Answer:
3/ 7
Step-by-step explanation:
We know that it is an even ball
2,4,6,8,10,12,14 are even balls
2,4,6,8 are red and 10,12,14 are white
P ( white) = white even / total even
= 3/ 7
Can I have help I am stuck on this problem It would mean the world if u helped me and tysm!! =-)
Answer:
1. >
2. <
3. =
4. <
Step-by-step explanation:
23.197 > 23.179
3 2/10 which is the same as,
3.2 < 3.243
30.423 = 30 423/1000
18.546 < 18 56/100
it is found that 4% of watches produced at a particular factory are defective. If 20 watches made at this factory are randomly selected, what is the probbility that at mpst 1 watch in the same sample is found to be defective
Answer:
0.81 = 81% probability that at most 1 watch in the sample is defective.
Step-by-step explanation:
For each watch, there are only two possible outcomes. Either it is defective, or it is not. The probability of a watch being defective is independent of any other watch, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
4% of watches produced at a particular factory are defective.
This means that [tex]p = 0.04[/tex]
20 watches made at this factory are randomly selected
This means that [tex]n = 20[/tex]
What is the probability that at most 1 watch in the same sample is found to be defective?
This is:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{20,0}.(0.04)^{0}.(0.96)^{20} = 0.442[/tex]
[tex]P(X = 1) = C_{20,1}.(0.04)^{1}.(0.96)^{19} = 0.368[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.442 + 0.368 = 0.81[/tex]
0.81 = 81% probability that at most 1 watch in the sample is defective.
Suppose 50.7 liters of water came out of a faucet today. If 2.6 liters of water come out each minute, for how many minutes was the faucet on?
Two classes have a total of 50 students. One of the classes has 6 more students than the other. How many students are in the larger class.
14
19
28
31
Answer:
28 are in the larger class.
Step-by-step explanation:
50/2 = 25 xy
25+ 3 = 28 larger
25-3 = 22 smaller
x = 28
The larger class has 28 students, and the correct option is 28.
Let's assume the number of students in one class is x.
According to the given information, the other class has 6 more students than this class, which means the number of students in the other class is x + 6.
To find the total number of students, we add the number of students in both classes: x + (x + 6) = 50.
Combining like terms, we have: 2x + 6 = 50.
Next, we subtract 6 from both sides of the equation: 2x = 44.
Finally, we divide both sides of the equation by 2 to solve for x: x = 22.
So, there are 22 students in one class, and the other class has 22 + 6 = 28 students.
Therefore, the larger class has 28 students, and the correct option is 28.
To know more about equation:
https://brainly.com/question/29657983
#SPJ6
Yanni read 24 pages of
a book. 1 of the book is
still left to read. How many
pages are there in the
whole book?
What is the value of y?
9514 1404 393
Answer:
(d) 2
Step-by-step explanation:
The parallel lines divide the transversals proportionally, so we have ...
3y/3 = 2y/y
y = 2 . . . . . . . . . simplify (assuming y ≠ 0)
The director of research and development is testing a new medicine. She wants to know if there is evidence at the 0.02 level that the medicine relieves pain in more than 384 seconds. For a sample of 41 patients, the mean time in which the medicine relieved pain was 387 seconds. Assume the population standard deviation is 23. Find the P-value of the test statistic.
Answer:
The p-value of the test statistic is 0.2019.
Step-by-step explanation:
Test if there is evidence at the 0.02 level that the medicine relieves pain in more than 384 seconds.
At the null hypothesis, we test if it relieves pain in at most 384 seconds, that is:
[tex]H_0: \mu \leq 384[/tex]
At the alternative hypothesis, we test if it relieves pain in more than 384 seconds, that is:
[tex]H_1: \mu > 384[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
384 is tested at the null hypothesis:
This means that [tex]\mu = 384[/tex]
For a sample of 41 patients, the mean time in which the medicine relieved pain was 387 seconds. Assume the population standard deviation is 23.
This means that [tex]n = 41, X = 387, \sigma = 23[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{387 - 384}{\frac{23}{\sqrt{41}}}[/tex]
[tex]z = 0.835[/tex]
P-value of the test:
The p-value of the test is the probability of finding a sample mean above 387, which is 1 subtracted by the p-value of z = 0.835.
Looking at the z-table, z = 0.835 has a p-value of 0.7981.
1 - 0.7981 = 0.2019
The p-value of the test statistic is 0.2019.
what is the ratio of the two values and what new value do they produce? $280 in 7m
what is the ratio of the two values and what new value do they produce? 105 miles in 2 hours
what is the ratio of the two values and what new value do they produce? $33 for 5lb
what is the ratio of the two values and what new value do they produce? 50 pages in 2 hours
Answer:
The ratio between two values A and B is just the quotient between these two values:
ratio = A/B
a) $280 in 7m
Here the ratio is:
$280/7m = $40/m
This also can be read as:
$40 per meter.
b) 105 miles in 2 hours
Here the ratio is:
105mi/2h = 52.5 mi/h
This also can be read as:
52.5 miles per hour
c) $33 for 5lb
The ratio is:
$33/5lb = $6.6/lb
This can be read as:
$6.6 per pound.
d) 50 pages in 2 hours
the ratio is:
(50 pages)/2h = 25 pages/h
this can be read as:
25 pages per hour.
Bill works for a large food service company. In one hour he can make 19 sandwiches or he can make 40 salads. Bill works 7 hours per day. If Bill needs to make 30 sandwiches then how many salads can he make
Answer:
[tex]x=216 salads[/tex]
Step-by-step explanation:
One Hour:
Salad=40
Sandwich=19
Total work time[tex]T=7[/tex]
Generally
Time to make 30 sandwiches is
[tex]T_s=\frac{30}{19}[/tex]
[tex]T-s=1.6hours[/tex]
Therefore
Bill has 7-1.6 hours to make salads and can make x about of salads in
[tex]x=(7-1.6)*40[/tex]
[tex]x=5.4*40[/tex]
[tex]x=216 salads[/tex]
Joe is four years older than Tim. Ten years ago, Joe was twice as old as Tim. Find their ages now?
Answer:
Joe: 18 years old
Tim: 14 years old
Eight students are running for three positions in
the student council: president, vice president,
and secretary. Which represents the total
number of ways that three students can be
selected if each student can be elected to only
one position?
Answer:
Step-by-step explanation:
Total number of outcome are
1320
.
Explanation:
It is apparent that there are
12
ways in which the post of President can be filled. Once President's post is filled, there are
11
ways to fill the post of Vice President and then
10
ways to fill the post of Secretary,
Hence a total of
12
⋅
11
⋅
10
or
1320
ways or outcomes.
Answer:
1320
Step-by-step explanation:
a study of patients who were overweight found that 53% also had elevated blood pressure. If 3 overweight patients are selected find the probability that all three have elevated blood pressure
Answer:
14.8%
Step-by-step explanation:
53/100*53/100*53/100
According to records from a large public university, 88% of students who graduate from the university successfully find employment in their chosen field within three months of graduation. What is the probability that of nine randomly selected students who have graduated from this university, at least six of them find employment in their chosen field within three months
Answer:
0.9842 = 98.42% probability that at least six of them find employment in their chosen field within three months.
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they found employment, or they did not. The probability of a student finding employment is independent of any other student, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
88% of students who graduate from the university successfully find employment in their chosen field within three months of graduation.
This means that [tex]p = 0.88[/tex]
Nine randomly selected students
This means that [tex]n = 9[/tex]
What is the probability that of nine randomly selected students who have graduated from this university, at least six of them find employment in their chosen field within three months?
This is:
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{9,6}.(0.88)^{6}.(0.12)^{3} = 0.0674[/tex]
[tex]P(X = 7) = C_{9,7}.(0.88)^{7}.(0.12)^{2} = 0.2119[/tex]
[tex]P(X = 8) = C_{9,8}.(0.88)^{8}.(0.12)^{1} = 0.3884[/tex]
[tex]P(X = 9) = C_{9,9}.(0.88)^{9}.(0.12)^{0} = 0.3165[/tex]
Then
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) = 0.0674 + 0.2119 + 0.3884 + 0.3165 = 0.9842[/tex]
0.9842 = 98.42% probability that at least six of them find employment in their chosen field within three months.
Help I’ll mark you!!
Answer:
A.
Step-by-step explanation:
Each mark is worth two. We are inbetween the first mark and 0 on the left. Half of two is one. and since we are in the left quadrant we know it to be negative. Looking down, we see that we are exactly one mark down. As a mark is two, ans that we are going down, this will be a negative two. That leaves us with the answer of (-1, -2)
Answer:
A. (-1,-2)
Step-by-step explanation:
just trust me...I promise it right
A random sample of n1 = 296 voters registered in the state of California showed that 146 voted in the last general election. A random sample of n2 = 215 registered voters in the state of Colorado showed that 127 voted in the most recent general election. Do these data indicate that the population proportion of voter turnout in Colorado is higher than that in California? Use a 5% level of significance.
Answer:
The p-value of the test is 0.0139 < 0.05, which means that these data indicates that the population proportion of voter turnout in Colorado is higher than that in California.
Step-by-step explanation:
Before testing the hypothesis, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
California:
Sample of 296 voters, 146 voted. This means that:
[tex]p_{Ca} = \frac{146}{296} = 0.4932[/tex]
[tex]s_{Ca} = \sqrt{\frac{0.4932*0.5068}{296}} = 0.0291[/tex]
Colorado:
Sample of 215 voters, 127 voted. This means that:
[tex]p_{Co} = \frac{127}{215} = 0.5907[/tex]
[tex]s_{Co} = \sqrt{\frac{0.5907*0.4093}{215}} = 0.0335[/tex]
Test if the population proportion of voter turnout in Colorado is higher than that in California:
At the null hypothesis, we test if it is not higher, that is, the subtraction of the proportions is at most 0. So
[tex]H_0: p_{Co} - p_{Ca} \leq 0[/tex]
At the alternative hypothesis, we test if it is higher, that is, the subtraction of the proportions is greater than 0. So
[tex]H_1: p_{Co} - p_{Ca} > 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the two samples:
[tex]X = p_{Co} - p_{Ca} = 0.5907 - 0.4932 = 0.0975[/tex]
[tex]s = \sqrt{s_{Co}^2+s_{Ca}^2} = \sqrt{0.0291^2+0.0335^2} = 0.0444[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{0.0975 - 0}{0.0444}[/tex]
[tex]z = 2.2[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a difference above 0.0975, which is 1 subtracted by the p-value of z = 2.2.
Looking at the z-table, z = 2.2 has a p-value of 0.9861.
1 - 0.9861 = 0.0139.
The p-value of the test is 0.0139 < 0.05, which means that these data indicates that the population proportion of voter turnout in Colorado is higher than that in California.
Draw clearly the graph of the linear equation. y=1/2x, where x= (-4 -2, 0, 2, 4)
Answer:
(in attachment)
Step-by-step explanation:
you can find the points by inputting the x-values into the equation to solve for the y-values, then connecting the plotted points to create the line.
When x=-4
y=1/2(-4)
y=-2
(-4,-2)
Repeat for all values.
Select the correct statement about what data scientists do during the Data Preparation stage.
a. During the Data Preparation stage, data scientists define the variables to be used in the model.
b. During the Data Preparation stage, data scientists determine the timing of events.
c. During the Data Preparation stage, data scientists aggregate the data and merge them from different sources.
d. During the Data Preparation stage, data scientists identify missing data.
e. All of the above statements are correct.
Answer:
e. All of the above statements are correct.
Option e is correct. All of the above statements are correct.
What is Data science?Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured and unstructured data
Data Scientist makes value out of data, he is expert in various tools and technologies like machine learning, deep learning, artificial intelligence and he solve business problems by presenting a model to predict business future.
During data preparation, data scientists and DBAs aggregate the data and merge them from different sources. During data preparation, data scientists and DBAs define the variables to be used in the model.
Hence, All of the above statements are correct, Option e is correct.
To learn more on Data science click:
https://brainly.com/question/20815848
#SPJ5
What is the area of the given triangle? Round to the nearest tenth
Answer:
28.0125 cm^2 rounded to 28.0 cm^2
Step-by-step explanation:
Area = a*b*sin(c)*1/2
Area = 7 * 13 * sin(38) * 1/2
Area = 91/2 * 0.61566...
Area = 28.0125...
At a high school basketball game the Lions and the Eagles are playing. The Lions attempted 16 free throws and made 10, attempted 50 two-point shots and made 25, and attempted 16 three-point shots and made 12. The Eagles attempted 27 free throws and made 10, attempted 44 two-point shots and made 9, and attempted 17 three-point shots and made 12. (Free throws are worth 1 point each, two-point shots worth 2 points each, and three-point shots worth 3 points each)
Required:
a. What is the free throw percentage for the Lions?
b. What is the free throw percentage for the Eagles?
c. What is the field goal percentage (two-point and three-point shots combined) for the Lions?
d. What is the field goal percentage (two-point and three-point shots combined) for the Eagles?
e. How many points did the Lions score?
f. How many points did the Eagles score?
g. Which team won the basketball game?
Answer:
a. The free throw percentage for the Lions is of 62.5%.
b. The free throw percentage for the Eagles was of 37.04%.
c. The field goal percentage for the Lions was of 56.01%.
d. The field goal percentage for the Eagles was of 34.43%.
e. The Lions scored 96 points.
f. The Eagles scored 64 points.
g. Lions
Step-by-step explanation:
a. What is the free throw percentage for the Lions?
10 out of 16, so:
10*100%/16 = 62.5%.
The free throw percentage for the Lions is of 62.5%.
b. What is the free throw percentage for the Eagles?
10 out of 27, so:
10*100%/27 = 37.04%
The free throw percentage for the Eagles was of 37.04%.
c. What is the field goal percentage (two-point and three-point shots combined) for the Lions?
25 + 12 = 37 out of 50 + 16 = 66. So
37*100%/66 = 56.01%.
The field goal percentage for the Lions was of 56.01%.
d. What is the field goal percentage (two-point and three-point shots combined) for the Eagles?
9 + 12 = 21 out of 44 + 17 = 61. So
21*100%/61 = 34.43%
The field goal percentage for the Eagles was of 34.43%.
e. How many points did the Lions score?
10 free throws, 25 two's and 12 three's. So
[tex]10 + 25*2 + 12*3 = 96[/tex]
The Lions scored 96 points.
f. How many points did the Eagles score?
10 free throws, 9 two's and 12 three's. So
[tex]10 + 9*2 + 12*3 = 64[/tex]
The Eagles scored 64 points.
g. Which team won the basketball game?
The Lions scored more points, so they won.
Answer:
avaavavavavav
Step-by-step explanation:
if the average of b and c is 8, and d=3b-4, what is the average of c and d in terms of b?
[tex] \underline{ \huge \mathcal{ Ànswér} } \huge: - [/tex]
Average of b and c is 8, that is
[tex]➢ \: \: \dfrac{b + c}{2} = 8[/tex]
[tex]➢ \: \: b + c = 16[/tex]
[tex]➢ \: \: c = 16 - b[/tex]
now let's solve for average of c and d :
[tex]➢ \: \: \dfrac{c + d}{2} [/tex]
[tex]➢ \: \: \dfrac{16 - b + 3b - 4}{2} [/tex]
[tex]➢ \: \: \dfrac{12 + 2b}{2} [/tex]
[tex]➢ \: \: \dfrac{2(6 + b)}{2} [/tex]
[tex]➢ \: \: b + 6[/tex]
Therefore, the average of c and d, in terms of b is : -
[tex] \large \boxed{ \boxed{b + 6}}[/tex]
[tex]\mathrm{✌TeeNForeveR✌}[/tex]
Answer:
b+6
Problem:
If the average of b and c is 8, and d=3b-4, what is the average of c and d in terms of b?
Step-by-step explanation:
We are given (b+c)/2=8 and d=3b-4.
We are asked to find (c+d)/2 in terms of variable, b.
We need to first solve (b+c)/2=8 for c.
Multiply both sides by 2: b+c=16.
Subtract b on both sides: c=16-b
Now let's plug in c=16-b and d=3b-4 into (c+d)/2:
([16-b]+[3b-4])/2
Combine like terms:
(12+2b)/2
Divide top and bottom by 2:
(6+1b)/1
Multiplicative identity property applied:
(6+b)/1
Anything divided by 1 is that anything:
(6+b)
6+b
b+6
79
Work out the circumference of this circle.
Take a to be 3.142 and write down all the digits given by your calculator.
14 cm
Answer: 43.988
Step-by-step explanation: The formula for the circumference of a circle is the diameter multiplied by pi. Since the diameter is 14 and it is telling us to use 3.142 as pi, we can multiply the two and get the answer.
If a quadrilateral is a square, then all sides are the same. What part is the conclusion
How many three digit numbers have a 2 as a tens digit??
Answer:
90 numbers
Step-by-step explanation:
Considering the stipulations from the question, the layout for the 3-digit number is:
[tex]\underline{x}\:\underline{2}\:\underline{y}[/tex]
The hundreds digit, [tex]x[/tex], can be any number from 1-9 inclusive, which contains 9 numbers.
The tens digit, 2, is fixed, as stipulated from the problem, and therefore may only be one number, 2.
The ones digit, [tex]y[/tex], can be any number from 0-9 inclusive which gives 10 options.
Therefore, there are [tex]9\cdot 1\cdot 10=\boxed{90}[/tex] three digit numbers that have 2 as a tens digit.
whats the correct answer?
Answer:
its the 4 one
Step-by-step explanation:
What is the volume of a calculate the total surface area of a cuboid with the following dimensions (4m by 6m by 8m)
Answer:
V =192 m^3
Step-by-step explanation:
The volume of a cuboid is
V = l*w*h where l is length w is width and h is height
V = 4*6*8
V =192 m^3
A vegetable garden and a surrounding as a shaped like a square that together a 11 ft wide. The path is 2 feet wide. If one bag of gravel covers 10 square feet, how many bags are needed to cover the path? Round your answer to the nearest tenth. NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW.
Answer:
[tex] \displaystyle 4[/tex]
Step-by-step explanation:
we are given that A vegetable garden and a surrounding as a shaped like a square that together a 11 ft wide. The path is 2 feet wide.since together the width of Vegetable garden and path is 11 ft, the width of the vegetables garden will be the difference between the total width and the width of path Thus,
[tex] \displaystyle \rm W _{ garden} = 11 - 2[/tex]
simplify substraction:
[tex] \displaystyle \rm W _{ garden} = 9[/tex]
recall that, every single side of a square is equal to each other therefore the the area of the garden will be
[tex] \displaystyle {9}^{2} [/tex]
simplify square:
[tex] \displaystyle 81[/tex]
together the garden and path makes a square of every side length 11 ft saying that the area will be:
[tex] \displaystyle {11}^{2} [/tex]
simplify square:
[tex] \displaystyle 121[/tex]
the area of path will be the difference between the total area and the garden area therefore,
[tex] \displaystyle 121 - 81[/tex]
simplify addition:
[tex] \displaystyle 40[/tex]
to figure out how many bags are needed to cover the path. we just need to divide the area of the path by the area of a bag of gravel and that yields:
[tex] \displaystyle \frac{40}{10} [/tex]
simplify division:
[tex] \displaystyle \boxed{\rm4}[/tex]
hence,
4 bags are needed to cover the path.
It is assumed that the time customers spend in a record store is uniformly distributed between 3 and 12 minutes. Based on this information, what is the probability that a customer will be exactly 7.50 minutes in the record store
Answer:
0% probability that a customer will be exactly 7.50 minutes in the record store.
Step-by-step explanation:
Uniform probability distribution:
An uniform distribution has two bounds, a and b.
The probability of finding a value of at lower than x is:
[tex]P(X < x) = \frac{x - a}{b - a}[/tex]
The probability of finding a value between c and d is:
[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]
The probability of finding a value above x is:
[tex]P(X > x) = \frac{b - x}{b - a}[/tex]
The uniform distribution is a continuous distribution, which means that the probability of an exact outcome is zero.
Uniformly distributed between 3 and 12 minutes.
This means that [tex]a = 3, b = 12[/tex]
What is the probability that a customer will be exactly 7.50 minutes in the record store?
Continuous distribution, so:
0% probability that a customer will be exactly 7.50 minutes in the record store.
A survey of households in a small town showed that in 850 of 1,200 sampled households, at least one member attended a town meeting during the year. Using the 99% level of confidence, what is the confidence interval for the proportion of households represented at a town meeting?
Answer:
Hence the confidence interval is ( 0.6745, 0.7422).
Step-by-step explanation:
Now the given are
Sample size = n = 1200
x = 850
Sample proportion is
[tex]\hat{p}=\frac{x}{n}=\frac{850}{1200}=0.7083[/tex]
We have to construct 99% confidence interval for the population proportion.
Formula Used:
[tex](\hat{p}-E , \hat{p}+E)[/tex]
Here E is a margin of error.
[tex]E =Zc\times\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}[/tex]
Zc = 2.58
[tex]E =2.58\times\sqrt{\frac{0.7083*(1-0.7083)}{1200}}\\\\E=2.58\times\sqrt{0.000172}=0.0339[/tex]
So confidence interval is ( 0.7083 - 0.0339 , 0.7083 + 0.0339)
= ( 0.6745 , 0.7422).
Which expression is equivalent to cos120°?
The expression cos240 degrees is equivalent to cos120 degrees
Answer: B. cos240°
Step-by-step explanation:
Took the Test/Exam on Edge
A group of 120 students were surveyed about their interest in a new International Studies program. Interest was measured in terms of high, medium, or low. 30 students responded high interest; 50 students responded medium interest; 40 students responded low interest. What is the relative frequency of students with high interest? A. 30% B. 36.4% C. 25% D. Cannot be determined. Group of answer choices
Answer:
Option C (25%) is the correct answer.
Step-by-step explanation:
Given:
Number of students,
= 120
Students responded high interest,
= 30
Students responded medium interest,
= 50
Students responded low interest,
= 40
Now,
The relative frequency will be:
= [tex]\frac{30}{120}[/tex]
= [tex]0.25[/tex]
or,
= [tex]25[/tex]%