging lens .
The picture shown is a type of converging lens. The correct option is A.
What is a converging lens?A converging lens, also known as a convex lens, is a type of optical lens that is thicker in the middle than at the edges. It is shaped like a curved-outward disc and is commonly used in optical systems such as cameras, telescopes, and microscopes. When light passes through a converging lens, it bends inward and converges at a focal point located on the other side of the lens.
This focal point is determined by the curvature of the lens and its refractive index, which affects how much the light is bent. The distance between the lens and the focal point is called the focal length, and it determines the magnification and the image size produced by the lens. Converging lenses are used in many applications that require focusing and magnifying light, such as correcting vision problems and creating images in photography and microscopy.
Therefore, The correct answer is converging lens.
To learn more about the lens equation click:
https://brainly.com/question/11971432
#SPJ2
Which one will it be
Answer: D
The force decreases inversely proportional to 1/r(squared)
Explanation:
I looked it up im sure this is correct
Answer:
option d
Explanation:
Two objects are attracted to each other by a gravitational force F. ... As the distance r from the center of the planet increases, what happens to the force of gravity on the rocket? The force decreases inversely proportional to 1/r(squared) A spacecraft is orbiting Earth with an orbital radius r.
the force of gravity is represented as
F = GM1M2/r²
now the mass of warth and rocket is considered to be constant and G is a universal constant so it can be said
F is inverse to r²
therefore as the value of r increases that is distance between earth and rocket increases the force decreases
(Follows inverse square law)
which of the following is a correct statement. a. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are constant. b. In dc steady state conditions, the voltages across the capacitors are zero and the currents through the capacitance are constant. The current through the inductors are constant and the voltage across the inductances are zero. c. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are zero and the voltage across the inductances are constant. d. WIn dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Answer:
d. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Explanation:
The current through a capacitor is given by i = CdV/dt where C = capacitance of capacitor and V = voltage across capacitor. At steady state dV/dt = 0 and V = constant. So, i = CdV/dt = C × 0 = 0.
So, in dc steady state, the voltage across a capacitor is constant and the current zero.
The voltage across an inductor is given by V = Ldi/dt where L = inductance of inductor and i = current through inductor. At steady state di/dt = 0 and V = constant. So, V = Ldi/dt = L × 0 = 0.
So, in dc steady state, the voltage across an inductor is zero and the current constant.
So, In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
The answer is d.
Two children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3.3 m long, its mass is 0.52 kg, and the force exerted on it by the children is 47 N. (a) What is the linear mass density of the rope (in kg/m)
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m
One way families influence healthy technology use is when siblings explain the use of media to each other. Which of these outfits would you expect if this guideline was followed?
Answer:
The answer would be C.
Explanation:
This is what I would expect when you show someone else how to do something then is also known as teaching.
Please Mark as Brainliest
Hope this Helps
If the temperature of the conductor is increased, the electrons’ speeds decrease
Answer:
HOPE IT HELPS YOU!!!
Explanation:
Mark FadedGirl25 as brainliest
A large dump truck can move 1,170 tons/h of gravel from one point to another on a work site. What is this rate in lb/s
Answer:
The rate of the dump truck is 650 [tex]\frac{lb}{s}[/tex]
Explanation:
A large dump truck can move 1,170 tons/h of gravel from one point to another on a work site.
To convert the units from tons/h to lb/s, you should know that:
1 ton= 2000 lb1 h= 3600 s (1 h= 60 minutes and 1 minute= 60 seconds)To carry out the unit conversion you must perform the following steps:
[tex]1170 \frac{ton}{h}*\frac{2000 lb}{1 ton} *\frac{1 h}{3600 s}[/tex]
Solving:
[tex]1170 \frac{ton}{h}*=650 \frac{lb}{s}[/tex]
So, the rate of the dump truck is 650 [tex]\frac{lb}{s}[/tex]
Copy the diagram. add a voltmeter to show how you would measure the voltage of the cell
Answer: the answer is 23voltage
Explanation: because the voltage and time put together is 23