Answer:
4hx - 8x - 3h - 4
k = ------------------------
5
8x + 5k + 4
h = ------------------------
4x - 3
Step-by-step explanation:
4 (hx - 1) - 3 (x + h) = 5 (x + k)
4hx - 4 - 3 (x + h) = 5 (x + k)
4hx - 4 - 3x - 3h = 5 (x + k)
4hx - 4 - 3x - 3h = 5x + 5k add 3h both sides
4hx - 4 - 3x - 3h + 3h = 5x + 5k + 3h simplify
4hx - 4 - 3x = 5x + 5k + 3h add 4 both sides
4hx - 4 - 3x + 4 = 5x + 5k + 3h + 4 simplify
4hx - 3x = 5x + 5k + 3h + 4 subtract 5x from both sides
4hx - 3x - 5x = 5x + 5k + 3h + 4 - 5x simplify
4hx - 8x = 5k + 3h + 4
4hx - 8x - 3h - 4 = 5k
4hx - 8x - 3h - 4
k = ------------------------
5
solving for h;
4hx - 3h = 8x + 5k + 4
h(4x - 3) = 8x + 5k + 4
8x + 5k + 4
h = ------------------------
4x - 3
The value of h and k are h = (8x + 5k + 4) / (4x - 3) and k = (4hx - 8x - 3h - 4) / 5 respectively
Given:
4 (hx - 1) -3 (x +h) ≡ 5 (x + k)
open parenthesis
4hx - 4 - 3x - 3h = 5x + 5k
4hx - 4 - 3x - 3h - 5x - 5k = 0
4hx - 8x - 3h - 5k - 4 = 0
For k
4hx - 8x - 3h - 4 = 5k
[tex]k = (4hx - 8x - 3h - 4) / 5[/tex]
For h
4hx - 8x - 3h - 5k - 4 = 0
4hx - 3h = 8x + 5k + 4
h(4x - 3) = 8x + 5k + 4
[tex]h = (8x + 5k + 4) / (4x - 3)[/tex]
Therefore, the value of h and k are h = (8x + 5k + 4) / (4x - 3) and k = (4hx - 8x - 3h - 4) / 5 respectively
Read more:
https://brainly.com/question/21406377
What is the value of x?
7
7 square root 2
14
14 square root 2
Answer:
14
Step-by-step explanation:
Using the sine ratio in the right triangle and the exact value
sin45° = [tex]\frac{1}{\sqrt{2} }[/tex] , thus
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{7\sqrt{2} }{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )
x = 7[tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 7 × 2 = 14
Answer:
x = 14i hope it helps :)Step-by-step explanation:
[tex]Hypotenuse = x \\Opposite = 7\sqrt{2} \\\alpha = 45\\\\\Using \: SOHCAHTOA\\Sin \alpha = \frac{Opposite}{Hypotenuse}\\ \\Sin 45 = \frac{7\sqrt{2} }{x} \\\\\frac{\sqrt{2} }{2} = \frac{7\sqrt{2} }{x} \\\\\sqrt{2x} = 14\sqrt{2} \\\\\frac{\sqrt{2x} }{2} = \frac{14\sqrt{2} }{2} \\x = 14[/tex]
How many of the positive integer factors of 15552 are perfect squares?
There are 12 factors which are perfect squares is 1, 4, 9, 16, 36, 64, 81, 144, 324, 576, 1296, 5184.
What is factors?Factors can be define splitting the value in multipliable values.
Factorization of 15552
= 1 * 4 * 4 * 4* 9 * 9 * 3
Perfect squares can be formed by above factors are
= 1, 4, 9, 16, 36, 64, 81, 144, 324, 576, 1296, 5184.
Thus, there are 12 factors which are perfect squares is 1, 4, 9, 16, 36, 64, 81, 144, 324, 576, 1296, 5184.
Learn more about factors here:
https://brainly.com/question/24182713
#SPJ2
What is the recursive definition for 25,20,15,10?
Answer:
aₙ = 30 - 5n
Step-by-step explanation:
25,20,15,10, ...
We see from the given series that it is AP with:
First term = 25Common difference = -5 and it is decreasing seriesThen formula is:
aₙ= a₁ + (n-1)daₙ= 25 + (n-1)(-5) aₙ= 25 - 5n + 5aₙ = 30 - 5nSimplify this equation -8a-5a
Answer:
-13a
Step-by-step explanation:
Since -8 and -5 have like variables, you can subtract them. -8-5 is -13, so the answer is -13a.
Answer:
-13a
Step-by-step explanation:
These two numbers are already like terms, so you can subtract it easily.
First, don't look at the a.
-8-5= -13 because if something is negative and gets subtracted, that means it'll still be negative.
Now that we now it equals -13, we can add the variable a back onto the answer. We get -13a.
A car travels 120m along a straight road that is inclined at 8° to the horizontal. Calculate the vertical distance through which the car rises. (Sin8°=0.1392)
The vertical distance through which the car rises is 16.7 m
What is right triangle?"It is a triangle whose one of the angle is 90°."
What is sine of angle?In right triangle, for angle 'x',
sin(x) = (opposite side of angle x)/hypotenuse
For given example,
Consider the following figure for given situation.
A car travels 120 m along AC.
ΔABC is right triangle with hypotenuse AC.
∠C = 8°
Consider sine of angle C,
[tex]\Rightarrow sin(C)=\frac{AB}{AC}\\\\\Rightarrow sin(8^{\circ})=\frac{AB}{120}\\\\ \Rightarrow 0.1392=\frac{AB}{120}\\\\ \Rightarrow AB = 0.1392\times 120\\\\\Rightarrow AB = 16.70~ m[/tex]
Therefore, the vertical distance through which the car rises is 16.7 m
Learn more the sine angle here:
https://brainly.com/question/14553765
#SPJ2
Glass A measures 84 mm in diameter and 175 mm tall. Glass B measures 96 mm in diameter and 125 mm tall. Which glass holds more liquid? How much more?
Answer:
Glass A
Step-by-step explanation:
Volume = п r ² h
п = 3.14 aprox.
r = radius = diameter/2
h = tall
glass Avolume = 3.14 * (84/2)² * 175
volume = 3.14 * 42² * 175
volume = 3.14 * 1764 * 175
volume = 969318mm³
glass Bvolume = 3.14 * (96/2)² * 125
volume = 3.14* 48² * 125
volume = 3.14 * 2304 * 125
volume = 904320mm³
Answer:
969318 > 904320
then:
Glass A holds more liquid
find the missing part of the proportion 12/x = 3/7 x= _
Answer:
x = 28
Step-by-step explanation:
12/x = 3/7
Using cross products
3x = 12*7
3x = 84
Divide by 3
x = 28
the angle of elevation of the top of a tower from a point 42m away from the base on level ground is 36 find the height of the tower
Answer:
30.51 meters
Step-by-step explanation:
Given that:
The distance from the point to the base of the tower = 42 m, the angle of elevation = 36°.
According to sine rule if a,b,c are the sides of a triangle and its respective opposite angles are A, B, C. Therefore:
[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]
Let the height of the tower be a and the angle opposite the height be A = angle of elevation = 36°
Also let the distance from the point to the base of the tower be b = 42 m, and the angle opposite the base of the tower be B
To find B, since the angle between the height of the tower and the base is 90°, we use:
B + 36° + 90° = 180° (sum of angles in a triangle)
B + 126 = 180
B = 180 - 126
B = 54°
Therefore using sine rule:
[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)}\\\\\frac{a}{sin(36)}=\frac{42}{sin(54)}\\\\ a=\frac{42*sin(36)}{sin(54)}\\ \\a=30.51\ meters[/tex]
The height of the tower is 30.51 meters
without actually calculating the cubes find the value of each of the following (-28)^3+(12)^3+(16)^3
Answer:
-16128
Step-by-step explanation:
This expression can be calculated by algebraic means, whose process is described below:
1) [tex](-28)^{3}+(12)^{3}+(16)^{3}[/tex] Given.
2) [tex](-12-16)^{3} + (12)^{3}+(16)^{3}[/tex] Definition of addition.
3) [tex](-12)^{3} + 3\cdot (-12)^{2}\cdot (-16)+3\cdot (-12)\cdot (-16)^{2}+(-16)^{3}+(12)^{3}+(16)^{3}[/tex] Cubic perfect binomial.
4) [tex](12)^{3}+[(-1)\cdot (12)]^{3}+(16)^{3} + [(-1)\cdot (16)]^{3}+3 \cdot (-12)^{2}\cdot (-16) + 3\cdot (-12)\cdot (-16)^{2}[/tex] Commutative property/[tex](-x)\cdot y = -x\cdot y[/tex]
5) [tex](12)^{3} + (-1)^{3}\cdot (12)^{3} + 16^{3} +(-1)^{3}\cdot (16)^{3} + (-3)\cdot [(-12)^{2}\cdot (16) +(-16)^{2}\cdot (12)][/tex] Distributive property/[tex](-x)\cdot y = -x\cdot y[/tex]/[tex]x^{n}\cdot y^{n} = (x\cdot y)^{n}[/tex]
6) [tex](12)^{3} + [-(12)^{3}]+(16)^{3} + [-(16)^{3}]+ (-3)\cdot [(-12)^{2}\cdot (16)+(-16)^{2}\cdot (12)][/tex] [tex](-x)\cdot y = -x\cdot y[/tex]
7) [tex](-3)\cdot [(-12)^{2}\cdot (16) + (-16)^{2}\cdot (12)][/tex] Existence of the additive inverse/Modulative property for addition.
8) [tex](-3) \cdot [(12)^{2}\cdot (16)+(16^{2})\cdot (12)][/tex] [tex]x^{n}\cdot y^{n} = (x\cdot y)^{n}[/tex]/[tex](-x)\cdot (-y) = x\cdot y[/tex]
9) [tex](-3)\cdot (12)\cdot (16)\cdot (12+16)[/tex] Distributive property.
10) [tex]-16128[/tex] [tex](-x)\cdot y = -x\cdot y[/tex]/Definition of sum/Definition of multiplication/Result
A car advertisement claims that a certain car can accelerate from rest to 70 km/hr in 7 seconds find the car acceleration
Answer:
acceleration [tex]\approx 2.78\,\,\frac{m}{s^2}[/tex]
Step-by-step explanation:
The acceleration is the change in velocity per unit of time.
Therefore to have this rate in appropriate units that can combine, we re-write the change from 0 to 70 km/h in meters per second using:
[tex]70 \frac{km}{h} = \frac{70000}{3600} \frac{m}{s}[/tex]
so in this case the acceleration becomes:
[tex]accel=\frac{change\,\,vel}{change\,\,time} =\frac{70000m}{3600\,*7\,s^2} \approx 2.78\,\,\frac{m}{s^2}[/tex]
For what value(s) of k will the function y=6x^2-8x+k have: a) one zero b) two zeros c) no zeros *this is not multiple choice*
Answer:
Step-by-step explanation:
Hello, please consider the following.
[tex]6x^2-8x+k=0\\\\\text{We compute the discriminant.}\\\\\Delta = b^2-4ac=8^2-4*6*k=8*8-8*3*k=8*(8-3k)[/tex]
And the we know that if the discriminant is
***** [tex]\Delta[/tex] < 0, meaning 8-3k<0, meaning
[tex]\boxed{k>\dfrac{8}{3}}[/tex]
then, there is no real solution.
***** [tex]\Delta = 0[/tex], meaning
[tex]\boxed{k=\dfrac{8}{3}}[/tex]
There is 1 solution.
***** [tex]\Delta[/tex] > 0, meaning
[tex]\boxed{k<\dfrac{8}{3}}[/tex]
There are 2 solutions.
Thank you
PS: To give more details...
[tex]8-3k=0\\\\\text{Add 3k}\\\\8=3k\\\\\text{Divide by 3}\\\\k=\dfrac{8}{3}[/tex]
Which equation does NOT graph a line? A) y = 5 B) y = -3x3 C) y = 2/3 x D) y = −8x That 3 in b is an exponent btw
Answer:b
Step-by-step explanation:
Rocket science
ASAP i need to know the complete working
Answer:
a(1):30%
(2):2135.34
(3):15000
Step-by-step explanation:
a(1):the total is 18750 and 5625 was not taxed therefore 5625 of 18750 was not taxed so get the amount expressed as a percentage by multiplying by 100
{5625/18750}×100
(2):so get the tax from the taxable amount and the taxable amount is 13125 and the tax is 22% of it so (22/100)×13125=2887.5
she takes home the amount remaining after taxation so 18750-2887.5(tax)(don't subtract 5625)=15862.5
she receives the above amount in 52 equal amounts so divide 15862.5/52 to get one amount =305.048 (meaning that per week she receives one of the 52 equal amounts I guess)
(3):so the original salary before moving to A was 100% but after moving it increases by 25 so the salary is 125% =18750(don't deduct tax I guess) so it will be (100/125)×18750
Please answer this question now
Answer:
m∠C = 102°
Step-by-step explanation:
The above diagram is a cyclic quadrilateral
Step 1
First we find m∠B
The sum of opposite angles in a cyclic quadrilateral is equal to 180°
m∠D + m∠B = 180°
m∠B = 180° - m∠D
m∠B = 180° - 80°
m∠B = 100°
Step 2
Since we have found m∠B
We can proceed to find the Angle outside to circle
m∠CDA = 2 × m∠B
m∠CDA = 2 × 100°
m∠CDA = 200°
m∠CDA = m∠CD + m∠DA
m∠DA = m∠CDA - m∠CD
m∠DA = 200° - 116°
m∠DA = 84°
Step 3
Find m∠DAB
m∠DAB = m∠DA + m∠AB
m∠DAB = 84° + 120°
m∠DAB = 204°
Step 4
Find m∠C
It you look at the cyclic quadrilateral properly,
m∠DAB is Opposite m∠C
Hence
m∠C = 1/2 × m∠DAB
m∠C = 1/2 × 204
m∠C = 102°
Therefore ,m∠C = 102°
Work out the mean for the data set below: 3, 5, 4, 3, 5, 6 Give your answer as a fraction. answer
Answer:
4 1/3
Step-by-step explanation:
3 + 5 + 4 + 3 + 5 + 6 = 26
26/6 = 4 2/6 (4 1/3)
Answer:
13/3
Step-by-step explanation:
To find the mean, add up all the numbers and divide by the number of terms
( 3+5+4+3+5+6) /6
26/6
Divide top and bottom by 2 to simplify the fraction
13/3
What is the factorization of 2x^2 + 5x + 3?
A. (x+3)(x + 3)
B. (x+3)(x + 1)
C. (2x+3)(x + 1)
D. (2x + 3)(x + 3)
Answer:
( 2x +3) (x+1)
Step-by-step explanation:
2x^2 + 5x + 3
2 factors to 2 and 1
3 factors to 3 and 1
We need to get 5x in the middle
( 2x +3) (x+1)
If a is an arbitrary nonzero constant, what happens to a/b as b approaches 0
It depends on how b approaches 0
If b is positive and gets closer to zero, then we say b is approaching 0 from the right, or from the positive side. Let's say a = 1. The equation a/b turns into 1/b. Looking at a table of values, 1/b will steadily increase without bound as positive b values get closer to 0.
On the other side, if b is negative and gets closer to zero, then 1/b will be negative and those negative values will decrease without bound. So 1/b approaches negative infinity if we approach 0 on the left (or negative) side.
The graph of y = 1/x shows this. See the diagram below. Note the vertical asymptote at x = 0. The portion to the right of it has the curve go upward to positive infinity as x approaches 0. The curve to the left goes down to negative infinity as x approaches 0.
Please answer this question now
Answer:
V = 60 m³
Step-by-step explanation:
Volume of Triangular Pyramid: V = 1/3bh
Area of Triangle: A = 1/2bh
b = area of bottom triangle (base)
h = height of triangular pyramid
Step 1: Find area of base triangle
A = 1/2(8)(5)
A = 4(5)
A = 20
Step 2: Plug in known variables into volume formula
V = 1/3(20)(9)
V = 1/3(180)
V = 60
Find the value of x in each case:
Answer:
x = 36
Step-by-step explanation:
To obtain the value of x, we must first obtain the value of y and z as shown in the attached photo.
i. Determination of y
2x + y = 180 (angle on a straight line)
Rearrange
y = 180 – 2x
ii. Determination of z.
z + 4x = 180 (angle on a straight line)
Rearrange
z = 180 – 4x
iii. Determination of x
x + y + z = 180 (sum of angles in a triangle)
But:
y = 180 – 2x
z = 180 – 4x
Therefore,
x + y + z = 180
x + 180 – 2x + 180 – 4x = 180
Collect like terms
x – 2x – 4x = 180 – 180 –180
– 5x = – 180
Divide both side by – 5
x = – 180 / – 5
x = 36
Therefore, the value of x is 36.
Pens cost 15 pence each.
Rulers cost 20 pence each.
A school buys 150 pens and 90 rulers.
The total cost is reduced by 1/5
How much does the school pay?
Answer:
The amount the school pays is £32.40
Step-by-step explanation:
The cost of each pen = 15 pence
The cost of each ruler = 20 pence
The number of pens bought by the school = 150
The number of rulers bought by the school = 90
The cost reduction (discount) on the items bought = 1/5
Therefore, we have;
The total cost of the pens bought by the school = 150 × 15 = 2250 = £22.50
The total cost of the rulers bought by the school = 90 × 20 = 1800 = £18.00
The total cost of the writing materials (rulers and pens) bought by the school = £22.50 + £18.00 = £40.50
The discount = 1/5 total cost reduction = 1/5×£40.50 = $8.10
The amount the school pays = The total cost of the writing materials - The discount
The amount the school pays = £40.50 - $8.10 = £32.40
The amount the school pays = £32.40.
A plane set off to Paris at a speed of 300mph. On the return flight of 12 hours, the plane cruised at 242mph. How many hours long was the flight to Paris
Answer:well the answer is 2 hours 16 minutes.
Step-by-step explanation:
To find your plane's rate of speed, you calculate the distance ... amount of time in the air (2 hours and 16 minutes) to.
PLEASE help me with this question! This is really urgent! No nonsense answers please.
Answer:
140°
Step-by-step explanation:
[tex] \because m\widehat{BG} = 360\degree - m\widehat{GCB} \\
\therefore m\widehat{BG} = 360\degree - 300\degree \\
\therefore m\widehat{BG} = 60\degree \\
\because m\widehat{BGD} = m\widehat{BG}
+m\widehat{GD}\\
\therefore m\widehat{BGD} = 80\degree+60\degree\\
\therefore m\widehat{BGD} = 140\degree\\
\because m\angle BAD = m\widehat{BGD} \\
\huge\purple {\boxed {\therefore m\angle BAD =140\degree}} [/tex]
8(4k - 4) = -5k - 32
Answer:
k=0
Step-by-step explanation:
8(4k-4)=5k-32
32k-32=-5k-32
32k-32+32=-5k-32+32
32k=-5k
32k+5k=-5k+5k
37k=0
37k/37=0/37
k=0
Answer:
k=0
Step-by-step explanation:
To solve for k, we need to first distribute the 8 through the parenthesis.
32k-32=-5k-32
Lets add 5k to both sides.
37k-32=-32
add 32 to both sides
37k=0
divide 37 from both sides
k=0
What is -13/20 in decimal form
Answer:
-0.65
Step-by-step explanation:
Step 1: Write out fraction
-13/20
Step 2: Evaluate fraction
-13/20 = -0.65
A rectangle's length and width are in a ratio of 3:1. The perimeter is 72 inches. What are the length and width?
Answer:
Step-by-step explanation:
If the sides exist in a ratio to one another, then when you multiply some number x by both the length and the width, they still remain as a ratio. The length will be 3x and the width will be 1x. The perimeter formula is
P = 2L + 2W and since our perimeter is 72 and we have both the length and the width, we can fill in the formula and solve for x:
72 = 2(3x) + 2(1x) and
72 = 6x + 2x and
72 = 8x so
9 = x.
If x = 9, then 1x = 9 and 3x = 27. Let's check the perimeter against those side lengths.
P = 2(3x) + 2(1x) and
P = 2(27) + 2(9) and
P = 54 + 18 so
P = 72
and you're done! (The bold numbers above are the width and length, respectively.)
FWML is a parallelogram. Find the values of x and y. Solve for the value of z, if z=x−y.
Answer:
x = 5, y = 8, z = -3
Step-by-step explanation:
Opposite sides of a parallelogram are congruent so to find x:
x + 7 = 3x - 3
-2x = -10
x = 5
To find y:
y + 2 = 2y - 6
-y = -8
y = 8
Therefore, z = x - y = 5 - 8 = -3.
A 2-column table with 8 rows. The first column is labeled x with entries negative 6, negative 5, negative 4, negative 3, negative 2, negative 1, 0, 1. The second column is labeled f of x with entries 34, 3, negative 10, negative 11, negative 6, negative 1, negative 2, negative 15. Using only the values given in the table for the function, f(x), what is the interval of x-values over which the function is increasing? (–6, –3) (–3, –1) (–3, 0) (–6, –5)
Answer:
Step-by-step explanation:
The only place that the function is increasing is [-3, -1] (learn your interval notation). At x = -3, y = -11; at x = -2, y = -6 (-6 is greater than -11); and at x = -1, y = -1 (-1 is greater than -6). The next x value, 0, returns a y value of -2. But -2 is less than -1, the value before it, so it begins deceasing again at x = 0.
Based on the values given in the table for f(x), the interval of x-values that show the function increasing is (-3, -1).
Which interval shows the function increasing?The value of f(x) was decreasing from 34 until it got to -11 where it then started to rise again. The relevant value of x here is -3.
The value then began to rise until it reached -1 where it then fell to -2. The x value here is -1.
The interval of x-values where the function is increasing is therefore (-3, -1).
Find out more on intervals of x-values at https://brainly.com/question/26680949.
#SPJ5
for which values of x is A U B = Ø
Answer:
The first: 2 < x < 3Step-by-step explanation:
[tex]3x+4\geq13\\\\3x\geq9\\\\x\geq3\\\\A=\big<3\,,\ \infty)[/tex] [tex]\frac12x+3\leq4\\\\\frac12x\leq1\\\\x\leq2\\\\B=(-\infty\,,\ 2\big>[/tex]
[tex]A\cup B\not=\varnothing\quad for\ all\ x\in(-\infty\,, 2\big>\cup\big<3\,,\ \infty)[/tex]
so:
[tex]A\cup B=\varnothing\quad for\ x\in(\,2\,,\ 3\,)[/tex]
Answer:hi, the answer would be (a) or 2<x<3 hope this helps :)
Step-by-step explanation: i just took the test got em all correct
To make a net from a container, you start by cutting one of the seams along the edge where the two sides meet. If you wanted to make a different net for the container, what would you do differently?
Answer:
I would not separate the same edges when making a second net. Also, I would make sure that the result cannot be rotated or flipped so that it is the same as the first.
Step-by-step explanation:
What is —4р + (- 6р) equals?
Answer
[tex] \boxed{10p}[/tex]
Step by step explanation
[tex] \mathsf{ - 4p + (- 6p)}[/tex]
When there is a ( + ) in front of an expression in parentheses, the expression remains the same
[tex] \mathsf{ - 4p - 6p}[/tex]
Collect like terms
[tex] \mathsf{ - 10p}[/tex]
Hope I helped!
Best regards!