A car is going 8 meters per second on an access road into a highway
and then accelerates at 1.8 meters per second squared for 7.2
seconds. How fast is it then going?

Answers

Answer 1

Answer:

20.96 m/s^2 (or 21)

Explanation:

Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.

At first, we know a car is going 8 m/s, that is its initial velocity.

Then, we know the acceleration, which is 1.8 m/s/s

We also know the time, 7.2 second.

Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.

(final velocity - initial velocity) = time * acceleration

final velocity = time*acceleration + initial velocity

After plugging the found values in, we get 20.96 m/s/s, or 21 m/s


Related Questions

A 590-turn solenoid is 12 cm long. The current in it is 36 A . A straight wire cuts through the center of the solenoid, along a 4.5-cm diameter. This wire carries a 27-A current downward (and is connected by other wires that don't concern us).
What is the magnitude of the force on this wire assuming the solenoid's field points due east?

Answers

Complete Question

A 590-turn solenoid is 12 cm long. The  current in it is 36 A . A 2 cm straight wire cuts through the center of the solenoid, along a 4.5-cm diameter. This wire carries a 27-A current downward (and is connected by other wires that don't concern us).

What is the magnitude of the force on this wire assuming the solenoid's field points due east?

Answer:

The force is  [tex]F = 0.1602 \ N[/tex]

Explanation:

From the question we are told that

   The number of turns is  [tex]N = 590 \ turns[/tex]

   The  length of the solenoid is  [tex]L = 12 \ cm = 0.12 \ m[/tex]

   The current is  [tex]I = 36 \ A[/tex]

   The  diameter is  [tex]D = 4.5 \ cm = 0.045 \ m[/tex]

   The  current carried by the wire is  [tex]I = 27 \ A[/tex]

    The  length of the wire is  [tex]l = 2 cm = 0.02 \ m[/tex]

Generally the magnitude of the force  on this wire assuming the solenoid's field points due east is mathematically represented as

           [tex]F = B * I * l[/tex]

Here  B  is the magnetic field which is mathematically represented as

          [tex]B = \frac{\mu_o * N * I }{L}[/tex]

Here   [tex]\mu _o[/tex] is permeability of free space with value  [tex]\mu_ o = 4\pi *10^{-7} \ N/A^2[/tex]

substituting values

         [tex]B = \frac{4 \pi *10^{-7} * 590 * 36 }{ 0.12}[/tex]

           [tex]B = 0.2225 \ T[/tex]

So

      [tex]F = 0.2225 * 36 * 0.02[/tex]

      [tex]F = 0.1602 \ N[/tex]

A long, horizontal hose of diameter 5.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.2 cm. Water squirts from the nozzle at velocity 20 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
a) What is the velocity of the water in the hose?
b) What is the pressure differential between the water in the hose and water in the nozzle?
c) How long will it take to fill a tub of volume 120 liters with the hose?

Answers

Answer:

a) 0.988 m/s

b) 199512 Pa

c) 57.52 s

Explanation:

given that

A

A1 v1 = A2 v2

d1² v1 = d2² v2

v2 = [d1/d2]² v1

v2 = (1.2/5.4)² * 20

v2 = 0.049 * 20

v2 = 0.988 m/s

B

P + 1/2 ρ v² = K.

[p2 - p1] = 1/2 ρ [v1² - v2²]

[p2 - p1] = 1/2 * 1000 [20² - 0.988²]

[p2 - p1] = 500 * (400 - 0.976)

[p2 - p1] = 500 * 399

[p2 - p1] = 199512 Pa

C

Flow rate = AV = π [d²/ 4 ] * v

= π [0.012² / 4 ] * 20 = 0.00226 m³ /s

= π [0.054² / 4 ] * 0.988 = 0.00226 m³ /s

130 liters = 0.13 m³

t = 0.13/ 0.00226 = 57.52 s

Find the momentum of a particl with a mass of one gram moving with half the speed of light.

Answers

Answer:

129900

Explanation:

Given that

Mass of the particle, m = 1 g = 1*10^-3 kg

Speed of the particle, u = ½c

Speed of light, c = 3*10^8

To solve this, we will use the formula

p = ymu, where

y = √[1 - (u²/c²)]

Let's solve for y, first. We have

y = √[1 - (1.5*10^8²/3*10^8²)]

y = √(1 - ½²)

y = √(1 - ¼)

y = √0.75

y = 0.8660, using our newly gotten y, we use it to solve the final equation

p = ymu

p = 0.866 * 1*10^-3 * 1.5*10^8

p = 129900 kgm/s

thus, we have found that the momentum of the particle is 129900 kgm/s

A radar installation operates at 9000 MHz with an antenna (dish) that is 15 meters across. Determine the maximum distance (in kilometers) for which this system can distinguish two aircraft 100 meters apart.

Answers

Answer:

R = 36.885 km

Explanation:

In order to distinguish the two planes we must use the Rayleigh criterion that establishes two distinguishable objects if in their diffraction the central maximum of one coincides with the first minimum of the other

The diffraction equation for slits is

            a sin θ = m λ

the first minimum occurs for m = 1

             sin θ = λ a

as the diffraction experiments the angles are very small, we approximate

             sin θ = θ

 

             θ = λ / a

This expression is for a slit, in the case of circular objects, when solving the system in polar coordinates, a numerical constant appears, leaving the expression of the form

            θ = 1.22 λ / a

In this problem they give us the frequency, let's find the wavelength with the relation

           c = λ f

           λ = c / f

           θ = 1.22 c/ f a

since they ask us for the distance between the planes, we can use the definition of radians

          θ = s / R

if we assume that the distance is large, we can approximate the arc to the horizontal distance

          s = x

       

we substitute

             x / R = 1.22 c / fa

             R = x f a / 1.22c

Let's reduce the magnitudes to the SI system

            f = 9000 MHz = 9 109 Hz

            a = 15 m

           x = 100 m

let's calculate

            R = 100 10⁹ 15 / (1.22 3 108)

            R = 3.6885 10⁴ m

let's reduce to km

            R = 3.6885 10¹ km

            R = 36.885 km

A person can see clearly up close but cannot focus on objects beyond 75.0 cm. She opts for contact lenses to correct her vision.
(a) Is she nearsighted or farsighted?
(b) What type of lens (converging or diverging) is needed to correct her vision?
(c) What focal length contact lens is needed, and what is its power in diopters?

Answers

Answer:

(a) nearsighted

(b) diverging

(c) the lens strength in diopters is 1.33 D, and considering the convention for divergent lenses normally prescribed as: -1 33 D

Explanation:

(a) The person is nearsighted because he/she cannot see objects at distances larger than 75 cm.

(b) the type of correcting lens has to be such that it counteracts the excessive converging power of the eye of the person, so the lens has to be diverging (which by the way carries by convention a negative focal length)

(c) the absolute value of the focal length (f) is given by the formula:

[tex]f=\frac{1}{d} =\frac{1}{0.75} = 1.33\,D[/tex]

So it would normally be written with a negative signs in front indicating a divergent lens.

What is the density of the unknown fluid in Figure below? ρwater = 1000 kgm−3

Answers

Answer:

2500 kg/m³

Explanation:

P = P

ρgh = ρgh

ρh = ρh

(1000 kg/m³) (8.9 cm) = ρ (3.5 cm)

ρ ≈ 2500 kg/m³

A concave mirror has a focal length of magnitude f. An object is palced in front of this mirror at a point 1/2 f from the face of the mirror. The image will appear:______.
a) behind the mirror.
b) upright and reduced.
c) upright and enlarged.
d) inverted and reduced.
e) inverted and enlarged.

Answers

Answer:

D.

Inverted and reduced

If object is placed in front of this mirror at a point 1/2 f from the face of the mirror. The image will appear upright and reduced.

What is a concave mirror?

When a hollow spherical is divided into pieces and the exterior surface of each cut portion is painted, it forms a mirror, with the inner surface reflecting the light.

A concave mirror is a name for this sort of mirror. An enlarged image is caused when the concave mirror is positioned too near to the object.

A concave mirror has a focal length of magnitude f. An object is placed in front of this mirror at a point 1/2 f from the face of the mirror. The image will appear upright and reduced.

Hence option B is correct.

To learn more about the concave mirror refer to the link;

https://brainly.com/question/25937699

What is the direction of the net gravitational force on the mass at the origin due to the other two masses?

Answers

Answer:

genus yds it's the

Explanation:

xmgxfjxfjxgdfjusufzjyhmfndVFHggssjtjhryfjftjsrhrythhrsrhrhsfhsgdagdah vhj

What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current

Answers

Answer:

Explanation:

From the question we are told that

    The radius is  [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]

     The  current is  [tex]I = 4.5 \ A[/tex]

Generally the electric field is mathematically represented as

         [tex]E = \frac{J}{\sigma }[/tex]

Where [tex]\sigma[/tex] is the conductivity of  aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]

J is the current density which mathematically represented as  

      [tex]J = \frac{I}{A}[/tex]

Here A is the cross-sectional area which is mathematically represented as  

       [tex]A = \pi r^2[/tex]

       [tex]A = 3.142 * (1.4*10^{-3})^2[/tex]

       [tex]A = 6.158*10^{-6} \ m^2[/tex]

So

    [tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]

    [tex]J = 730757 A/m^2[/tex]

So

       [tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]

       [tex]E = 0.021 \ N/C[/tex]

of
The radii a wheel are 25 cm
and 5cm respectively, it is found
that an effort of 40N is required
to raise slowly a load 16ON
160 N. Find the Mechanical
Adventage and Effeciency,

Answers

Answer:

Explanation:

Given that

Effort = 40N

Load = 16ON

M.A = load/effort

M.A= 160N/40N

M.A = 4

Velocity ratio = V.R =radius of the wheel/radius of the axel

= 25cm/5cm

= 5

Efficiency = mechanical advantage/velocity ratio × 100/1

= 4/5 × 100/1

= 0.8×100/1

= 80%

Hence, the mechanical advantage of the machine is 4 while the efficiency is 80%.

1. A 0.430kg baseball comes off a bar and goes straight up in the air. At a height of 10.0m, the baseball has a speed of 25.3m/s. Determine the mechanical energy at the height. Show all your work. 2. What is the baseball's mechanical energy when it is at a height of 8.0m? Explain?

Answers

Answer:

180 J

Explanation:

Mechanical energy = kinetic energy + potential energy

ME = KE + PE

ME = ½ mv² + mgh

ME = ½ (0.430 kg) (25.3 m/s)² + (0.430 kg) (9.8 m/s²) (10.0 m)

ME = 180 J

Mechanical energy is conserved, so it is 180 J at all points of the trajectory.

The baseball's mechanical energy when it is at a height of 8.0m is 180 J.

What is mechanical energy?

The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time. Mechanical energy is always conserved.

Mechanical energy = kinetic energy + potential energy

Given is the mass of baseball m= 0.430 kg, height h =10m, speed v= 25.3m/s.

ME = KE + PE

ME = ½ mv² + mgh

Substitute the values, we get

ME = ½ (0.430 kg) (25.3 m/s)² + (0.430 kg) (9.8 m/s²) (10.0 m)

ME = 180 J

Thus, the baseball's mechanical energy when it is at a height of 8.0m is 180 J.

Learn more about mechanical energy.

https://brainly.com/question/13552918

#SPJ2

What is the current in milliamperes produced by the solar cells of a pocket calculator through which 4.2 C of charge passes in 2.7 h

Answers

Answer:

0.432mA

Explanation:

Current produced by the solar cells of the pocket calculator is expressed using the formula I = Q/t where;

Q is the charge (in Columbs)

t is the time (in seconds)

Given parameters

Q = 4.2C

t = 2.7 hrs

t = 2.7*60*60

t = 9720 seconds

Required

Current produced by the solar cell I

Substituting the given values into the formula;

I = 4.2/9720

I = 0.000432A

I = 0.432mA

Hence, the current in milliamperes produced by the solar cells of a pocket calculator is 0.432mA

What is the observed wavelength of the 656.3 nm (first Balmer) line of hydrogen emitted by a galaxy at a distance of 2.40 x 108 ly

Answers

Answer:

λ = 667.85 nm

Explanation:

Let f be the frequency detected by the observer

Let v be the speed at which the observer is moving.

Now, when the direction at which the observer is moving is away from the source, we have the frequency as;

f = f_o√((1 - β)/(1 + β))

From wave equations, we know that the wavelength is inversely proportional to the frequency. Thus, wavelength is now;

λ = λ_o√((1 + β)/(1 - β))

Where, β = Hr/c

H is hubbles constant which has a value of 0.0218 m/s • ly

c is speed of light = 3 × 10^(8) m/s

r is given as 2.40 x 10^(8) ly

Thus,

β = (0.0218 × 2.4 x 10^(8))/(3 × 10^(8))

β = 0.01744

Since we are given λ_o = 656.3 nm

Then;

λ = 656.3√((1 + 0.01744)/(1 - 0.01744))

λ = 667.85 nm

"Can we consider light wave as a single frequency wave? Either Yes or No, explain the reason of your answer. "

Answers

Answer:

Well, yes.

We can have an isolated light wave that is defined by only one frequency (and one wavelenght). But this is not a really common situation, most of the light that we can see in nature, is actually a composition of different waves with different frequencies.

Even if we have, for example, a red laser, the actual frequency of the light that comes from the laser may be in a range of frequencies, so the actual wave is a composition of different waves with really close frequencies.

An example of a light wave defined by only one frequency can be, for example, the photon that comes out of a change in energy of an electron.

Here we have a single photon, with a single frequency, that is modeled as a single frequency wave.

A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3 degrees angle. What is the y-component of the velocity of the second ball?

Answers

Answer:

 v_{1fy} = - 0.4549 m / s

Explanation:

This is an exercise of conservation of the momentum, for this we must define a system formed by the two balls, so that the forces during the collision have internal and the momentum is conserved

initial. Before the crash

      p₀ = m v₁₀

final. After the crash

      [tex]p_{f}[/tex] = m [tex]v_{1f}[/tex] + m v_{2f}

Recall that velocities are a vector so it has x and y components

       p₀ = p_{f}

we write this equation for each axis

X axis

       m v₁₀ = m v_{1fx} + m v_{2fx}

       

Y Axis  

       0 = -m v_{1fy} + m v_{2fy}

the exercise tells us the initial velocity v₁₀ = 1.83 m / s, the final velocity v_{2f} = 1.15, let's use trigonometry to find its components

      sin 23.3 = v_{2fy} / v_{2f}

      cos 23.3 = v_{2fx} / v_{2f}

      v_{2fy} = v_{2f} sin 23.3

      v_{2fx} = v_{2f} cos 23.3

we substitute in the momentum conservation equation

       m v₁₀ = m v_{1f} cos θ + m v_{2f} cos 23.3

       0 = - m v_{1f} sin θ + m v_{2f} sin 23.3

      1.83 = v_{1f} cos θ + 1.15 cos 23.3

       0 = - v_{1f} sin θ + 1.15 sin 23.3

      1.83 = v_{1f} cos θ + 1.0562

        0 = - v_{1f} sin θ + 0.4549

     v_{1f} sin θ = 0.4549

     v_{1f}  cos θ = -0.7738

we divide these two equations

      tan θ = - 0.5878

      θ = tan-1 (-0.5878)

       θ = -30.45º

we substitute in one of the two and find the final velocity of the incident ball

        v_{1f} cos (-30.45) = - 0.7738

        v_{1f} = -0.7738 / cos 30.45

        v_{1f} = -0.8976 m / s

the component and this speed is

       v_{1fy} = v1f sin θ

       v_{1fy} = 0.8976 sin (30.45)

       v_{1fy} = - 0.4549 m / s

As the frequency of the ac voltage across a capacitor approaches zero, the capacitive reactance of that capacitor:_______.
a. approaches zero.
b. approaches infinity.
c. approaches unity.
d. none of the above.

Answers

Answer:

b. approaches infinity

Explanation:

Because Capacitive reactance is given as Xc = 1/ωC

So we can see that the value of capacitive reactance and therefore its overall impedance (in Ohms) decreases to zero as the frequency increases acting like a short circuit.

Same as the frequency approaches zero or DC, the capacitors reactance increases to infinity, acting like an open circuit which is why capacitors block DC

A microwave oven operates at 2.4 GHz with an intensity inside the oven of 2300 W/m2 . Part A What is the amplitude of the oscillating electric field

Answers

Answer:

The amplitude of the oscillating electric field is 1316.96 N/C

Explanation:

Given;

frequency of the wave, f = 2.4 Hz

intensity of the wave, I = 2300 W/m²

Amplitude of oscillating magnetic field is given by;

[tex]B_o = \sqrt{\frac{2\mu_o I}{c} }[/tex]

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

I is intensity of wave

c is speed of light = 3 x 10⁸ m/s

[tex]B_o = \sqrt{\frac{2*4\pi *10^{-7}*2300}{3*10^8} } \\\\B_o = 4.3899 *10^{-6} \ T[/tex]

The amplitude of the oscillating electric field is given by;

E₀ = cB₀

E₀ = 3 x 10⁸ x 4.3899 x 10⁻⁶

E₀ = 1316.96 N/C

Therefore, the amplitude of the oscillating electric field is 1316.96 N/C

A steel bridge is 1000 m long at -20°C in winter. What is the change in length when the temperature rises to 40°C in summer? The average coefficient of linear expansion of this steel is 11 × 10-6 C-1.

Answers

Answer:

ΔL = 0.66 m

Explanation:

The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:

ΔL = αLΔT

where,

ΔL = Change in Length of the bridge = ?

α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹

L = Original Length of the Bridge = 1000 m

ΔT = Change in Temperature =  Final Temperature - Initial Temperature

ΔT = 40°C - (-20°C) = 60°C

Therefore,

ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)

ΔL = 0.66 m

a transformer changes 95 v acorss the primary to 875 V acorss the secondary. If the primmary coil has 450 turns how many turns does the seconday have g

Answers

Answer:

The number of turns in the secondary coil is 4145 turns

Explanation:

Given;

the induced emf on the primary coil, [tex]E_p[/tex] = 95 V

the induced emf on the secondary coil, [tex]E_s[/tex] = 875 V

the number of turns in the primary coil, [tex]N_p[/tex] = 450 turns

the number of turns in the secondary coil, [tex]N_s[/tex] = ?

The number of turns in the secondary coil is calculated as;

[tex]\frac{N_p}{N_s} = \frac{E_p}{E_s}[/tex]

[tex]N_s = \frac{N_pE_s}{E_p} \\\\N_s = \frac{450*875}{95} \\\\N_s = 4145 \ turns[/tex]

Therefore, the number of turns in the secondary coil is 4145 turns.

Seismic attenuation and how spherical spreading affect amplitude, can anyone explain this please!

Answers

Answer:

Hey there!

This can be a confusing topic, so it's totally fine if you get confused...

First, Seismic Attenuation is how seismic waves lose energy as they expand and spread.

Secondly, when distance increases, amplitude decreases. This is because the distance (spherical spreading would mean radius) is inversely proportional to amplitude.

Let me know if this helps :)

Which does not account for the fact that fish can survive the winter in ponds in temperate climate zones? 1. the density of ice versus that of water 2. the unique properties of water 3. the intermolecular bonding of water 4. the tendency for water to freeze from the bottom up

Answers

Answer:

3. the intermolecular bonding of water

Explanation:

Anomalous behavior of water is an advantage in aquatic habitat during winter. Because of some unique properties of water, it behaves irregularly. Thus, a pond or river does not freeze completely during winter.

Water has its highest density when temperature is 4[tex]^{0}C[/tex] , and lowest volume at 4[tex]^{0}C[/tex]. Thus, the denser layers of water sink accordingly until the upper layer is the least dense during winter. This layer then freeze leaving the layers below it unfrozen.

Answer:

D. The tendency for water to freeze from the bottom up.

Explanation:

A simple pendulum takes 2.20 s to make one compete swing. If we now triple the length, how long will it take for one complete swing?

Answers

Answer:

Time taken for 1 swing = 3.81 second

Explanation:

Given:

Time taken for 1 swing = 2.20 Sec

Find:

Time taken for 1 swing , when triple the length(T2)

Computation:

Time taken for 1 swing = 2π[√l/g]

2.20 = 2π[√l/g].......Eq1

Time taken for 1 swing , when triple the length (3L)

Time taken for 1 swing = 2π[√3l/g].......Eq2

Squaring and dividing the eq(1) by (2)

4.84 / T2² = 1 / 3

T2 = 3.81 second

Time taken for 1 swing = 3.81 second

Ratio of the speed of light in a vacuum to the speed of light in a medium Rule for how light is refracted at the boundary between two materials Process that occurs when the angle of incidence is greater than the critical angle

Answers

Answer:

TOTAL INTERNAL REFLECTION

Explanation:

Retraction is defined as the change in the direction of light rays as it moves from less dense medium to a denser medium.

For us to have a critical angle, the ray must be passing from the denser medium to the less dense medium. As the angle of refraction in the less dense medium is increasing, the angle of incidence in the less dense medium also increases. A point will reach when the refracted ray will be parallel to the interface i.e angle of refraction is 90°, the angle of incidence at this point is known as the critical angle. If the angle of refraction keeps increasing further, it will get to a point when the refracted ray becomes reflected into the denser medium. At this stage we say that the ray is internally reflected and this is the point when the angle of incidence is greater than the critical angle.

Hence it can be concluded that the process that occurs when the angle of incidence is greater than the critical angle is called TOTAL INTERNAL REFLECTION

Suppose you are playing hockey on a new-age ice surface for which there is no friction between the ice and the hockey puck. You wind up and hit the puck as hard as you can. After the puck loses contact with your stick, the puck will

Answers

Answer:

Not slow down or speed up.

Explanation:

Hitting the puck accelerates the speed of the puck from zero to the speed with which it leaves at the instance they lose contact. Since there is no friction between the puck and the ice, there will be no force decelerating or accelerating the hockey puck, allowing the puck to move away and remain in motion without speeding up or slowing down indefinitely theoretically.

An electron moving in the direction of the +x-axis enters a magnetic field. If the electron experiences a magnetic deflection in the -y direction, the direction of the magnetic field in this region points in the direction of the:______

Answers

Answer:

-z axis

Explanation:

According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.

3. Which of the following accurately describes circuits?
O A. In a parallel circuit, the same amount of current flows through each part of the circuit
O B. In a series circuit, the amount of current passing through each part of the circuit may vary
O C. In a series circuit, the current can flow through only one path from start to finish
O D. In a parallel circuit, there's only one path for the current to travel.

Answers

Answer:

Option (c)

Explanation:

In a Series circuit, as the components are connected end-to-end ,the current can flow through only one path from start to finish.

(C.) is the only correct statement in the list of choices.

In a series circuit, the current can flow through only one path from start to finish.

The hydrogen spectrum has a red line at 656 nm, and a blue line at 434 nm. What is the first order angular separation between the two spectral lines obtained with a diffraction grating with 5000 rulings/cm?

Answers

Answer:

Explanation:

grating element or slit width a = 1 x 10⁻² / 5000

= 2 x 10⁻⁶ m

angular width of first order spectral line of wavelength λ

= λ / a

for blue line angular width

= 434 x 10⁻⁹ / 2 x 10⁻⁶ radian

= 217 x 10⁻³ radian

for red line angular width

= 656 x 10⁻⁹ / 2 x 10⁻⁶ radian

= 328 x 10⁻³ radian

difference of their angular width

= 328 x 10⁻³  - 217 x 10⁻³

= 111 x 10⁻³ radian

Ans .

1. What does the acronym LASER stand for? What characteristic of a laser makes it suitable for today's experiment?

Answers

Answer:Light Amplification by Stimulated Emission of Radiation. It is able to convert light or electrical energy into focused high energy beam to treat some sickness and diseases.

Explanation:

Answer:

Light amplification by stimulated emission of radiation

Two imaginary spherical surfaces of radius R and 2R respectively surround a positive point charge Q located at the center of the concentric spheres. When compared to the number of field lines N1 going through the sphere of radius R, the number of electric field lines N2 going through the sphere of radius 2R is

Answers

Answer:

N2 = ¼N1

Explanation:

First of all, let's define the terms;

N1 = number of electric field lines going through the sphere of radius R

N2 = number of electric field lines going through the sphere of radius 2R

Q = the charge enclosed at the centre of concentric spheres

ε_o = a constant known as "permittivity of the free space"

E1 = Electric field in the sphere of radius R.

E2 = Electric field in the sphere of radius 2R.

A1 = Area of sphere of radius R.

A2 = Area of sphere of radius 2R

Now, from Gauss's law, the electric flux through the sphere of radius R is given by;

Φ = Q/ε_o

We also know that;

Φ = EA

Thus;

E1 × A1 = Q/ε_o

E1 = Q/(ε_o × A1)

Where A1 = 4πR²

E1 = Q/(ε_o × 4πR²)

Similarly, for the sphere of radius 2R,we have;

E2 = Q/(ε_o × 4π(2R)²)

Factorizing out to get;

E2 = ¼Q/(ε_o × 4πR²)

Comparing E2 with E1, we arrive at;

E2 = ¼E1

Now, due to the number of lines is proportional to the electric field in the each spheres, we can now write;

N2 = ¼N1

A square loop, length l on each side, is shot with velocity v0 into a uniform magnetic field B. The field is perpendicular to the plane of the loop. The loop has mass m and resistance R, and it enters the field at t = 0s. Assume that the loop is moving to the right along the x-axis and that the field begins at x = 0m.

Required:
Find an expression for the loop's velocity as a function of time as it enters the magnetic field.

Answers

Answer:

v₀(1 + B²L²t/mR)

Explanation:

We know that the force on the loop is F = BIL where B = magnetic field strength, I = current and L = length of side of loop. Now the current in the loop I = ε/R where ε = induced e.m.f in the loop = BLv₀ where v₀ = velocity of loop and r = resistance of loop

F = BIL = B(BLv₀)L/R = B²L²v₀/R  

Since F = ma where a = acceleration of loop and m = mass of loop

a = F/m = B²L²v₀/mR

Using v = u + at where u = initial velocity of loop = v₀, t = time after t = 0 and v = velocity of loop after time t = 0

Substituting the value of a and u into v, we have

v = v₀ + B²L²v₀t/mR

= v₀(1 + B²L²t/mR)

So the velocity of the loop after time t is v = v₀(1 + B²L²t/mR)

The expression for the loop's velocity as a function of time as it enters the magnetic field is v = v₀(1 + B²L²t/mR).

Calculation of the loop velocity:

As we know that

Force on the loop

F = BIL

here

B = magnetic field strength,

I = current

and L = length of side of loop.

Now

the current in the loop I = ε/R

where

ε = induced e.m.f in the loop = BLv₀

where v₀ = velocity of loop

and r = resistance of loop

So,

F = BIL = B(BLv₀)L/R = B²L²v₀/R  

Also, F = ma where a = acceleration of loop and m = mass of loop

Now

a = F/m = B²L²v₀/mR

We have to use

v = u + at

where

u = initial velocity of loop = v₀,

t = time after t = 0

and v = velocity of loop after time t = 0

So, it be like

v = v₀ + B²L²v₀t/mR

= v₀(1 + B²L²t/mR)

Learn more about velocity here: https://brainly.com/question/332163

Other Questions
PLEASE HELP IM SO LOST1. Ted is working on his financial plan and lists all of his income and expenses in the spreadsheet below.BNet Pay$5,0002Interest on Deposits $03 Income from Investments $2254 Rent$3,0005 Utilities$2506 Satellite Dish$1757 Cell Phone Plan$1358 Car Payment$3859 Groceries$20010 Insurance$38011 Recreation$400What is Ted's net cash flow?2. Tamara earns $8 an hour at her job working 25 hours per week. If her net pay is 78% of her paycheckand she has no other sources of income, what is Tamara's monthly cash inflow? (Assume there are 4pays per month.) Choose the correct French subject pronoun for the English subject pronoun provided.You all (plural) Elles Vous Ils Nous Based on your case knowledge, to what extent do you agree or disagree with the following statement - "Kay Whitmore - Kodak CEO, had an understanding of Kodak's potential in the PC market. This was illustrated by her strong engagement with Bill Gates and Microsoft."1. Strongly Agree2. Mildly Agree3. Neither Agree nor Disagree4. MIldly Disagree5. Strongly Disagree6. Not Applicable PLEASE!! HELP!! Choose the option that completes the sentence and describes the image using the impersonal se. Me alegro mucho porque en esta tienda, s ________ (vender) helado. no se venden se venden no se vende se vende Find the radius of a circle that has an area of 6.76 cm. Use it for pi. H2S(g) 2H2O(l)3H2(g) SO2(g) Using standard absolute entropies at 298K, calculate the entropy change for the system when 1.60 moles of H2S(g) react at standard conditions. What industry brings more money into Colombia than the coffee growing industry? A) the oil production industry B) the tourism industry C) subsistence farming D) the illegal drug trade Find the area of the triangle.[? ] ft2Don't round The cytoskeleton in a cell is responsible for which? -x + 3y = 3 x - 3y = 3Does this system have a solution? What is the solution to this ? Would you have rathered Clint to die instead of Natasha in Endgame? Why How many of the positive integer factors of 15552 are perfect squares? (WILL MARK BRAINLIEST IF CORRECT) The length of the hypotenuse of a right triangle is 16 inches. If the length of one leg is 5 inches, what is the approximate length of the other leg? 10.5 inches 11.0 inches 15.2 inches 16.8 inches Making inferences and drawing conclusions help us with all of the following except __________. A. making connections B. creating new words C. understanding cause and effect D. learning new vocabulary Find two positive fractions that subtract to 1/6. Write your answer as fraction -fraction 2 hundredths as a decimal The side of an Equileteral triangle is 12cm. What is its Area? in which type of government are military or secret police most likely to be used to prevent opposition? When light travels from air into water, Group of answer choices its wavelength changes, but its velocity and frequency does not change its velocity remains constant, but its frequency and wavelength changes its velocity, wavelength and frequency all change its velocity and wavelength changes, but its frequency does not change