Answer:
[tex]\mathbf{ C_d = 0.86}[/tex]
Explanation:
Given that:
diameter of the orifice D = 5 cm = 5 × 10⁻² m
discharge rate Q = 0015 m³/s
Actual velocity V = 9 m/s
By using the formula
[tex]Q = C_d \times A \times \sqrt{2gh}[/tex]
where;
[tex]v = \sqrt{2gh}[/tex] = 9 m/s
[tex]Q = C_d \times A \times v}[/tex]
where;
[tex]A = \dfrac{\pi D^2}{4}[/tex]
[tex]A = \dfrac{\pi (5 \times 10^{-2} ) ^2}{4}[/tex]
[tex]A = 0.00196 \ m^2[/tex]
Again,
[tex]Q = C_d \times A \times v}[/tex]
[tex]0.015 = C_d \times 0.00196 \times 9[/tex]
[tex]C_d = \dfrac{0.015 }{ 0.00196 \times 9}[/tex]
[tex]\mathbf{ C_d = 0.86}[/tex]
Hence, the coefficient of discharge [tex]\mathbf{ C_d = 0.86}[/tex]
A spring stretches by 15cm when a mass of 300g hangs down from it,if the spring is then stretched an additional 10cm and released, calculate;the spring constant,the angular velocity, amplitude of oscillation, maximum velocity, maximum acceleration of the mass,period, frequency
Answer:
0.1 m
Explanation:
It is given that,
Mass of the object, m = 350 g = 0.35 kg
Spring constant of the spring, k = 5.2 N/m
Amplitude of the oscillation, A = 10 cm = 0.1 m
Frequency of a spring mass system is given by :
Time period:
If an atom of oxygen has an atomic number of eight that means...…
E. there are 8 protons
F. there are 8 neutrons
G. it weighs 8 amu
H. it is in group 8
A 62 kg student, starting from rest, slide down an 10.6 m high water slide. How fast is he going at the bottom of the slide? Use g = 10 m/s2
Answer:
14.6m/s
Explanation:
Given parameters:
Mass of the student = 62kg
Initial velocity = 0m/s
Height of slide = 10.6m
g = 10m/s²
Unknown:
Speed at the bottom of the slide = ?
Solution:
The speed at the bottom of the slide is the final velocity;
v ² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 0² + 2x 10 x 10.6
v² = 212
v = 14.6m/s
Show that the speed of a moving particle over a time interval is constant if and only if its velocity and acceleration vectors are perpendicular over the time interval.
Answer:
[tex]|v|(t)=\sqrt{v_{x}^{2}(t)+v_{y}^{2}(t)+v_{z}^{2}(t)}=C[/tex]
[tex]2v(t)\cdot \frac{dv(t)}{dt}=0[/tex]
[tex]v(t)\cdot a(t)=0[/tex]
Explanation:
Let's start with the definition of a constant velocity.
If the velocity magnitude, in three dimensions, is a constant value (C) we have a constant velocity, which means.
[tex]|v|(t)=\sqrt{v_{x}^{2}(t)+v_{y}^{2}(t)+v_{z}^{2}(t)}=C[/tex]
Now, we know that the dot product between v(t) and v(t) is the |v|².
[tex]v(t)\cdot v(t)=|v|^{2}(t)[/tex]
If we take the derivative whit respect to time in both sides of this equation we will have:
[tex]\frac{d}{dt}(v(t)\cdot v(t))=\frac{d}{dt}|v|^{2}(t)[/tex]
We apply the product rule on the left side and the right side will zero because the derivative of a constant is 0.
[tex]\frac{dv(t)}{dt}\cdot v(t)+v(t)\cdot \frac{dv(t)}{dt}=0[/tex]
[tex]2v(t)\cdot \frac{dv(t)}{dt}=0[/tex]
We know that dv(t)/dt = a(t) (using the acceleration definiton)
Therefore, we conclude:
[tex]v(t)\cdot \frac{dv(t)}{dt}=0[/tex]
[tex]v(t)\cdot a(t)=0[/tex]
If the dot product is 0, it means that v(t) and a(t) are orthogonal.
I hope it helps you!
Which is in the Moneran kingdom? A. plants B. bacteria C. animals D. mushrooms
Answer: b
Explanation:
What can we conclude from the attractive nature of the force between a positively charged rod and an object?
a. the object is positively charged
b. cannot determine
c. the object is a conductor
d. the object is an insulator
e. the object is negatively charged
Answer:
E; The object is negatively charged
Explanation:
Here, we want to state the conclusion that can be drawn from a positively charged rod being attracted to an object.
Generally as we know, oppositely charged materials attract while the ones with same charges repel each other.
Thus, in this case, for the rod to attract the object, there must have been an opposite charge of negativity on the object
So we conclude that the reason why the rod attracted the object was because of the presence of opposing charges on both of them. And since the rod has taken the positive charge, it is only correct to state that the object is negatively charged
In the picture shown below A represents a characteristic of only geocentric model, B represents a characteristic common to both geocentric and heliocentric models, C represents a characteristic of only heliocentric model, and D represents a characteristic which the geocentric and heliocentric models do not have.
Under which label will the characteristic, "The sun and planets revolve around a central moon in the solar system" fall?
A
B
C
D
Assuming no friction, how does the initial gravitational potential energy of
the marble on a downward slope compare to the final kinetic energy?
a) they are the same
b) the initial gravitational potential energy is greater than the final kinetic energy
c) the initial gravitational potential energy is less then the final kinetic energy
Answer:
a) They are the same.
Explanation:
Assuming no friction, there should be no energy transfer and thus the Law of Conservation of Energy says:
[tex]PE=KE,\\mgh=\frac{1}{2}mv^2[/tex]
These types of problems also disregard any air resistance the surface of the object may cause. Therefore, no energy is transferred and from the Law of Conservation of Energy, [tex]100\%[/tex] of energy is preserved.
how to add an answer
Question 1 of 10
What might happen to personal information when it is transferred using
digital signals?
A. Some information might be changed when the data are copied.
B. It might be accessed by someone who was not the intended
recipient.
C. The information might change while being transmitted because of
noise.
D. The information might change to analog, making it less reliable.
Answer:
its b for sure
Explanation:
Answer:
B. It might be accessed by someone who was not the intended
recipient
Two objects are interacting but stay stationary. Which best describes what is happening to he action and reaction forces
Answer: B
Explanation: The forces are equal and opposite each other.
When two objects are interacting but stay stationary, then the forces are equal and opposite each other.
What do you mean by Force?Force may be defined as the process of pushing and pulling an object with an actual mass that stimulates its velocity to be changed. It is a type of vector quantity because it has both magnitude and direction.
It is the simple and fundamental concept of physics that when two or more objects are interacting with one another but do stimulate any change in their position, the forces among them are definitely equal and opposite to one another. It is the most plausible explanation of Newton's third law of motion.
Therefore, when two objects are interacting but stay stationary, then the forces are equal and opposite each other.
To learn more about Newton's law of motion, refer to the link:
https://brainly.com/question/14222453
#SPJ6
Your question seems incomplete. The most probable complete question is as follows:
The forces are equal and opposite each other. The forces are not equal and opposite to each other. The forces are equal but not opposite to each other.The forces are not equal but opposite to each other.true or false A person's speed around the Earth is faster at the poles than it is at the equator.
Answer:False
Explanation:The Earth rotates faster at the equator than at the poles.
If a car is traveling at an average speed of 20 m/s, how long will it take to travel 500 meters?
A. 0.04 seconds
B. 25 seconds
C. 520 seconds
D. 10,000 seconds
Answer:
B. 25 seconds
Explanation:
500÷20=25
what is the pressure on a swimmer 50 m below the surface of a lake
Answer:
P = 490500 [Pa]
Explanation:
The pressure at the bottom of a vessel and even of a lake or sea can be calculated by means of the following hydrostatic equation.
[tex]P=Ro*g*h[/tex]
where:
P = pressure [Pa] (units of pascal)
Ro = water density = 1000 [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 50 [m]
Now replacing:
[tex]P=1000*9.81*50\\P=490500[Pa][/tex]
A safety plug is designed to melt when the pressure inside a metal tank becomes too high. A gas
at 51.0 atm and a temperature of 23.0°C is contained in the tank, but the plug melts when the
pressure reaches 75.0 atm. What temperature did the gas reach?
If a woman walks at a speed of 5 miles/hour for 3 hours, she will have walked how many miles?
The distance walked by the woman at the given speed an time, is 15 miles.
What is meant by speed?The speed of an object is defined as the rate of change of the distance travelled by the object.
Here,
Speed with which the woman is walking,
v = 5 miles/hour
Time taken by the woman for walking,
t = 3 hours
We know speed is the rate of change of distance,
v = d/t where d is the distance travelled by the woman
So, d = v x t
d = 5 x 3
d = 15 miles
Hence,
The distance walked by the woman at the given speed an time, is 15 miles.
To learn more about speed, click:
https://brainly.com/question/17661499
#SPJ3
Can a single atom be considered a molecule?
A:only if the atom is found in water
B:no, it takes two or more atoms bonded to create a molecule
C:only if it is an oxygen atom floating in the air
D:yes, all atoms are made up of many different molecules
Introduction: The specific heat capacity of a substance is the amount of energy needed to change the temperature of that substance by 1 °C. Specific heat capacity can be calculated using the following equation:
q = mc deltaT
In the equation q represents the amount of heat energy gained or lost in joules), m is the mass of the substance (in grams), c is the specific heat capacity of the substance (in J/g °C), and AT is the temperature change of the substance in °C).
Goal: Calculate the specific heat capacities of copper, granite, lead, and ice.
Solve: When you mix two substances, the heat gained by one substance is equal to the heat lost by the other substance. Suppose you place 125 g of aluminum in a calorimeter with 1,000 g of water. The water changes temperature by 2 °C and the aluminum changes temperature by -74.95 °C.
A. Water has a known specific heat capacity of 4.184 J/g °C. Use the specific heat equation to find out how much heat energy the water gained (q).
B. Assume that the heat energy gained by the water is equal to the heat energy lost by the aluminum. Use the specific heat equation to solve for the specific heat of aluminum. Aluminum's accepted specific heat value is 0.900 J/g °C. Use this value to check your work.
Answer:
A) 8,368 J
B) ) 0.893 J/gºC
Explanation:
A)
The heat gained by the water can be obtained solving the following equation:[tex]q_{g} = c_{w} * m * \Delta T (1)[/tex]
where cw = specific heat of water = 4.184 J/gºCm= mass of water = 1,000 gΔT = 2ºC Replacing these values in (1) we get:[tex]q_{g} = c_{w} * m * \Delta T = 4.184 J/gºC*1,000 g* 2ºC = 8,368 J (2)[/tex]
B)
Assuming that the heat energy gained by the water is equal to the one lost by the aluminum, we can use the same equation, taking into account that the energy is lost by the aluminum, so the sign is negative: -8,368 J.Replacing by the mass of aluminum (125 g), and the change in temperature (-74.95ºC), in (1), we can solve for the specific heat of aluminum, as follows:[tex]q_{l} = c_{Al} * m_{Al} * \Delta T (3)[/tex]
⇒ [tex]-8,368 J = c_{Al}* 125 g * (-74.95ºC) (4)[/tex]
[tex]c_{Al} = \frac{-8,368J}{125g*(-74.95ºC} = 0.893 J/gºC (5)[/tex]
which is pretty close to the Aluminum's accepted specific heat value of 0.900 J/gºC.
Lisa skips 5 m North to the playground. She realizes she forgot to bring water so she turns around and goes 3 m South to the convenience store
Answer:
-2 South
Always subtract where they ended first is what my teacher said
What relationship must exist between an applied force and the velocity of a moving object if uniform circular motion is to result?
Answer:
See explanation
Explanation:
Centripetal force is defined as the inward force required to keep an object moving with a constant speed in a circular path.
The magnitude of this force depends on the mass of the object, radius of the object and the velocity of the body.
So we can write;
F = mv^2/r
In designing buildings to be erected in an area prone to earthquakes, what relationship should the designer try to achieve between the natural frequency of the building and the typical earthquake frequencies?
A) The natural frequency of the building should be exactly the same as typical earthquake frequencies.
B) The natural frequency of the building should be almost the same as typical earthquake frequencies but slightly lower
C) The natural frequency of the building should be very different frem typical earthquake frequencies
D) The natural frequency of the building should be almost the same as typical earthquake frequencies but slightly higher.
Answer:
C) The natural frequency of the building should be very different from typical earthquake frequencies
Explanation:
We shall apply the concept of resonance in this problem .
When a body is applied an external harmonic force ( forced vibration) such that natural frequency of body is equal to frequency of external force or periodicity of external force , the body vibrates under resonance ie its amplitude of vibration becomes very high .
In the present case if natural frequency of building becomes equal to the earthquake's frequency ( external force ) , the building will start vibrating with maximum amplitude , resulting into quick collapse of the whole building . So to avoid this situation , natural frequency of building should be very different from typical earthquake frequencies .
Which is the best explanation for why Toms technique works ?
What statement is not an example of Newton’s first law of motion
Answer:
c
Explanation:
im smart....................... i think
This law is about inertia, and the law displayed in A is Newton's third law of equal and opposite reactions, so option A is correct.
What is Newton’s first law of motion?The basis of classical mechanics is laid out in three assertions known as Newton's laws of motion, which were first articulated by English physicist and mathematician Isaac Newton. These laws describe the relationships between forces acting on a body and its motion.
Unless a force acts on a body that is at rest or moving in a straight line at a constant speed, Newton's first law asserts that it will continue to be at rest or move in that direction.
This law is about inertia (an object wanting to stay in its state of motion) and the law displayed in A is Newton's third law of equal and opposite reactions, therefore, it is not an example of Newton’s first law of motion.
To know more about Newton’s First law of motion:
https://brainly.com/question/974124
#SPJ2
a toy car has a 2.0 A current, and its resistance is 1.75 ohms. How much voltage does the car require
Answer:
the answer will be 24.40 ohms law
Explanation:
When a glass rod is rubbed with silk, the silk becomes negatively charged. Which of the following explanations best describes that is happening?
a. Electrons move from silk to glass
b. Electrons move from glass to silk
c. Protons move from silk to glass
d. Protons move from glass to silk
Answer: b. Electrons move from glass to silk
Explanation:
When the glass rod is rub over against the silk, the glass loses the electrons due to the physical contact with the silk and the friction so produced. The surface of the glass becomes positively charged and the surface of the silk becomes negatively charged. As the surface of the glass loses electrons which are accepted by the silk surface.
David's father is on dialysis because his kidneys have failed. He has to go regularly to have his blood filtered. The kidneys are composed of nephrons that filter the blood and remove _______________ before moving to excrete the urine.
Question options:
wastes
sweat
nephrons
proteins
Answer:
wastes
Explanation:
Each of your kidneys is made up of about a million filtering units called nephrons. Each nephron includes a filter, called the glomerulus, and a tubule. The nephrons work through a two-step process: the glomerulus filters your blood, and the tubule returns needed substances to your blood and removes wastes.
Answer:
sweat
Explanation:
A ball is thrown vertically upward from the top of a 100 foot tower, with an initial velocity of 10 ft/sec. Its position function is s(t)=−16t2+10t+100.
a. What is its velocity in ft/sec when t = 2 seconds? (Solve by using instantaneous rate.)
b. Determine the equation of a line, in slope-intercept form, that passes through the points (5, 6) and (10, 2).
Answer;
-54ft/s
y = -4/5 x + 10
Explanation
Given the position of an object expressed by the function
s(t)=−16t²+10t+100
Velocity is the change in position with respect to time
v(t) = ds(t)/dt
v(t) = -32t + 10
When t = 2
v(2) = -32(2)+10
v(2) = -64+10
v(2) = -54
Hence the velocity of the object is -54ft/s
b) The standard equation of a line in point slope form is expressed as;
y = MX+c
M is the slope
c is the y-intercept
Given the coordinate (5, 6) and (10, 2)
M = 2-6/10-5
M = -4/5
Get the y-intercept
Substitute m = -4/5 and any point say (5,6) into the expression y = mx+c
6 = -4/5 (5) + c
6 = -4+c
c = 6+4
c = 10
Get the required equation
Recall that: y = mx+c
y = -4/5 x + 10
Hence the equation of a line, in slope-intercept form is y = -4/5 x + 10
A 71-kg swimmer dives horizontally off a 500-kg raft. If the diver's speed immediately after leaving the raft is 6m/s, what is the corresponding raft speed?
Answer:
The answer is below
Explanation:
Momentum is used to measure the quantity of motion in an object. Momentum is the product of mass and velocity.
Momentum = mass * velocity
The principle of conservation of momentum states that momentum cannot be created or destroyed but can be transferred. Therefore the momentum before and after an action is equal.
Initial momentum = Final momentum
Let m be the mass of the diver, M be the mass of the raft, u be the initial velocity of the diver, U be the initial velocity of the raft, v be the final velocity of the diver and V be the final velocity of the raft.
m = 71 kg, M = 500 kg, v = 6 m/s
Initial both the raft and diver are at rest, hence u and U is zero, hence:
mu + MU = mv + MV
71(0) + 500(0) = 71(6) + 500(V)
0 = 426 + 500(V)
500(V) = -426
V = -426/500
V = -0.852 m/s
An object is released from rest at a height H near and above the surface of Earth. As the object falls toward the surface, Earth’s atmosphere exerts a resistive force on the object such that it reaches a terminal velocity before it reaches the ground. Which of the following claims is true? Select two answers.
The system consisting of only the object is an open system.
The system consisting of only the object is an open system.
A
Earth’s atmosphere does negative work on the object as it falls toward the surface.
Earth’s atmosphere does negative work on the object as it falls toward the surface.
B
The change in the object’s kinetic energy from the instant it is released from rest, to the instant it reaches terminal velocity, is zero.
The change in the object’s kinetic energy from the instant it is released from rest, to the instant it reaches terminal velocity, is zero.
C
The total mechanical energy of the object-Earth system remains constant at all times in which the object is in motion.
Answer:
Second and Last Option Are Correct
Explanation:
Calculate the extension of a 20cm spring that has a spring contrast of 45000N/m and 1500N of elastic potential energy.
Answer:
See the answer below
Explanation:
The elastic potential energy can be calculated by means of the following equation:
[tex]E_{el}=\frac{1}{2} *k*x^{2}[/tex]
where:
Eel = elastic energy = 1500 [J]
k = spring constant = 45000 [N/m]
x = extension [m]
[tex]1500=\frac{1}{2} *45000*x^{2} \\3000=45000*x^{2} \\x=\sqrt{0.06666}\\x=0.258[m] = 25.8 [cm][/tex]