In order to free electrons from nickel whose work function is 5.22 eV, the threshold frequency of light needed to free electrons from nickel is approximately 1.26 × [tex]10^1^5[/tex] Hz.
To calculate the threshold frequency of light needed to free electrons from nickel, we can use the equation:
E = hf
Where:
E is the energy required to free an electron (also known as the work function),
h is Planck's constant (6.626 × [tex]10^-^3^4[/tex] J·s),
f is the frequency of the light.
First, we need to convert the work function from electron volts (eV) to joules (J). Since 1 eV is equal to 1.602 ×[tex]10^-^1^9[/tex] J, the work function can be calculated as follows:
Work function (ϕ) = 5.22 eV * (1.602 × [tex]10^-^1^9[/tex] J/eV) ≈ 8.35 × [tex]10^-^1^9[/tex]J
Now, we can rearrange the equation to solve for the threshold frequency (f):
f = E / h
Substituting the values:
f = (8.35 ×[tex]10^-^1^9[/tex] J) / (6.626 × [tex]10^-^3^4[/tex] J·s) ≈ 1.26 × [tex]10^1^5[/tex] Hz
It's important to note that this calculation assumes a simplified model and neglects factors such as the band structure of the material and the presence of an electric field. In reality, the process of freeing electrons from a material surface involves a more complex interaction between light and matter, but this simplified approach provides an estimate for the threshold frequency required.
For more such information on: frequency
https://brainly.com/question/254161
#SPJ8
The biggest coal burning power station in the world is in Taiwan with a power output capacity of 5500 MW. (a) Assume the power station operates 24 hours a day and every day throughout the year, what is the approximate annual energy capacity (in TWh) of this power station? (6 marks) (b) A coal power plant typically obtains ~2kWh of electrical energy by burning 1 kg of coal. If the energy density of coal is 24MJ/kg, what is the energy conversion efficiency in this case? (6 marks) (c) How much coal supply (in unit of tons) is needed to operate this power station in one year?
(a) The approximate annual energy capacity of the power station is 48,180 TWh. (b) The energy conversion efficiency is 8.3%. (c) The amount of coal supply needed is 24,090,000,000 tonnes.
For part (a), we used the formula for annual energy capacity which takes into account the power output, hours of operation, and days of operation per year. For part (b), we used the energy obtained from burning 1 kg of coal and the energy density of coal to calculate the energy conversion efficiency. We used the formula for energy conversion efficiency and found that it is 8.3%.
For part (c), we used the amount of energy generated in one year and the energy obtained from burning 1 kg of coal to calculate the amount of coal needed. We used the formula for amount of coal needed and found that it is 24,090,000,000 tonnes.
Learn more about power output here:
https://brainly.com/question/13937812
#SPJ11
what is the approximate thermal energy in kj/mol of molecules at 75 ° c?
Answer:
if you like it please do appreciate
To calculate the approximate thermal energy in kilojoules per mole (kJ/mol) of molecules at a given temperature, you can use the Boltzmann constant (k) and the ideal gas law.
The Boltzmann constant (k) is approximately equal to 8.314 J/(mol·K). To convert this to kilojoules per mole, we divide by 1000:
k = 8.314 J/(mol·K) = 0.008314 kJ/(mol·K)
Now, we need to convert the temperature to Kelvin (K) since the Boltzmann constant is defined in Kelvin. To convert from Celsius to Kelvin, we add 273.15 to the temperature:
T(K) = 75°C + 273.15 = 348.15 K
Finally, we can calculate the thermal energy using the formula:
Thermal energy = k * T
Thermal energy = 0.008314 kJ/(mol·K) * 348.15 K
Thermal energy ≈ 2.894 kJ/mol
Therefore, at 75°C, the approximate thermal energy of molecules is approximately 2.894 kilojoules per mole (kJ/mol).
The heat capacity of one mole of water is approximately 75.29/1000 = 0.07529 kj/mol. This value represents the approximate thermal energy in kj/mol of water molecules at 75 ° C.
Thermal energy refers to the energy present in a system that arises from the random movements of its atoms and molecules. When a body has a temperature of 75 ° C, it has a thermal energy that depends on the type of molecules in it and their specific heat capacity.
In this context, we will consider the thermal energy in kj/mol of molecules at 75 ° C.Let's use water as an example to calculate the approximate thermal energy in kj/mol of molecules at 75 ° C. The specific heat capacity of water is 4.18 J/g °C, and the molar mass of water is 18.01528 g/mol. Therefore, the thermal energy in kj/mol of water molecules at 75 ° C can be calculated as follows:ΔH = mcΔt, whereΔH = thermal energy,m = mass of the sample,c = specific heat capacity of the sample,Δt = change in temperature
To know more about heat capacity visit:-
https://brainly.com/question/28302909
#SPJ11
Find the work (in foot-pounds) done by a force of 3 pounds acting in the direction 2i +3j in moving an object 4 feet from (0,0) to (4, 0)
The work done by the force of 3 pounds acting in the direction 2i + 3j in moving an object 4 feet from (0,0) to (4, 0) is 12 foot-pounds.
We can now find the work done using the formula:
Work Done = Force x Displacement x Cosine of the angle between the force and displacement vectors
The force is 3 pounds in the direction 2i + 3j.
The force vector is the vector sum of its components i.e,3 (2i + 3j) = 6i + 9j
The angle between the force and displacement vectors is 0 degrees (since they act in the same direction).
Hence, the work done is given by:
Work Done = 3 x (4i) x cos 0°= 3 x 4 x 1= 12 foot-pounds
Learn more about work done at:
https://brainly.com/question/29717484
#SPJ11
The work done by the force of 3 pounds acting in the direction 2i + 3j in moving an object 4 feet from (0, 0) to (4, 0) is approximately 5.66 foot-pounds.
Given force is F = 3 pounds
Moving an object 4 feet from (0,0) to (4,0)
The direction in which the force acts = 2i+3j
First, we need to find the displacement of the object i.e., distance from (0, 0) to (4, 0).
We have,
Displacement = √[(4 - 0)² + (0 - 0)²]
Displacement = √(16)
Displacement = 4 feet
Now, the work done by the force is given by the formula:
Work done = Force x Displacement x cos θ
where θ is the angle between force and displacement
We have given,
F = 3 pounds
The displacement of the object is 4 feet
The direction in which the force acts is 2i + 3j
Let's find the displacement of the object using the distance formula:
Displacement = √[(4 - 0)² + (0 - 0)²]
Displacement = √(16)
Displacement = 4 feet
Let's find the angle between force and displacement:θ = tan⁻¹(3/2)θ = 56.31°
Now, we can find the work done by the force using the formula:
Work done = Force x Displacement x cos θ
Work done = 3 x 4 x cos 56.31°
Work done ≈ 5.66 foot-pounds
Learn more about Displacement: https://brainly.com/question/11934397
#SPJ11
According to solubility rules, which compound should dissolve in water? Select one: ОКРО, 0 MgCO3 O Caso O AgBI
MgCO₃ is the only compound that should dissolve in water according to the given solubility rules. Solubility rules predict the solubility of various ionic compounds based on their cation and anion constituents.
These rules are helpful for predicting what substances will dissolve in water and which will not, among other things. According to solubility rules, MgCO₃ should dissolve in water. MgCO₃ is a salt that contains Mg²⁺ cation and CO₃²⁻ anion. When MgCO₃ is added to water, the Mg²⁺ and CO₃²⁻ ions separate, or dissociate, from one another and are surrounded by water molecules.
This separation process, referred to as hydration, occurs because water molecules are polar, meaning they have a partially positive and partially negative charge. When an ionic compound is added to water, the water molecules surround the positively and negatively charged ions and dissolve the salt into the water.
The other compounds, K₃PO₄, CaSO₄, and AgBr are not very soluble in water according to solubility rules. Hence, MgCO₃ is the only compound that should dissolve in water according to the given solubility rules.
Learn more about solubility rules here:
https://brainly.com/question/31327080
#SPJ11
how far is the motorcycle from the car when it reaches this speed?
The motorcycle is approximately 17.97 meters away from the car when it reaches the same speed as the car.
To find the distance between the car and the motorcycle when the motorcycle reaches the same speed as the car, we can use the equations of motion. Let's assume the initial position of both the car and the motorcycle is 0.For the car:
Initial velocity, u1 = 83 km/h
Final velocity, v1 = 83 km/h
Acceleration, a1 = 0 (since the car is traveling at a steady speed)
Time, t1 = ?
For the motorcycle:
Initial velocity, u2 = 0 (since it starts from rest)
Final velocity, v2 = 83 km/h
Acceleration, a2 = 7.4 m/s^2
Time, t2 = ?
Using the equation v = u + at, we can find the time it takes for the motorcycle to reach the same speed as the car:v2 = u2 + a2t2
83 km/h = 0 + (7.4 m/s^2) * t2
Converting the velocities to meters per second:
83 km/h = (83 * 1000 m) / (3600 s) = 23.06 m/s23.06 m/s = 7.4 m/s^2 * t2
t2 = 23.06 m/s / 7.4 m/s^2
t2 ≈ 3.12 seconds
Now, we can find the distance traveled by the motorcycle using the equation:
s2 = u2t2 + (1/2) * a2 * t2^2
s2 = 0 + (1/2) * (7.4 m/s^2) * (3.12 s)^2s2 ≈ 17.97 meters
Therefore, the motorcycle is approximately 17.97 meters away from the car when it reaches the same speed as the car.
To know more about, constant acceleration, click here https://brainly.com/question/29297343
#SPJ11
Following is the complete answer: A car is traveling at a steady 83 km/h in a 50 km/h zone. A police motorcycle takes off at the instant the car passes it, accelerating at a steady 7.4m/s2 . How far is the motorcycle from the car when it reaches this speed?
Given that E = 15ax - 8az V/m at a point on the surface of a conductor, determines the surface charge density at that point. Assume that ε = £0. a. 1.50x10-10 b. 2.21x10-10 c. 1.91x10-10 d. 2.12x10-10
The surface charge density at that point with Electric field, E=15ax-8az V/m with permittivity in free space is ε=ε₀ is, σ=1.5×10⁻¹⁰ c/m². Hence, option A is correct.
The Gauss law is defined as the electric flux of the closed surface is equal to the charge enclosed by the given area. Electric flux is defined as the number of field lines crossing through a given area.
From the given area,
E = 15ax-8az V/m
ε=ε₀ (ε₀ is the permittivity in free space)=8.854×10⁻¹².
surface charge density, (σ) =?
E = σ/ε₀
σ = E×ε₀
= (15ax-8az)×8.854×10⁻¹².
= √(15)²+(8)²×8.854×10⁻¹².
= 17×8.854×10⁻¹².
= 1.50×10⁻¹⁰C/m².
Thus, the surface charge densities, σ = 1.50×10⁻¹⁰ C/m².
To learn more about Gauss law:
https://brainly.com/question/30516416
#SPJ4
if : T:Rn → Rmis a linear transformation and if c is in Rm, then a uniqueness question is "is c in the range of T"? True or
If c is in the range of T, there exists at least one vector x such that T(x) = c, but there can be more than one vector x that satisfies this condition. The question of whether c is in the range of T is not a uniqueness question.
If: T:Rn → Rm is a linear transformation and if c is in Rm, then a uniqueness question is "is c in the range of T"? The given statement is False. The range of T, denoted by R(T), is the set of all possible outputs of T. For a linear transformation T:Rn → Rm, the range of T is a subspace of Rm.T
he uniqueness question is whether there is only one way to write c as a linear combination of the columns of the matrix A whose linear transformation T is given by T(x) = Ax. A vector c in Rm is in the range of T if and only if there exists a vector x in Rn such that T(x) = c. This is because for a linear transformation, the output is entirely dependent on the input and the transformation.
Therefore, if c is in the range of T, there exists at least one vector x such that T(x) = c, but there can be more than one vector x that satisfies this condition. In the domain of linear algebra, a linear transformation (also known as a linear operator or a linear map) is a linear function that maps one vector space to another vector space while preserving the operations of addition and scalar multiplication.
To know more about linear transformation visit :
https://brainly.com/question/15080052
#SPJ11
What is the momentum of a garbage truck that is 1.20 × 10 4 kg
and is moving at 35 m/s? p = Correct units kg*m/s Correct At what
speed would an 8.5 kg trash can have the same momentum as the
truck?
The trash can would need to be moving at a speed of approximately 4.94 × 10⁴ m/s to have the same momentum as the garbage truck.
The momentum (p) of an object is calculated by multiplying its mass (m) by its velocity (v). Therefore, the momentum can be expressed as:
p = m * v
Given that the garbage truck has a mass of 1.20 × 10⁴ kg and is moving at 35 m/s, we can calculate its momentum as:
p_truck = (1.20 × 10⁴ kg) * (35 m/s)
Calculating the product:
p_truck = 4.2 × 10⁵ kg·m/s
Now, we need to find the speed at which an 8.5 kg trash can would have the same momentum as the truck. Let's denote this speed as v_can.
Using the momentum formula, we can write:
p_can = (8.5 kg) * v_can
Since we want the momentum of the trash can to be equal to the momentum of the truck, we can set up the equation:
p_truck = p_can
Substituting the values:
4.2 × 10⁵ kg·m/s = (8.5 kg) * v_can
Solving for v_can:
v_can = (4.2 × 10⁵ kg·m/s) / (8.5 kg)
Calculating the division:
v_can = 4.94 × 10⁴ m/s
To learn more about momentum refer here:
https://brainly.com/question/24030570#
#SPJ11
an object moves with constant speed of 16.1 m/s on a circular track of radius 100 m. what is the magnitude of the object's centripetal acceleration?
If an object moves with constant speed of 16.1 m/s on a circular track of radius 100 m, the magnitude of the object's centripetal acceleration is 2.59 m/s².
The object moves with constant speed of 16.1 m/s on a circular track of radius 100 m and we have to determine the magnitude of the object's centripetal acceleration. We know that the formula to find the magnitude of the object's centripetal acceleration is given by: ac = v²/r
Where, v = speed of the object r = radius of the circular track
Substituting the given values, we get: ac = v²/r ac = 16.1²/100ac = 259/100ac = 2.59 m/s²
Therefore, the magnitude of the object's centripetal acceleration is 2.59 m/s².
More on centripetal acceleration: https://brainly.com/question/17123770
#SPJ11
Relative to the ground, a car has a velocity of 17.3 m/s, directed due north. Relative to this car, a truck has a velocity of 23.0 m/s, directed 52.0° north of east. What is the magnitude of the truc
The
magnitude
of the truck's velocity
is approximately 22.783 m/s.
To solve this problem, we can break down the velocities into their x and y components.
The
car's velocity
is directed due north, so its
x-component is 0 m/s and its y-component is 17.3 m/s.
The truck's velocity is directed 52.0° north of east. To find its x and y components, we can use trigonometry. Let's define the
angle
measured counterclockwise from the positive x-axis.
The x-component of the truck's velocity can be found using the cosine function:
cos(52.0°) = adjacent / hypotenuse
cos(52.0°) = x-component / 23.0 m/s
Solving for the x-component:
x-component = 23.0 m/s * cos(52.0°)
x-component ≈ 14.832 m/s
The y-component of the truck's velocity can be found using the sine function:
sin(52.0°) = opposite / hypotenuse
sin(52.0°) = y-component / 23.0 m/s
Solving for the y-component:
y-component = 23.0 m/s * sin(52.0°)
y-component ≈ 17.284 m/s
Now, we can find the magnitude of the truck's velocity by using the
Pythagorean theorem
:
magnitude = √(x-component² + y-component²)
magnitude = √((14.832 m/s)² + (17.284 m/s)²)
magnitude ≈ √(220.01 + 298.436)
magnitude ≈ √518.446
magnitude ≈ 22.783 m/s
Therefore, the magnitude of the truck's
velocity
is approximately 22.783 m/s.
To know more about
magnitude
visit:
https://brainly.com/question/30337362
#SPJ11
what hall voltage (in mv) is produced by a 0.160 t field applied across a 2.60 cm diameter aorta when blood velocity is 59.0 cm/s?
A 0.160 t field applied across a 2.60 cm diameter aorta when blood velocity is 59.0 cm/s will give Hall voltage of 2.3712 mV.
For calculating this, we know that:
VH = B * d * v * RH
In this instance, the blood flow rate is given as 59.0 cm/s, the magnetic field strength is given as 0.160 T, the aorta diameter is given as 2.60 cm (which we will convert to metres, thus d = 0.026 m), and the magnetic field strength is given as 0.160 T.
Let's assume a value of RH = [tex]3.0 * 10^{-10} m^3/C.[/tex]
VH = (0.160 T) * (0.026 m) * (0.59 m/s) * [tex]3.0 * 10^{-10} m^3/C.[/tex]
VH = 0.0023712 V
Or,
VH = 2.3712 mV
Thus, the Hall voltage produced in the aorta is approximately 2.3712 mV.
For more details regarding Hall voltage, visit:
https://brainly.com/question/32048582
#SPJ4
how to calculate the distance between a sensor and an electric harge
In order to calculate the distance between a sensor and an electric charge, you need to know the electric field strength produced by the charge and the sensitivity of the sensor to that field strength. The calculation involves using Coulomb's Law to find the electric field strength and then using the inverse square law to determine the distance.
Coulomb's Law states that the force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. The formula for Coulomb's Law is:F = k * (q1 * q2) / d^2where F is the force between the charges, k is Coulomb's constant (9 x 10^9 N m^2/C^2), q1 and q2 are the charges, and d is the distance between the charges.The electric field strength produced by the charge is given by:E = F / q2where E is the electric field strength and q2 is the test charge (the charge on the sensor).To calculate the distance between the sensor and the charge, you can use the inverse square law, which states that the intensity of a field (in this case, the electric field) is inversely proportional to the square of the distance from the source. The formula for the inverse square law is:I = I0 * (d0 / d)^2where I is the intensity of the field at distance d, I0 is the intensity of the field at distance d0, and d0 is a reference distance (usually chosen to be 1 meter). Rearranging this equation, we get:d = sqrt(I0 / I) * d0So to calculate the distance between the sensor and the charge, you need to first find the electric field strength at the sensor and the electric field strength at a reference distance (e.g. 1 meter). Then you can use the inverse square law to calculate the distance between the sensor and the charge.
Learn more about sensor at
brainly.com/question/15272439
#SPJ11
what is the pressure on the sample if f = 340 n is applied to the lever? express your answer to two significant figures and include the appropriate units.
The amount of pressure exerted on the sample due to the applied force is 4.25 x 10⁷ Nm.
The force applied physically to an object per unit area is referred to as pressure. Per unit area, the force is delivered perpendicularly to the surfaces of the objects.
The diameter of the large cylinder, d₁ = 10 cm = 0.1 m
The diameter of the small cylinder, d₂ = 2 cm = 0.02 m
The area of the given sample, A = 4 cm² = 4 x 10⁻⁴m²
So, the force acting on the small cylinder is given by,
(F x 2L) - (F₂ x L) = 0
2FL - F₂L = 0
So,
F₂L = 2FL
Therefore, F₂ = 2 x F
F₂ = 2 x 340 N
F₂ = 680 N
In order to calculate the force acting on the large cylinder,
We know that, P₁ = P₂
So, we can write that,
F₁/A₁ = F₂/A₂
F₁/d₁² = F₂/d₂²
Therefore,
F₁ = F₂d₁²/d₂²
F₁ = 680 x (0.1/0.02)²
F₁ = 680 x 100/4
F₁ = 17000 N
Therefore, the pressure exerted on the sample is,
P = F₁/A
P = 17000/(4 x 10⁻⁴)
P = 4.25 x 10⁷ Nm
To learn more about pressure, click:
https://brainly.com/question/13327123
#SPJ4
The displacement of a wave traveling in the negative y-direction
is D(y,t)=(9.0cm)sin(45y+70t+π)D(y,t)=(9.0cm)sin(45y+70t+π), where
y is in m and t is in s.
What is the frequency of this wave?
Wh
The displacement of a wave traveling in the negative y-direction depends on the amplitude and frequency of the wave.
The displacement of a wave traveling in the negative y-direction is a combination of factors. The first factor is the amplitude, which is the maximum distance that a particle moves from its rest position as a wave passes through it. The second factor is the frequency, which is the number of waves that pass a fixed point in a given amount of time. The displacement of a wave is given by the formula y = A sin(kx - ωt + ϕ), where A is the amplitude, k is the wave number, x is the position, ω is the angular frequency, t is the time, and ϕ is the phase constant. This formula shows that the displacement depends on the amplitude and frequency of the wave.
These variables have the same fundamental meaning for waves. In any case, it is useful to word the definitions in a more unambiguous manner that applies straightforwardly to waves: Amplitude is the distance between the wave's maximum displacement and its resting position. Frequency is the number of waves that pass by a particular point every second.
Know more about amplitude and frequency, here:
https://brainly.com/question/31863582
#SPJ11
In this classic example of momentum conservation we’ll see why a rifle recoils when it is fired. A marksman holds a 3.00 kg rifle loosely, so that we can ignore any horizontal external forces acting on the rifle–bullet system. He fires a bullet of mass 5.00 g horizontally with a speed vbullet=300m/s . What is the recoil speed vrifle of the rifle? What are the final kinetic energies of the bullet and the rifle?
Question:
The same rifle fires a bullet with mass 7.7 g at the same speed as before. For the same idealized model, find the ratio of the final kinetic energies of the bullet and rifle.
The ratio of final kinetic energies of the bullet to the rifle is: Kf/Kr = 346.5 J/0.375 J = 924.
The momentum of the rifle before firing the bullet is zero. The bullet is fired horizontally with a speed of 300 m/s. The direction of recoil of the rifle will be opposite to that of the bullet. Let the recoil velocity of the rifle be vr. Then according to the law of conservation of momentum, the momentum of the rifle-bullet system after firing is zero. We can express this mathematically as:0 = -5 x 10^-3 kg x 300 m/s + (3 + m_rifle) kg x vr
Since the mass of the rifle is much greater than that of the bullet, we can approximate the mass of the rifle as 3 kg only. Solving the above equation for vr we get, vr = (5 x 10^-3 kg x 300 m/s)/3 kg = -0.5 m/s.
The negative sign indicates that the direction of the recoil is opposite to that of the bullet. The initial kinetic energy of the bullet and the rifle are zero. The final kinetic energy of the bullet is Kf = (1/2)mv² = (1/2) x 5 x 10^-3 kg x (300 m/s)² = 225 J.
The final kinetic energy of the rifle is Kr = (1/2)mv² = (1/2) x 3 kg x (0.5 m/s)^2 = 0.375 J.
For a bullet of mass 7.7 g, we can find its final kinetic energy using the same formula:
Kf = (1/2)mv² = (1/2) x 7.7 x 10^-3 kg x (300 m/s)² = 346.5 J.
More on kinetic energies: https://brainly.com/question/999862
#SPJ11
what is the wavelength, in nm , of a photon with energy 0.30 ev ?
The wavelength of 0.3 eV of photon is 4136 nm.
Thus, There is a wavelength and a frequency for every photon. The distance between two electric field peaks with the same vector is known as the wavelength. The number of wavelengths a photon travels through each second is what is known as its frequency.
A photon cannot truly have a colour, unlike an EM wave. Instead, a photon will match a specific colour of light. A single photon cannot have colour since it cannot be recognized by the human eye, which is how colour is defined.
0.3 ev= 0.3 x 1.602 x 10⁻¹⁹ J
λ = 4136 x 10⁻⁹ m
λ = 4136 nm → infrared.
Thus, The wavelength of 0.3 eV of photon is 4136 nm.
Learn more about Wavelength, refer to the link:
https://brainly.com/question/19922201
#SPJ4
E11: Please show complete solution and explanation. Thank
you!
11. Discuss the physical interpretation of any one Maxwell relation.
One of the Maxwell's relations that has a significant physical interpretation is the relation between the partial derivatives of entropy with respect to volume and temperature in a thermodynamic system. This relation is given by:
([tex]∂S/∂V)_T = (∂P/∂T)_V[/tex]
Here, (∂S/∂V)_T represents the partial derivative of entropy with respect to volume at constant temperature, and (∂P/∂T)_V represents the partial derivative of pressure with respect to temperature at constant volume.
The physical interpretation of this relation is that it relates the response of a system's entropy to changes in volume and temperature, while keeping one of these variables constant.
It shows that an increase in temperature at constant volume leads to an increase in entropy per unit volume. Conversely, an increase in volume at constant temperature results in an increase in entropy per unit temperature.
This Maxwell relation helps to establish a connection between the thermodynamic properties of a system and provides insights into the behavior of entropy in response to changes in temperature and volume.
To know more about interpretation refer here:
https://brainly.com/question/28235829#
#SPJ11
a metal sphere has a net negative charge of 1.1 × 10-6 coulomb. approximately how many more elec- trons than protons are on the sphere? 1. 1.8 × 1012 2. 5.7 × 1012 3. 6.9 × 1012 4. 9.9 × 1012
The correct option is 3. 6.9 × 10¹². More electrons than protons are present on the metal sphere.
An electron carries a negative charge of 1.6 × 10⁻¹⁹ C.A proton carries a positive charge of 1.6 × 10⁻¹⁹ C.The total charge on the sphere is -1.1 × 10⁻⁶ C.So, the total number of electrons present on the sphere will be more than the total number of protons present on it.
To calculate the number of excess electrons, divide the total charge on the sphere by the charge on each electron.n= Total charge on the sphere / Charge carried by one electron n = 1.1 × 10⁻⁶ C / 1.6 × 10⁻¹⁹ C = 6.875 × 10¹²6.875 × 10¹² electrons more than the number of protons present on the sphere. 6.9 × 10¹² electrons are more than protons present on the sphere. Therefore, the correct option is 3. 6.9 × 10¹².
To know more about electrons visit :-
https://brainly.com/question/12001116
#SPJ11
A solid disk rotates at an angular velocity of 0.039 rad/s with respect to an axis perpendicularto the disk at its center. The moment of intertia of the disk is0.17kg·m2. From above, sand isdropped straight down onto this rotating disk, so that a thinuniform ring of sand is formed at a distance of 0.40 m from theaxis. The sand in the ring has a mass of 0.50 kg. After all thesand is in place, what is the angular velocity of the di
Therefore, the angular velocity of the disk after all the sand is in place is 0.0265 rad/s.
When sand is dropped straight down onto the rotating disk, a thin uniform ring of sand is formed at a distance of 0.40 m from the axis.
The sand in the ring has a mass of 0.50 kg and the disk rotates at an angular velocity of 0.039 rad/s. The moment of intertia of the disk is 0.17kg·m².
The angular velocity of the disk after all the sand is in place is needed to be determined
The angular velocity of the disk after all the sand is in place can be determined using the principle of conservation of angular momentum.
Since there are no external torques acting on the system of the disk and sand, the angular momentum before the sand is dropped onto the disk is equal to the angular momentum after the sand is in place.
Therefore, we can write:
Iinitial = Ifinalwhere I is the moment of inertia and ω is the angular velocity.
We can find the initial angular momentum of the disk before the sand is dropped using the formula:
Linitial = Iinitial ωinitialwhere L is the angular momentum.
We know that the disk has a moment of inertia of 0.17 kg·m² and is rotating at an angular velocity of 0.039 rad/s. Therefore, Linitial = 0.17 kg·m² × 0.039 rad/s
= 0.00663 kg·m²/s
When the sand is dropped onto the disk, it will start rotating along with the disk due to frictional forces. Since the sand is dropped at a distance of 0.40 m from the axis, it will increase the moment of inertia of the system by an amount equal to the moment of inertia of the sand ring.
We can find the moment of inertia of the sand ring using the formula:
I ring = mr²where m is the mass of the sand and r is the radius of the ring. We know that the mass of the sand is 0.50 kg and the radius of the ring is 0.40 m.
Therefore, I ring = 0.50 kg × (0.40 m)²
= 0.08 kg·m²
The moment of inertia of the system after the sand is in place is equal to the sum of the moment of inertia of the disk and the moment of inertia of the sand ring.
Therefore, I final = 0.17 kg·m² + 0.08 kg·m²
= 0.25 kg·m²
We can now find the final angular velocity of the disk using the formula:
L final = I final ω final
We know that the angular momentum of the system is conserved.
Therefore, L initial = L finalor
0.00663 kg·m²/s = 0.25 kg·m² × ωfinalωfinal
= 0.00663 kg·m²/s ÷ 0.25 kg·m²ωfinal
= 0.0265 rad/s
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
suppose the previous forecast was 30 units, actual demand was 50 units, and ∝ = 0.15; compute the new forecast using exponential smoothing.
By using the formula of exponential smoothing, we can get the new forecast. Hence, the new forecast using exponential smoothing is 33 units.
Given:
Previous forecast = 30 units
Actual demand = 50 unitsα = 0.15Formula used:
New forecast = α(actual demand) + (1 - α)(previous forecast)
New forecast = 0.15(50) + (1 - 0.15)(30)New forecast = 7.5 + 25.5
New forecast = 33 units
Therefore, the new forecast using exponential smoothing is 33 units.
In exponential smoothing, the new forecast is computed by using the actual demand and previous forecast. In this question, the previous forecast was 30 units and actual demand was 50 units, with α = 0.15. By using the formula of exponential smoothing, we can get the new forecast. Hence, the new forecast using exponential smoothing is 33 units.
To know more about New forecast visit:
brainly.com/question/31844712
#SPJ11
An alpha particle (
4
He ) undergoes an elastic collision with a stationary uranium nucleus (
235
U). What percent of the kinetic energy of the alpha particle is transferred to the uranium nucleus? Assume the collision is one dimensional.
In an elastic collision between an alpha particle (4He) and a stationary uranium nucleus (235U), approximately 0.052% of the kinetic energy of the alpha particle is transferred to the uranium nucleus.
What percentage of the alpha particle's kinetic energy is transferred to the uranium nucleus in the elastic collision?In an elastic collision, both momentum and kinetic energy are conserved. Since the uranium nucleus is initially at rest, the total momentum before the collision is solely due to the alpha particle. After the collision, the alpha particle continues moving with a reduced velocity, while the uranium nucleus starts moving with a velocity. The conservation of kinetic energy dictates that the sum of the kinetic energies before and after the collision must be the same.
Due to the large mass of the uranium nucleus compared to the alpha particle, the alpha particle's velocity decreases significantly after the collision. Therefore, a small fraction of the initial kinetic energy is transferred to the uranium nucleus. Calculations show that approximately 0.052% of the alpha particle's kinetic energy is transferred to the uranium nucleus in this scenario.
Learn more about Elastic collisions
brainly.com/question/31318883
#SPJ11
A charge -5.5 nC is placed at (-3.1.-3) m and another charge 9.3 nC is placed at (-2,3,-2) m. What is the electric field at (1,0,0)m?
The electric field at (1,0,0) m due to the given charges is -1.2 x 10^5 N/C, directed towards the left.
Let's first calculate the electric field at point P due to the first charge:q1 = -5.5 nC, r1 = (-3.1, -3, 0) m and r = (1, 0, 0) m
The distance between charge 1 and point P is:r = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)r = √((1 - (-3.1))² + (0 - (-3))² + (0 - 0)²)r = √(4.1² + 3² + 0²)r = 5.068 m
Therefore, the electric field at point P due to charge 1 is:
E1 = kq1 / r1²E1 = (9 x 10^9 Nm²/C²) x (-5.5 x 10^-9 C) / (5.068 m)²E1 = -4.3 x 10^5 N/C (towards left, as the charge is negative)
Now, let's calculate the electric field at point P due to the second charge:
q2 = 9.3 nC, r2 = (-2, 3, -2) m and r = (1, 0, 0) m
The distance between charge 2 and point P is:
r = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)
r = √((1 - (-2))² + (0 - 3)² + (0 - (-2))²)
r = √(3² + 3² + 2²)r = √22 m
Therefore, the electric field at point P due to charge 2 is:
E2 = kq2 / r2²
E2 = (9 x 10^9 Nm²/C²) x (9.3 x 10^-9 C) / (√22 m)²
E2 = 3.1 x 10^5 N/C (towards right, as the charge is positive)
Now, the total electric field at point P due to both charges is:
E = E1 + E2
E = -4.3 x 10^5 N/C + 3.1 x 10^5 N/C
E = -1.2 x 10^5 N/C
Therefore, the electric field at (1,0,0) m due to the given charges is -1.2 x 10^5 N/C, directed towards the left.
Learn more about electric field at:
https://brainly.com/question/15906502
#SPJ11
The electric field at point P (1, 0, 0)m is (-2.42 × 10⁶) î + 6.91 × 10⁶ ĵ N/C.
The given charges are -5.5 nC and 9.3 nC. The position vectors of these charges are (-3.1, -3, 0)m and (-2, 3, -2)m. We need to find the electric field at (1, 0, 0)m.
Let's consider charge q1 (-5.5 nC) and charge q2 (9.3 nC) respectively with position vectors r1 and r2. Electric field due to q1 at point P (1,0,0)m is given by:r1 = (-3.1, -3, 0)mq1 = -5.5 nC
Position vector r from q1 to P = rP - r1 = (1, 0, 0)m - (-3.1, -3, 0)m = (4.1, 3, 0)m
Using the formula of electric field, the electric field due to q1 at point P will be given by:
E1 = kq1 / r²
where k is the Coulomb constantk = 9 × 10⁹ N m² C⁻²
Electric field due to q1 at point P isE1 = 9 × 10⁹ × (-5.5) / (4.1² + 3²) = -2.42 × 10⁶ N/C
Now, let's consider charge q2. The position vector of q2 is given by:r2 = (-2, 3, -2)mq2 = 9.3 nC
Position vector r from q2 to P = rP - r2 = (1, 0, 0)m - (-2, 3, -2)m = (3, -3, 2)m
Electric field due to q2 at point P will be given by:
E2 = kq2 / r²
Electric field due to q2 at point P is
E2 = 9 × 10⁹ × 9.3 / (3² + (-3)² + 2²) = 6.91 × 10⁶ N/C
Now, we can get the total electric field due to the given charges by adding the electric fields due to q1 and q2 vectorially.
The vector addition of electric fields E1 and E2 is given by the formula:
E = E1 + E2
Let's consider charge q1 (-5.5 nC) and charge q2 (9.3 nC) respectively with position vectors r1 and r2. Electric field due to q1 at point P (1,0,0)m is given by:r1 = (-3.1, -3, 0)mq1 = -5.5 nC
Position vector r from q1 to P = rP - r1 = (1, 0, 0)m - (-3.1, -3, 0)m = (4.1, 3, 0)m
Using the formula of electric field, the electric field due to q1 at point P will be given by:E1 = kq1 / r²
where k is the Coulomb constant
k = 9 × 10⁹ N m² C⁻²
The magnitude of the electric field due to q1 at point P is given by|E1| = 9 × 10⁹ × |q1| / r²= 9 × 10⁹ × 5.5 / (4.1² + 3²) N/C= 2.42 × 10⁶ N/C
The direction of the electric field due to q1 at point P is towards the charge q1.
Now, let's consider charge q2. The position vector of q2 is given by:r2 = (-2, 3, -2)mq2 = 9.3 nC
Position vector r from q2 to P = rP - r2 = (1, 0, 0)m - (-2, 3, -2)m = (3, -3, 2)m
The magnitude of the electric field due to q2 at point P will be given by:
E2 = kq2 / r²= 9 × 10⁹ × 9.3 / (3² + (-3)² + 2²) N/C= 6.91 × 10⁶ N/C
The direction of the electric field due to q2 at point P is away from the charge q2.
Now, we can get the total electric field due to the given charges by adding the electric fields due to q1 and q2 vectorially. The vector addition of electric fields E1 and E2 is given by the formula:E = E1 + E2E = (-2.42 × 10⁶) î + 6.91 × 10⁶ ĵ N/C
Learn more about electric field: https://brainly.com/question/30544719
#SPJ11
Problem 4- Air at 25°C, 1 atm, and 30 percent relative humidity is blown over the surface of 0.3m X 0.3m square pan filled with water at a free stream velocity of 2m/s. If the water is maintained at uniform temperature of 25°C, determine the rate of evaporation of water and the amount of heat that needs to be supplied to the water to maintain its temperature constant. Mass diffusivity of water in air is DAB-2.54x10-5 m²/s. Kinematic viscosity of air is 0.14x10-4 m²/s. Density of air p=1.27 kg/m³. Saturation pressure of water at 25°C Psat, 25c-3.17 kPa, latent heat of water at 25°C hfg=334 kJ/kg. (20P)
The rate of evaporation of water is approximately 0.249 kg/s, and the amount of heat that needs to be supplied to the water to maintain its temperature constant is approximately 83.066 kW.
To determine the rate of evaporation of water and the amount of heat required, we can use the equation for mass transfer rate:
m_dot = (ρ * A * V * x) / (D_AB * L)
where m_dot is the mass transfer rate (rate of evaporation), ρ is the density of air, A is the surface area of the pan, V is the free stream velocity, x is the humidity ratio (absolute humidity), D_AB is the mass diffusivity of water in air, and L is the characteristic length (assumed to be the depth of the water in this case).
T_air = 25°C = 298 K (temperature of air)
P = 1 atm (pressure of air)
RH = 30% (relative humidity)
V = 2 m/s (free stream velocity)
A = 0.3 m x 0.3 m = 0.09 m² (surface area of the pan)
D_AB = 2.54 x 10^-5 m²/s (mass diffusivity of water in air)
ρ = 1.27 kg/m³ (density of air)
L = depth of water in the pan = unknown (assumed to be equal to the height of the pan, 0.3 m)
To calculate x, the humidity ratio, we can use the equation:
x = (RH * P_s) / (P - RH * P_s)
where P_s is the saturation pressure of water at the given temperature.
Given values:
T_water = 25°C = 298 K (temperature of water)
P_s_25c = 3.17 kPa = 3.17 x 10³ Pa (saturation pressure of water at 25°C)
Plugging in the values, we can calculate x:
x = (0.3 * 3.17 x 10³) / (1 - 0.3 * 3.17 x 10³)
x ≈ 0.000957 kg/kg (humidity ratio)
Now we can calculate the rate of evaporation (m_dot):
m_dot = (ρ * A * V * x) / (D_AB * L)
m_dot = (1.27 * 0.09 * 2 * 0.000957) / (2.54 x 10^-5 * 0.3)
m_dot ≈ 0.249 kg/s
To calculate the amount of heat required to maintain the temperature constant, we can use the equation:
Q = m_dot * h_fg
where h_fg is the latent heat of water at the given temperature.
Given value:
h_fg_25c = 334 kJ/kg (latent heat of water at 25°C)
Plugging in the values, we can calculate Q:
Q = 0.249 * 334
Q ≈ 83.066 kW
The rate of evaporation of water is approximately 0.249 kg/s, and the amount of heat that needs to be supplied to the water to maintain its temperature constant is approximately 83.066 kW.
To know more about evaporation, visit:
https://brainly.com/question/24258
#SPJ11
information to answer the next two questions: A Nerf ball is launched horizontally from a rooftop and lands on the ground, 3.50 m from the base of the building, in a time of 2.20 s. Question 32 (1 point) The horizontal speed of the ball is 21.6 m/s 1.59 m/s 07.70 m/s 00.0629 m/s Projectile Motion Characteristics Component of Motien 11. Vertical 1 2. Affected by gravity Exhibits form motion 3. Exhibits form accelerated motion 4. Component of initial velocity is v, sind Component of initial velocity is v, cus 5. Question 29 (1 point) ✓ Saved The characteristics that apply to the horizontal component of projectile motion are 3 and 5 1,3 and 4 O2 and 5 1,2 and 4 The correct values for I, II, III, and IV, respectively are Components of Vectors x componet Ad 1 II IV. 20 m, 0 m, 26 m, and 15 m -20 m, 0 m, 26 m, and -15 m 20 m, 0 m, -26 m, and 15 m 0 m, -20 m, 26 m, and 15 m O. Question 23 (1 point) ✓ Saved The magnitude of the resultant displacement is 7.1 m 1.3 x 10³ m 36 m 22 m
32. The horizontal speed of the ball is 7.70 m/s.
29. The characteristics that apply to the horizontal component of projectile motion are 1, 3, and 4.
23. The magnitude of the resultant displacement is 7.1 m.
32. To find the horizontal speed of the ball, we use the formula: horizontal speed = horizontal distance ÷ time. In this case, the horizontal distance is given as 3.50 m and the time is given as 2.20 s. Plugging in the values, we get: horizontal speed = 3.50 m ÷ 2.20 s = 1.59 m/s.
29. The characteristics of projectile motion are as follows:
1. Vertical motion: A projectile experiences vertical motion due to the influence of gravity.
3. Exhibits uniform motion: The horizontal component of projectile motion is uniform since there is no acceleration in the horizontal direction.
4. Exhibits accelerated motion: The vertical component of projectile motion is accelerated due to the force of gravity.
5. Component of initial velocity is v, sinθ: The vertical component of the initial velocity is v multiplied by the sine of the launch angle θ.
23. The resultant displacement of the ball refers to the straight-line distance from the initial point to the final point. To calculate the magnitude of the resultant displacement, we use the Pythagorean theorem. Since the horizontal and vertical components of displacement are given as 3.50 m and 2.20 m respectively, the magnitude of the resultant displacement is: √((3.50 m)² + (2.20 m)²) = 4.18 m.
Therefore,
32. The horizontal speed of the ball is 7.70 m/s.
29. The characteristics that apply to the horizontal component of projectile motion are 1, 3, and 4.
23. The magnitude of the resultant displacement is 7.1 m.
To know more about projectile motion refer here:
https://brainly.com/question/29545516#
#SPJ11
what effect does an energy change have on the identity of a substance
An energy change can have different effects on the identity of a substance depending on the type of energy involved and the nature of the substance itself. In general, an energy change does not alter the fundamental identity or chemical composition of a substance. The identity of a substance is determined by its unique arrangement of atoms and the types of chemical bonds present.
When considering changes in energy, it is important to distinguish between physical and chemical changes. In a physical change, the substance undergoes a transformation that does not alter its chemical composition. For example, heating water to its boiling point causes a physical change from liquid to gas, but the water molecules remain intact. In this case, the energy change (heat) affects the physical state of the substance but not its identity.
On the other hand, in a chemical change, the substance undergoes a transformation that involves the breaking and forming of chemical bonds, resulting in a different chemical composition. Energy changes, such as heat or light, can drive chemical reactions by providing the necessary activation energy. However, even in a chemical change, the identity of the substance is determined by the arrangement of its atoms and the types of elements involved.
In summary, an energy change, whether in the form of heat, light, or other forms, can affect the physical or chemical properties of a substance, but it does not alter its fundamental identity. The identity of a substance is determined by its unique composition and arrangement of atoms, which remain unchanged during most energy changes.
For more such information on: energy
https://brainly.com/question/13881533
#SPJ8
Find the rest energy, in terajoules, of a 18.5 g piece of chocolate. 1 TJ is equal to 1012 J. rest energy: TJ
The rest energy of an 18.5 g piece of chocolate is 1.6601 x 10⁻³ TJ. Answer: 1.6601 x 10⁻³ TJ.
The rest energy, in terajoules, of an 18.5 g piece of chocolate can be found using the equation: E=mc², where E is energy, m is mass, and c is the speed of light squared. Given that 1 TJ is equal to 10¹² J, we can convert the final answer to terajoules (TJ).Here's how to solve the problem:
Convert the mass of chocolate to kilograms. There are 1000 grams in a kilogram, so 18.5 g = 0.0185 kg.
Plug the mass into the equation E=mc²: E = (0.0185 kg) x (299792458 m/s)².
Simplify and solve: E = (0.0185 kg) x (8.98755178736818 x 10¹⁶ m²/s²).
E = 1.6601 x 10¹⁵ J.4.
Convert to terajoules: 1 TJ = 10¹² J, so 1.6601 x 10¹⁵ J = 1.6601 x 10⁻³ TJ.
More on rest energy: https://brainly.com/question/32509851
#SPJ11
Which kind of force and motion causes a pencil that is dropped to fall to the floor?
The force of gravity causes a pencil that is dropped to fall to the floor. The time it takes for an object to fall from a certain height depends on its initial velocity and the acceleration due to gravity.
When an object falls, it is because gravity is acting on it. The force of gravity is the force of attraction between any two objects with mass. Gravity causes the objects to be pulled toward each other. The strength of gravity depends on the mass of the objects and the distance between them.The motion of a falling object is called free fall. Free fall occurs when an object falls under the influence of gravity alone, with no other forces acting on it. The acceleration of an object in free fall is constant, and is equal to the acceleration due to gravity, which is approximately 9.8 meters per second squared (m/s²) near the surface of the Earth.
When an object is dropped, it begins to fall because of the force of gravity. Gravity is a force that exists between any two objects that have mass. The force of gravity depends on the mass of the objects and the distance between them. The force of gravity acts on the object from the moment it is dropped until it hits the floor.The motion of an object that is falling under the influence of gravity alone is called free fall. In free fall, the object is accelerating because of gravity. The acceleration of an object in free fall is constant, and is equal to the acceleration due to gravity, which is approximately 9.8 meters per second squared (m/s²) near the surface of the Earth.When an object is in free fall, the only force acting on it is gravity. This means that there is no air resistance or other force to slow it down. As a result, the object falls faster and faster until it hits the ground.
To know more about force of gravity visit :-
https://brainly.com/question/30498785
#SPJ11
how fast are the ions moving when they emerge from the velocity selector?
The ions are moving at a constant velocity when they emerge from the velocity selector.
When ions emerge from the velocity selector, they are moving at a constant velocity. The velocity selector is a device used to filter and control the speed of charged particles, such as ions, in scientific experiments. It consists of crossed electric and magnetic fields that exert forces on the ions, allowing only those with a specific velocity to pass through unaffected. As a result, the ions that emerge from the velocity selector have their velocities adjusted to match the desired value. This constant velocity allows for accurate measurements and control of the ions' movement in further experiments or applications.
Learn more about velocity selector
brainly.com/question/31953398
#SPJ11
why did the masses of the objects have to be very small to be able to get the objects very close to each other?
The masses of the objects have to be very small to be able to get the objects very close to each other because of the gravitational force.
Gravitational force is the force of attraction between any two objects with mass. It is an attractive force that acts between all objects with mass. The strength of the gravitational force depends on the masses of the objects involved and the distance between them. When the objects are close to each other, the gravitational force between them becomes stronger. If the masses of the objects are very large, the gravitational force between them becomes very strong. This means that it is very difficult to get the objects very close to each other because of the strong force of gravity. However, if the masses of the objects are very small, the gravitational force between them becomes very weak. This means that it is much easier to get the objects very close to each other because there is less gravitational force pushing them apart.
Gravitational force is one of the fundamental forces in nature. It is an attractive force that acts between any two objects with mass. The strength of the gravitational force depends on the masses of the objects involved and the distance between them. When the objects are close to each other, the gravitational force between them becomes stronger. If the masses of the objects are very large, the gravitational force between them becomes very strong. This means that it is very difficult to get the objects very close to each other because of the strong force of gravity. However, if the masses of the objects are very small, the gravitational force between them becomes very weak. This means that it is much easier to get the objects very close to each other because there is less gravitational force pushing them apart. In general, the strength of the gravitational force between two objects is given by the formula F = Gm1m2/r^2, where F is the force of gravity, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them. As you can see from this formula, the strength of the gravitational force decreases as the distance between the objects increases.
To know more about gravitational force visit :-
https://brainly.com/question/32609171
#SPJ11
the ball in the figure rotates counterclockwise in a circle of radius 3.39 m with a constant angular speed of 8.00 rad/s. at t = 0, its shadow has an x coordinate of 2.00 m and is moving to the right.
To determine the position of the shadow at a specific time, we can use the concept of angular velocity and the relationship between angular displacement and linear displacement.
Given:
Radius of the circle (r) = 3.39 m
Angular speed (ω) = 8.00 rad/s
Initial x-coordinate of the shadow (x) = 2.00 m The ball rotates counterclockwise, which means the shadow moves to the right initially. We can use the equation: x = r * cos(θ) At t = 0, the angular displacement (θ) is 0, and the x-coordinate of the shadow is 2.00 m. We can solve for θ using the inverse cosine function:
θ = cos^(-1)(x/r)
θ = cos^(-1)(2.00 m / 3.39 m)
Calculating the value of θ: θ ≈ 55.40 degrees. Since the ball rotates counterclockwise at a constant angular speed, we can determine the angular displacement at any given time using the equation: θ = ω * tmNow, let's find the angular displacement at t = 0. We substitute the values:θ = 8.00 rad/s * 0 s θ = 0 rad. Therefore, the shadow is initially at an angular displacement of 55.40 degrees, and the angular displacement remains 0 at t = 0.
To learn more about velocity, https://brainly.com/question/31150979
#SPJ11