Answer:
It would be 6300000. I can't write this in standard form.
Step-by-step explanation:
Answer:
6.3 x 10^6
Step-by-step explanation:
Rachael needs to rent a car while on vacation. The rental company charges $17.95, plus 19 cents for each
mile driven. If Rachael only has $40 to spend on the car rental, what is the maximum number of miles she
can drive?
Answer:
116 miles
Step-by-step explanation:
We can solve this by first writing an equation for the cost of the car rental. To begin, the base cost is $17.95, so any further costs must be added to that. Next, the car costs 19 cents (0.19 dollars) for each mile driven, so for each mile, we add 19 cents. This can be written as 0.19 *x if x represents the amount of miles driven. Therefore, we can add the two input costs of the car (the base cost and cost per mile) to get
17.95 + 0.19 * x = total cost.
After that, we want to maximize x/the number of miles with only 40 dollars. We can do this by setting this equal to the total cost, as going over the total cost is impossible and going under would be limiting the amount of miles (this because we are adding money for each mile, so more money means more miles). Therefore, we have
17.95 + 0.19 * x = 40
subtract 17.95 from both sides to isolate the x and its coefficient
22.05 = 0.19 * x
divide both sides by 0.19 to isolate x
22.05/0.19 = x = 116.05
The question asked us to round down, and 116.05 rounded down is 116 for our answer
WILL MARK BRAINLIEST PLEASE SHOW WORK!
Step-by-step explanation:
4. the area of semi circle R =
3²/5² × 75π = 9/25 × 75π = 27π cm²
5. the ratio of their areas = 1²:7² = 1:49
Can someone help me with this?
9514 1404 393
Answer:
CNBD -- using the given statement regarding perpendicularityΔLAW ≅ ΔWKL by ASA -- using the markings on the figureStep-by-step explanation:
The given information tells us there is one congruent side in the two right triangles. That is not sufficient to claim congruence of the triangles.
CNBD
__
The figure shows one congruent angle in addition to one congruent side, so the figures can be shown to be congruent using the ASA theorem.
ΔLAW ≅ ΔWKL
_____
Additional comment
We don't know which answer is expected. You should discuss this question with your teacher, since it appears to be missing the statement that
∠ALW ≅ ∠KWL
write your answer in simplest radical form
Answer:
a = 3√6 in
Step-by-step explanation:
From the question given above, the following data were obtained:
Angle θ = 60°
Adjacent = 3√2 in
Opposite = a =?
The value of 'a' can be obtained by using the tan ratio as illustrated below:
Tan θ = Opposite / Adjacent
Tan 60 = a / 3√2
√3 = a / 3√2
Cross multiply
a = √3 × 3√2
Recall:
c√d × n√m = (c×n) √(d×m)
Thus,
√3 × 3√2 = (1×3)√(3×2)
√3 × 3√2 = 3√6
a = 3√6 in
There are five cities in a network. The cost of building a road directly between i and j is the entry ai,j in the matrix below. An infinite entry indicates that there is a mountain in the way and the road cannot be built. Determine the least cost of making all the cities reachable from each other.
0 3 5 11 9
3 0 3 9 8
5 3 0 [infinity] 10
11 9 [infinity] 0 7
9 9 10 7 0
Solution :
Given :
There are five cities in a network and the cost of [tex]\text{building}[/tex] a road directly between [tex]i[/tex] and [tex]j[/tex] is the entry [tex]a_{i,j}[/tex]
[tex]a_{i,j}[/tex] refers to the matrix.
Road cannot be built because there is a mountain.
The given matrix :
[tex]\begin{bmatrix}0 & 3 & 5 & 11 & 9\\ 3 & 0 & 3 & 9 & 8\\ 5 & 3 & 0 & \infty & 10\\ 11 & 9 & \infty & 0 & 7\\ 9 & 8 & 10 & 7 & 0\end{bmatrix}[/tex]
The matrix on the left above corresponds to the weighted graph on the right.
Using the [tex]\text{Kruskal's algorithm}[/tex] we can select the cheapest edge that is not creating a cycle.
Starting with 2 edges of weight 3 and the edge of weight 5 is forbidden but the edge is 7 is available.
The edge of the weight 8 completes a minimum spanning tree and total weight 21.
If the edge of weight 8 had weight 10 then either of the edges of weight 9 could be chosen the complete the tree and in this case there could be 2 spanning trees with minimum value.
help me out, so I can confirm my answers...:)
Answer:
Step-by-step explanation:
i) 18 - 2b = 5a
18 - 2b - 5a = 0
-2b -5a = -18
2b + 5a = 18
5a + 2b = 18
ii) 3a = 5b + 17
3a - 5b = 17
At this time x = 3, y = -5, c= 17
ax + by = c is equivelant to 3a -5b = 17
So another equation is:
3a - 5b = 17
Answer from Gauthmath
Step-by-step explanation:
18-2b=5a
we want to make 5a the subject so first we 5a to the left so our new equation is 5a+18-2b=0
then we move the 2b infront of the +18 so then our new equation is 5a+2b+18=0 then. we move the +18 to the other side to give 5a+2b=18
Please show your steps
Answer:
M of aftershock = 4.90
Step-by-step explanation:
5.6 = log(x/1)
[tex]10^{5.6} = 398107.1 \\[/tex]
1/5 * 398,107.1 = 79,621.4
[tex]10^{m} =[/tex] 79,621.4
m = log (79,621.4) = 4.90
find the value of n . 80×π×n=1100000
Answer:
110000/8π
Step-by-step explanation:
Divide 1100000 by 80 and cancel 0. Then divide pi
drag the tiles to the correct boxes to comlete the pairs.
not all tiles will be used.
match each quadratic equation with its solution set.
Answer:
first tile: X²-55=9
second tile:2x²-32=0
third tile:4x²-100=0
fourth tile:x²-140=-19
Step-by-step explanation:
apply difference of two squares to all i.e (a+b)(a-b)=(a²-b²)=0
x²-55-9=0
x²-64=0
x-8,x+8=0
x=8,x=-8
2x²-32=0
divide through by two
x²-16=0
x=4,x=-4
4x²-100=0
divide through by 4
x²-25=0
x=5 or -5
x²-140=-19
x²-140+19=0
x²-121=0
x=11 or -11
#include
using namespace std;
int main()
{
int x,y=0;
x=1123;
while (x!=0){
y+=x%10;
x/=10;
}
cout<
}
Answer:
main aapki madad karna chahti hun per Mujhe Ae Jahan question Nahin Aata sorry I don't know
sorry dear friend
Step-by-step explanation:
ok I don't know
equation of a line with slope -1 and y intercept 0,-2
Answer:
y = - x - 2
Step-by-step explanation:
y=mx+b
m refers to slope
b refers to y intercept
y = (-1)x + (-2)
y = - x - 2
Answer:
y=-1x-2
Step-by-step explanation:
plug in the slop and y intercept to the equation y=mx+b
Find the axis of symmetry of the graph of
y = x2 + 2x + 2
A- x= 1
B- y=1
C- x= -1
D- y=-1
Answer:
x = -1
Step-by-step explanation:
The graph's turning point is at ( -1 , 1 ), therefore the line of symmetry is at x = -1.
Answer: x = -1
Step-by-step explanation:
The formula to find the axis of symmetry in a function y = ax² + bx + c is:
[tex]x=\frac{-b}{2a}[/tex]
For y = x² + 2x + 2, where:
a = 1b = 2c = 2The axis of symmetry would be:
[tex]x=\frac{-b}{2a} =\frac{-2}{2(1)} =\frac{-2}{2} =-1[/tex]
Geometry something about chords but I don’t understand this whatsoever
Answer:
x = 5
Step-by-step explanation:
A radius is the distance from the center of a circle to the circumference (out edge) of a circle. Within the same circle, all radii are congruent. As per the given image, the radius of the circle is (5). As per its definition, the chord (a line in a circle that spans from one end of the circle to the other) with a measure of (x) is also another radius. Since all radii in a circle are congruent, (x) must also equal (5).
In a study of 806 randomly selected medical malpracticeâ lawsuits, it was found that 513 of them were dropped or dismissed. Use a 0.01 significance level to test the claim that most medical malpractice lawsuits are dropped or dismissed. What is the hypothesis test to beâ conducted?
Solution :
[tex]$H_0: p = 0.5$[/tex]
[tex]$H_a: p > 0.5$[/tex]
Alpha, α = 0.01
The sample proportion is :
[tex]$p'=\frac{x}{n}$[/tex]
[tex]$=\frac{513}{806}$[/tex]
= 0.636
Test statistics, [tex]$z=\frac{p'-p}{\sqrt{\frac{pq}{n}}}$[/tex]
[tex]$z=\frac{0.636-0.5}{\sqrt{\frac{0.5\times 0.5}{806}}}$[/tex]
[tex]$z=\frac{0.136}{0.0176}$[/tex]
z = 7.727
The p value = 0.00001
Here we observe that p value is less than α, and so we reject the hypothesis [tex]H_0[/tex].
Therefore, there is sufficient evidence,
Mary takes out a loan for $6,000 at a simple interest rate of 12% to be paid back in 36 monthly instalments. What is the amount of her monthly payments?
Answer:
$199.29
Step-by-step explanation:
Total payments = $7,174.24
Total interest = $1,174.24
Large soda bottles are on sale three for six dollars. Sasha has eighteen dollars to spend on soda. How
many large bottles of soda can she buy?
Answer:
Sasha can buy 6 bottles of soda.
Step-by-step explanation:
6x2=18
3x2=6
The triangle below is equilateral. Find the length of side
x in simplest radical form with a rational denominator.
===========================================================
Explanation:
Any equilateral triangle has all three angles of 60 degrees each. Splitting the triangle in half like this produces two identical copies of 30-60-90 triangles.
Any 30-60-90 triangle will have its hypotenuse twice as long compared to the short leg. The short leg here is 5 (it's opposite the smallest angle), so that doubles to 2*5 = 10 which is the value of x.
Note: the other side of this right triangle is 5*sqrt(3).
Answer:
x=10
Step-by-step explanation:
∵ Δ IS Equilateral.
∴ sides are equal.
perpendicular from vertex bisects it.
x=2×5=10
Regression and Correlation are two of the most often used and abused tools in research.
a. True
b. False
Answer:
it is true
Step-by-step explanation:
PLEASE I HAVE AN HOUR Why might you use the distributive property to simplify 3(30-2)
Find the equation (in slope-intercept form) of the line with the given slope that passes through the point with the given coordinates.
slope:
3/2
ordered pair: (3, 1)
Answer:
y = 3/2x-2
Step-by-step explanation:
slope intercept form is
y = mx+b where m is the slope and b is the y intercept
y = 3/2x+b
Substitute the point in for x and y
1 = 3/2(2)+b
1 = 3+b
1-3 =b
-2=b
y = 3/2x-2
The curve y=2x^3+ax^2+bx-30 has a stationary point when x=3. The curve passes through the point (4,2).
(A) Find the value of a and the value of b.
#secondderivative #stationarypoints
A stationary point at x = 3 means the derivative dy/dx = 0 at that point. Differentiating, we have
dy/dx = 6x ² + 2ax + b
and so when x = 3,
0 = 54 + 6a + b
or
6a + b = -54 … … … [eq1]
The curve passes through the point (4, 2), which is to say y = 2 when x = 4. So we also have
2 = 128 + 16a + 4b - 30
or
16a + 4b = -96
4a + b = -24 … … … [eq2]
Eliminate b by subtracting [eq2] from [eq1] and solve for a, then for b :
(6a + b) - (4a + b) = -54 - (-24)
2a = -30
a = -15 ===> b = 96
What is the value of B|-|A|?
Answer:
B+A
Step-by-step explanation:
the diameter of a circle is 8 cm what is its area?
A = πr^2 and d = 2r.
So r = 8/2 = 4 cm.
Now use the first formula
A = π(4 cm)^2 = 50.265 cm^2
Write an equation and solve it to answer each question. A pile of 55 coins consisting of nickels and dimes is worth $3.90. Find the number of each. I only need the equation plz. WILL MARK BRAINLIEST.
Answer:
0.05x + 0.1(55 - x) = 3.9
Step-by-step explanation:
There are 55 coins.
Let x = number of nickels.
The number of dimes is 55 - x.
The value of a nickel is $0.05, and the value of a dime is $0.10.
The value of x nickels is 0.05x
The value of 55 - x dimes is 0.1(55 - x)
The total value of the coins is 0.05x + 0.1(55 - x)
The total value of the coins is $3.90
0.05x + 0.1(55 - x) = 3.9
The blueprints of a house have a scale factor of 30. If one side of the house measures 4 inches on the blueprint, how long is the actual side length (in feet)?
A. 7.5 feet
B.10 feet
C. 90 feet
D. 120 feet
If the scale factor is 30, then all you have to do is multiply each measurement by the scale factor. In this case, 4 · 30 = 120.
Whats the volume of this aquarium?
PLZ HELP!!
If 25 burgers feed 15 kids how many burgers would feed 55 kids
Answer:
1375
Step-by-step explanation:
The family trip to Grandma's consisted of both a train ride and a car ride. The average speed of the train ride was 72 miles per hour, and the average speed of the car ride was 62 miles per hour. The entire trip lasted 6 hours.
Let x be the number of hours the train ride lasted. Write an expression for the total distance of the trip, in miles.
Answer:
432
Step-by-step explanation:
x=1hr (6x)=6hours x= 72 hours through train so (6x)=72x6=432
Can you please me with the word problem thank you so much
Answer:
4. 53
5. 66
6. 89
7. 31
Step-by-step explanation:
4. 14 + 18 + 21
^ ^
33 + 21
53
5. 86 - 20
66
6. 34 + 55
89
7. 14 + 11 + 6
^ ^
25 + 6
31
Trucks in a delivery fleet travel a mean of 120 miles per day with a standard deviation of 23 miles per day. The mileage per day is distributed normally. Find the probability that a truck drives less than 159 miles in a day. Round your answer to four decimal places.
Answer:
the probability that a truck drives less than 159 miles in a day = 0.9374
Step-by-step explanation:
Given;
mean of the truck's speed, (m) = 120 miles per day
standard deviation, d = 23 miles per day
If the mileage per day is normally distributed, we use the following conceptual method to determine the probability of less than 159 miles per day;
1 standard deviation above the mean = m + d, = 120 + 23 = 143
2 standard deviation above the mean = m + 2d, = 120 + 46 = 166
159 is below 2 standard deviation above the mean but greater than 1 standard deviation above the mean.
For normal districution, 1 standard deviation above the mean = 84 percentile
Also, 2 standard deviation above the mean = 98 percentile
143 --------> 84%
159 ---------> x
166 --------- 98%
[tex]\frac{159-143}{166-143} = \frac{x-84}{98-84} \\\\\frac{16}{23} = \frac{x-84}{14} \\\\23(x-84) = 224\\\\x-84 = 9.7391\\\\x = 93.7391\ \%[/tex]
Therefore, the probability that a truck drives less than 159 miles in a day = 0.9374