Explanation:
someone to check if the answer is correct
1.a machine gun fires a ball with an initial velocity of 600m/s with an elevation of 30° with respect to the ground neglecting air resistance calculate:
a.the maximum height that can be reached?
b.the time of flight of the bullet?
c.the maximum horizontal displacement of the ired bullet?
Answer:
See explanation
Explanation:
a) maximum height of a projectile = u sin^2θ/2g
H= 600 × (sin 30)^2/2 × 10
H= 7.5 m
b) Time of flight
t= 2u sinθ/g
t= 2 × 600 sin 30/10
t= 60 seconds
Range
R= u^2sin2θ/g
R= (600)^2 × sin2(30)/10
R= 31.2 m
A body of mass 2kg is released from from a point 100m above the ground level. calculate kinetic energy 80m from the point of released.
Answer:
1568J
Explanation:
Since the problem states 80 m from the point of drop, the height relative to the ground will be 100-80=20m.
Use conservation of Energy
ΔUg+ΔKE=0
ΔUg= mgΔh=2*9.8*(20-100)=-1568J
ΔKE-1568J=0
ΔKE=1568J
since KEi= 0 since the object is at rest 100m up, the kinetic energy 20meters above the ground is 1568J
The thrust F of a screw propeller is known to depend upon the diameter d, Speed of advance v, fluid density e, revolution per second N, and the coefficient of viscosity M, of the fluid. Find the expression for F, in terms of the quantities
Answer:
[tex]{ \bf{F = { \tt{ \frac{4}{3} \pi {r}^{3}v gM}}}}[/tex]
A mass-spring system oscillates with an amplitude of 4.20 cm. If the spring constant is 262 N/m and the mass is 560 g, determine the mechanical energy of the system.
Answer:
[tex]M.E=41J[/tex]
Explanation:
From the question we are told that:
Amplitude [tex]a=4.20cm[/tex]
Spring Constant [tex]K=262N/m[/tex]
Mass [tex]m=560g[/tex]
Generally the equation for mechanical energy is mathematically given by
[tex]M.E=\frac{1}{2}km^2[/tex]
[tex]M.E=0.5*262*0.56^2[/tex]
[tex]M.E=41J[/tex]
Which of the following is a noncontact force?
O A. Friction between your hands
O B. A man pushing on a wall
O C. Air resistance on a car
D. Gravity between you and the Sun
Answer:
Gravity between you and the sun
* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)
Explanation:
Given
Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]
time taken to reach ground is given by
[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]
(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]
From the figure, it can be written
[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]
Considering horizontal motion
[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]
(c) The vertical velocity with which it strikes the ground is given by
[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]
Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]
Explanation:
Given
Ball is projected horizontally from a building of height
time taken to reach ground is given by
(b) Line joining the point of projection and the point where it hits the ground makes an angle of
From the figure, it can be written
Considering horizontal motion
(c) The vertical velocity with which it strikes the ground is given by
Thus, the ball strikes with a vertical velocity of
The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?
Answer:
Explanation:
From the information given:
The angular frequency ω = 430 π rad/s
The wavenumber k = 4.00π which can be expressed by the equation:
k = ω/v
∴
4.00 = 430 /v
v = 430/4.00
v = 107.5 m/s
Similarly: k = ω/v = 2πf/fλ
We can say that:
k = 2π/λ
4.00 π = 2π/λ
wavelength λ = 2π/4.00 π
wavelength λ = 0.5 m
frequency of the wave can now be calculated by using the formula:
f = v/λ
f = 107.5/0.5
f = 215 Hz
Also, the Period(T) = 1/215 secs
The time at which particle proceeds from point A to its maximum upward displacement and to its maximum downward displacement can be computed as t = T/2;
Thus, the distance(x) covered by each wave during this time interval(T/2) will be:
x = v * t
x = v * T/2
x = λ/2
x = 0.5/2
x = 0.25 m
Electrical resistance is a measure of resistance to the flow of _?____
Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after Georg Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance.
Hope this helps!!!!
Answer:
electric current
Explanation:
The answer is electric current
How do you find the product of gamma decay?
Answer:
The mass and atomic numbers don't change
Explanation:
An excited atom relaxes to the ground state emitting a photon...called a gamma ray.
The answer is that the mass and atomic numbers don't change.
In gamma decay, the product refers to the nucleus resulting from the emission of a gamma ray. Gamma decay occurs when an excited atomic nucleus releases excess energy in the form of a high-energy photon called a gamma ray.
To find the product of gamma decay, you need to identify the nucleus before and after the decay process. The product nucleus is determined by the parent nucleus that undergoes gamma decay.
During gamma decay, the number of protons and neutrons in the nucleus remains unchanged. Therefore, the identity of the element remains the same, but the energy state of the nucleus is altered.
The product nucleus is typically represented by the same chemical symbol as the parent nucleus, followed by a superscript indicating the mass number (total number of protons and neutrons) and a subscript indicating the atomic number (number of protons).
For example, if a parent nucleus with an atomic number of Z and a mass number of A undergoes gamma decay, the product nucleus will have the same atomic number Z and mass number A.
It's important to note that gamma decay does not involve the emission or absorption of any particles, only the release of electromagnetic radiation (gamma ray).
Thus, the product nucleus remains unchanged in terms of atomic number and mass number.
Know more about gamma decay:
https://brainly.com/question/16039775
#SPJ4
What is the total surface charge qint on the interior surface of the conductor (i.e., on the wall of the cavity)
Answer: hello your question is incomplete below is the missing part
A spherical cavity is hollowed out of the interior of a neutral conducting sphere. At the center of the cavity is a point charge, of positive charge q.
answer:
- q
Explanation:
Since the spherical cavity was carved out of a neutral conducting sphere hence the electric field inside this conductor = zero
given that there is a point charge +q at the center of the spherical cavity hence for the electric field inside the conductor to be = zero the total surface charge qint on the wall of the cavity will be -q
Click Stop Using the slider set the following: coeff of restitution to 1.00 A velocity (m/s) to 6.0 A mass (kg) to 6.0 B velocity (m/s) to 0.0 Calculate what range can the mass of B be to cause mass A to bounce off after the collision. Calculate what range can the mass of B be to cause mass A to continue forward after the collision. Check your calculations with the simulation. What are the ranges of B mass (kg)
Answer:
[tex]M_b=6kg[/tex]
Explanation:
From the question we are told that:
Coefficient of restitution [tex]\mu=1.00[/tex]
Mass A [tex]M_a=6kg[/tex]
Initial Velocity of A [tex]U_a=6m/s[/tex]
Initial Velocity of B [tex]U_b=0m/s[/tex]
Generally the equation for Coefficient of restitution is mathematically given by
[tex]\mu=\frac{V_b-V_a}{U_a-U_b}[/tex]
[tex]1=\frac{v_B}{6}[/tex]
[tex]V_b=6*1[/tex]
[tex]V_b=6m/s[/tex]
Generally the equation for conservation of linear momentum is mathematically given by
[tex]M_aU_a+M_bU_b=M_aV_a+M_bV_b[/tex]
[tex]6*6+=M_b*6[/tex]
[tex]M_b=6kg[/tex]
A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km
Answer:
20 seconds
Explanation:
We are given 2 givens in the first statement
v0=0 and a=5
And we are trying to find time needed to cover 1km or 1000m.
So we use
x-x0=v0t+1/2at²
Plug in givens
1000=0+2.5t²
solve for t
t²=400
t=20s
Three 15-Ω and two 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?
1) 0.18 A
2) 0.25 A
3) 0.51 A
4) 0.74 A
5) The current will be 1.6 A in the 15-Ω bulbs and 0.96 A in the 25-Ω bulbs.
Answer:
I = 0.25 A
Explanation:
Given that,
Three 15 ohms and two 25 ohms light bulbs and a 24 V battery are connected in a series circuit.
In series combination, the equivalent resistance is given by :
[tex]R=R_1+R_2+R_3+....[/tex]
So,
[tex]R=15+15+15+25+25\\\\=95\ \Omega[/tex]
The current each resistor remains the same in series combination. It can be calculated using Ohm's law i.e.
V = IR
[tex]I=\dfrac{V}{R}\\\\I=\dfrac{24}{95}\\\\I=0.25\ A[/tex]
So, the current of 0.25 A passes through each bulb.
The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.
Answer:
[tex]\frac{r_1}{r_2}=6.9[/tex]
Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:
[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]
where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,
[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]
g A mass of 2.0 kg traveling at 3.0 m/s along a smooth, horizontal plane hits a relaxed spring. The mass is slowed to zero velocity when the spring has been compressed by 0.15 m. What is the spring constant of the spring
By the work-energy theorem, the total work done on the mass by the spring is equal to the change in the mass's kinetic energy:
W = ∆K
and the work done by a spring with constant k as it gets compressed a distance x is -1/2 kx ²; the work it does is negative because the restoring force of the spring points opposite the direction in which it's getting compressed.
So we have
-1/2 k (0.15 m)² = 0 - 1/2 (2.0 kg) (3.0 m/s)²
Solve for k to get k = 800 N/m.
Which of the following represents the velocity time relationship for a falling apple?
Answer "a" would be correct.
Answer:
d
Explanation:
There's an acceleration from gravity, thus the velocity is becoming faster and faster as it reaches the ground. Thus its D
Brainliest please~
Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 35 cm while traveling through air. What are the
(a) frequency and
(b) wavelength as the signal travels through 3-mm-thick window glass into your room?
Answer:
(a) 8.57 x 10^8 Hz
(b) 23.3 cm
Explanation:
Wavelength = 35 cm = 0.35 m
speed =3 x10^8 m/s
Let the frequency is f.
(a) The relation is
speed = frequency x wavelength
3 x 10^8 = 0.35 x f
f = 8.57 x 10^8 Hz
(b) refractive index of glass is 1.5
The relation for the refractive index and the wavelength is
wavelength in glass= wavelength in air/ refractive index.
Wavelength in glass= 35/1.5 = 23.3 cm
Two guitar strings, of equal length and linear density, are tuned such that the second harmonic of the first string has the same frequency as the third harmonic of the second string. The tension of the first string is 510 N. Calculate the tension of the second string.
Answer:
The tension in the second string is 226.7 N.
Explanation:
Length is L, mass per unit length = m
T = 510 N
Let the tension in the second string is T'.
second harmonic of the first string = third harmonic of the second string
[tex]2 f = 3 f'\\\\2\sqrt{\frac{T}{m}} = 3 \sqrt {\frac{T'}{m}}\\\\4 T = 9 T'\\\\4\times 510 = 9 T'\\\\T' = 226.7 N[/tex]
Based on the information in the table, what
is the acceleration of this object?
t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2
Answer:
Option A. –5 m/s²
Explanation:
From the question given above, the following data were obtained:
Initial velocity (v₁) = 9 m/s
Initial time (t₁) = 0 s
Final velocity (v₂) = –6 m/s
Final time (t₂) = 3 s
Acceleration (a) =?
Next, we shall determine the change in the velocity and time. This can be obtained as follow:
For velocity:
Initial velocity (v₁) = 9 m/s
Final velocity (v₂) = –6 m/s
Change in velocity (Δv) =?
ΔV = v₂ – v₁
ΔV = –6 – 9
ΔV = –15 m/s
For time:
Initial time (t₁) = 0 s
Final time (t₂) = 3 s
Change in time (Δt) =?
Δt = t₂ – t₁
Δt = 3 – 0
Δt = 3 s
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Change in velocity (Δv) = –15 m/s
Change in time (Δt) = 3 s
Acceleration (a) =?
a = Δv / Δt
a = –15 / 3
a = –5 m/s²
Thus, the acceleration of the object is
–5 m/s².
what is time taken by radio wave to go and return back from communication satellite to earth??
Answer:
Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.
Explanation:
hope it help
Two projectiles A and B are fired simultaneously from a level, horizontal surface. The projectiles are initially 62.2 m apart. Projectile A is
fired with a speed of 19.5 m/s at a launch angle 30° of while projectile B is fired with a speed of 19.5 m/s at a launch angle of 60°. How long
it takes one projectile to be directly above the other?
Let the point where A is launched act as the origin, so that the horizontal positions at time t of the respective projectiles are
• A : x = (19.5 m/s) cos(30°) t
• B : x = 62.2 m + (19.5 m/s) cos(60°) t
These positions are the same at the moment one projectile is directly above the other, which happens for time t such that
(19.5 m/s) cos(30°) t = 62.2 m + (19.5 m/s) cos(60°) t
Solve for t :
(19.5 m/s) (cos(30°) - cos(60°)) t = 62.2 m
t = (62.2 m) / ((19.5 m/s) (cos(30°) - cos(60°))
t ≈ 8.71 s
Why don’t you see tides ( like those of the ocean ) in your swimming pool ?
What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5
Answer:
2) when acceleration triples force triples, 3) a diagram with dynamic friction force in the opposite direction of movement of the car
4) a = 2.44 ft / s², 5) fr = 894.3 N
Explanation:
In this exercise you are asked to answer some short questions
2) Newton's second law is
F = m a
when acceleration triples force triples
3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.
The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car
4) let's use the scientific expressions
v = v₀ - a t
as the car stops v = 0
a = v₀ / t
let's reduce the magnitudes
v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s
a = 58.667 / 24
a = 2.44 ft / s²
5) let's use Newton's second law
fr = m a
We must be careful not to mix the units, we will reduce the acceleration to the system Yes
a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²
fr = 1200 0.745
fr = 894.3 N
190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner?
Answer:
W = 4.75 KW
Explanation:
First, we will calculate the heat to be removed:
Q = (No. of students)(Metabolic Power of Each Student)
Q = (190)(125 W)
Q = 23750 W = 23.75 KW
Now the formula of COP is:
[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]
W = 4.75 KW
vector A has a magnitude of 8 unit make an angle of 45° with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B?
Answer:
45 × 8 units = A + B as formular
A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x-axis.
Answer:
-1.0778×10⁻¹⁰ N/C
Explanation:
Applying,
E = kq/r²................ equation 1
Where E = elctric field, q = charge, r = distance, k = coulomb's law
From the question,
Given: q = -3.0×10 C, r = 5.0 m
Constant: k = 8.98×10⁹ Nm²/C²
Substitute these values in equation 1
E = (-3.0×10)(8.98×10⁹)/5²
E = -1.0778×10⁻¹⁰ N/C
Hence the electric field on the x-axis is -1.0778×10⁻¹⁰ N/C
what is conservation energy?
Explanation:
Conservation of energy, principle of physics according to which the energy of interacting bodies or particles in a closed system remains constant
hope it is helpful to you
A planet of mass m moves around the Sun of mass M in an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r1 and r2, respectively. Find the relation between the time period of the planet in terms of r1 and r2.
Answer:
the relation between the time period of the planet is
T = 2π √[( r1 + r2 )³ / 8GM ]
Explanation:
Given the data i the question;
mass of sun = M
minimum and maximum distance = r1 and r2 respectively
Now, using Kepler's third law,
" the square of period T of any planet is proportional to the cube of average distance "
T² ∝ R³
average distance a = ( r1 + r2 ) / 2
we know that
T² = 4π²a³ / GM
T² = 4π² [( ( r1 + r2 ) / 2 )³ / GM ]
T² = 4π² [( ( r1 + r2 )³ / 8 ) / GM ]
T² = 4π² [( r1 + r2 )³ / 8GM ]
T = √[ 4π² [( r1 + r2 )³ / 8GM ] ]
T = 2π √[( r1 + r2 )³ / 8GM ]
Therefore, the relation between the time period of the planet is
T = 2π √[( r1 + r2 )³ / 8GM ]
Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors
Answer:
The incoming white light is composed of light of different colors,
Since these different colors have different refractive indices they are refracted at different angles from one another.
The output light is then separated by color creating a color spectrum.
Since n is greater for shorter wavelengths (violet colors) these wavelengths are refracted thru the larger angles.
A point charge of -3.0 x 10-5C is placed at the origin of coordinates. Find the electric field at the point 3. r= 50 m on the x-axis
Answer: -5×10-3
Explanation:
E=kq/r