9514 1404 393
Answer:
525 km
Step-by-step explanation:
Let d represent the distance to the town. Let s represent the nominal speed of the car. The relation between time, speed, and distance is d = st.
t1 = d/s
t2 = d/(s+15)
t1 : t2 = 6 : 5 . . . increasing the speed reduces the time
Substituting for t1 and t2, we have ...
(d/s)/(d/(s+15)) = 6/5
(s +15)/s = 6/5
1 +15/s = 1 +1/5
s = 5·15 = 75 . . . . nominal speed in km/h
__
Decreasing the speed increases the time.
d/75 +(105/60) = d/(75-15)
d(60/75) +105 = d . . . . . . multiply by 60
105 = d/5 . . . . . . . . . . . subtract 4/5d
525 = d . . . . . . . . . . multiply by 5
The distance traveled by the car is 525 km.
Determine whether each relation is a function. Give the domain and range for each relation.
{(3, 4), (3, 5), (4, 4), (4, 5)}
Answer:
Not a function
Domain: {3,4}
Range: {4,5}
Step-by-step explanation:
A function is a relation where each input has its own output. In other words if the x value has multiple corresponding y values then the relation is not a function
For the relation given {(3, 4), (3, 5), (4, 4), (4, 5)} the x value 3 and 4 have more than one corresponding y value therefore the relation shown is not a function
Now let's find the domain and range.
Domain is the set of x values in a relation.
The x values of the given relation are 3 and 4 so the domain is {3,4}
The range is the set of y values in a relation
The y value of the given relation include 4 and 5
So the range would be {4,5}
Notes:
The values of x and y should be written from least to greatest when writing them out as domain and range.
They should be written inside of brackets
Do not repeat numbers when writing the domain and range
Working at home: According to the U.S Census Bureau, 41% of men who worked at home were college graduates. In a sample of 506 women who worked at home, 166 were college graduates. Part: 0 / 30 of 3 Parts Complete Part 1 of 3 (a) Find a point estimate for the proportion of college graduates among women who work at home. Round the answer to at least three decimal places. The point estimate for the proportion of college graduates among women who work at home is .
Solution :
a). The point estimate of proportion of college graduates among women who work at home,
[tex]$\hat p =\frac{166}{506}$[/tex]
= 0.3281
99.5% confidence interval
[tex]$=\left( \hat p \pm Z_{0.005/2} \sqrt{\frac{\hat p (1- \hat p)}{n}} \right)$[/tex]
[tex]$=\left( 0.3281 \pm 2.81 \sqrt{\frac{0.3281 \times (1- 0.3281)}{506}} \right)$[/tex]
[tex]$=(0.3281 \pm 0.0586)$[/tex]
[tex]$=(0.2695, 0.3867)$[/tex]
Find the diameter of a circle if the area is
153.86m2. Use 3.14 for pi.
Answer:
-Hello Fatema!
The formula to find out the area of a circle is πd so let's plug the known values and then solve for d [ diameter ] :[tex] \boxed{ \large{ \tt{✺ \: AREA \: OF \: A \: CIRCLE = \pi \: d }}}[/tex]
[tex] \large{ \tt{⟶ \: 153.86 = 3.14 \: d}}[/tex]
[tex] \large{ \tt{⟶ \: d = \frac{153.86}{3.14} }}[/tex]
[tex] \large{ \tt{⟶d = 49 \: m}}[/tex]
[tex] \large{ \boxed{ \boxed{ \tt{⤿ \: OUR \: FINAL \: ANSWER : \: 49 \: m}}}}[/tex]
Yayy! We're done! Let me know if you have any questions regarding my answer and also , notify me if you need any other help! :)A basketball player made 5 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
3. Find F(3).
F(x)=-x^3+4x^2-2x
Answer:
To Find F(3) you just have to replace x=3 so:
F(3)= -3^3 + 4×3^2 -2×3 = -27 +4×9 - 6 = -33 + 36 = 3
Write the equation of the line that passes through the points (- 5, 1) and (2, 0) . Put your answer in fully reduced slope intercept form, unless it is a vertical or horizontal line
Pls help me with this one:(
Answer:
y=-1/7x + 12/7
Step-by-step explanation:
Start by finding the slope
m=(1-0)/(-5-2)
m=-1/7
next plug the slope and the point (-5,1) into point slope formula
y-y1=m(x-x1)
y1=1
x1= -5
m=-1/7
y- 1 = -1/7(x - -5)
y-1=-1/7(x+5)
Distribute -1/7 first
y- 1=-1/7x + 5/7
Add 1 on both sides, but since its a fraction add 7/7
y=-1/7x + (5/7+7/7)
y=-1/7x+12/7
Answer:
Step-by-step explanation:
(-5,1) (2,0)
m=(y-y)/(x-x)
m = (0-1)/2- -5)
m = -1/7
(2,0)
y-0= -1/7 (x-2)
y = -1/7x + 2/7
4) The measure of the linear density at a point of a rod varies directly as the third power of the measure of the distance of the point from one end. The length of the rod is 4 ft and the linear density is 2 slugs/ft at the center, find the total mass of the given rod and the center of the mass
Answer:
a. 16 slug b. 3.2 ft
Step-by-step explanation:
a. Total mass of the rod
Since the linear density at a point of the rod,λ varies directly as the third power of the measure of the distance of the point form the end, x
So, λ ∝ x³
λ = kx³
Since the linear density λ = 2 slug/ft at then center when x = L/2 where L is the length of the rod,
k = λ/x³ = λ/(L/2)³ = 8λ/L³
substituting the values of the variables into the equation, we have
k = 8λ/L³
k = 8 × 2/4³
k = 16/64
k = 1/4
So, λ = kx³ = x³/4
The mass of a small length element of the rod dx is dm = λdx
So, to find the total mass of the rod M = ∫dm = ∫λdx we integrate from x = 0 to x = L = 4 ft
M = ∫₀⁴dm
= ∫₀⁴λdx
= ∫₀⁴(x³/4)dx
= (1/4)∫₀⁴x³dx
= (1/4)[x⁴/4]₀⁴
= (1/16)[4⁴ - 0⁴]
= (256 - 0)/16
= 256/16
= 16 slug
b. The center of mass of the rod
Let x be the distance of the small mass element dm = λdx from the end of the rod. The moment of this mass element about the end of the rod is xdm = λxdx = (x³/4)xdx = (x⁴/4)dx.
We integrate this through the length of the rod. That is from x = 0 to x = L = 4 ft
The center of mass of the rod x' = ∫₀⁴(x⁴/4)dx/M where M = mass of rod
= (1/4)∫₀⁴x⁴dx/M
= (1/4)[x⁵/5]₀⁴/M
= (1/20)[x⁵]₀⁴/M
= (1/20)[4⁵ - 0⁵]/M
= (1/20)[1024 - 0]/M
= (1/20)[1024]/M
Since M = 16, we have
x' = (1/20)[1024]/16
x' = 64/20
x' = 3.2 ft
What is the slope? Please Help
Answer:
-1
Step-by-step explanation:
Pick two points on the line
(0,2) and (2,0)
Using the slope formula
m = ( y2-y1)/(x2-x1)
= ( 0-2)/(2-0)
= -2/2
= -1
Answer:
-1
Step-by-step explanation:
Use two points on the line to find the slope, using rise over run.
We can use the points (0, 2) and (2, 0).
From the first point to the other, the y value decreases by 2 and the x value increases by 2.
Use rise (change in y value) over run (change in x value):
-2 / 2
= -1
So, the slope is -1.
find the value of the trigonometric ratio
Answer:
15/17
Step-by-step explanation:
sinA = CB/CA =15/17
Answer:
15/17Step-by-step explanation:
sine = opposite / hypotenusesin A = BC/ACsin A = 15/17which one of these points lies on the line described by the equation below y - 5 = 6 ( x - 7 )
Answer:
the answer would be (7,5)
help whats the volume of this
Answer:
93.6
Step-by-step explanation:
The easiest way for me to complete this was to break it up into parts. I Separated the small triangle and the big triangle. I turned them both into squares and multiplied the dimensions. I then divided those by two and added them together.
An electrician charges a fee of $40 plus $25 per hour. Let y be the cost in dollars of using the electrician for x hours. Choose the correct equation.
y = 40x - 25
y = 25x + 40
y = 25x - 40
y = 40x + 25
Answer:
y = 25x + 40
Step-by-step explanation:
The electrician charges $25 per hour.
The number of hours is x.
Therefore after x hours the electrician will charge $25x. (multiply the charge by the number of hours $25 * x)
Therefore fee(y) charged by the electrician = $40 + $25x
Hence y = 25x + 40
Based on what we have learned, how can we ensure that we choose a sample of students that is representative of all 8:00 AM classes that take place on a given morning
Sampling technique is a way of selecting a sample from a given population. The best way to get a sample of students that represents all 8:00 AM classes is by using a stratified sampling technique.
From the complete question, we can summarize the given data as follows:
[tex]Buildings = 3[/tex] ----3 buildings in the college
[tex]Lecture\ Halls =2[/tex] ---- 2 lecture halls in each building
[tex]Capacity = 100[/tex] --- 100 students in each lecture hall
Because the students' lecture halls are not in the same building, the best way to get a sample is as follows:
Divide the students into groups (In this case, the students will be grouped by the buildings of their lecture halls)The number of students in each building is:
[tex]Students = Capacity \times Lecture\ Halls[/tex]
[tex]Students = 100 \times 2[/tex]
[tex]Students = 200[/tex]
There are 200 students in each building
Then select at random an equal proportion of student from each building (say 30 students in each building)The above method is referred to as a stratified sampling technique because the population of the students are divided into groups, before being randomly selected.
Read more about sampling techniques at:
https://brainly.com/question/9612230
Identify the slope and y intercept of the line with equation 2y = 5x + 4
Answer:
Slope is 5/2
y-intercept is 2
Step-by-step explanation:
Turn the equation into slope intercept form [ y = mx + b ].
2y = 5x + 4
~Divide everything by 2
y = 5/2x + 2
Remember that in slope intercept form, m = slope and b = y-intercept.
Best of Luck!
Answer:
slope: 2.5
y-intercept: 2
Step-by-step explanation:
First isolate the y variable which changes the equation to y=2.5x+2
The equation of a line is mx + b where m is the slope and b and the
y-intercept. Leading us to conclude that 2.5 is the slope and 2 is the y-intercept.
The time it takes me to wash the dishes is uniformly distributed between 8 minutes and 17 minutes.
What is the probability that washing dishes tonight will take me between 14 and 16 minutes?
Give your answer accurate to two decimal places.
The time it takes to wash has the probability density function,
[tex]P(X=x) = \begin{cases}\frac1{17-8}=\frac19&\text{for }8\le x\le 17\\0&\text{otherewise}\end{cases}[/tex]
The probability that it takes between 14 and 16 minutes to wash the dishes is given by the integral,
[tex]\displaystyle\int_{14}^{16}P(X=x)\,\mathrm dx = \frac19\int_{14}^{16}\mathrm dx = \frac{16-14}9 = \frac29 \approx \boxed{0.22}[/tex]
If you're not familiar with calculus, the probability is equal to the area under the graph of P(X = x), which is a rectangle with height 1/9 and length 16 - 14 = 2, so the area and hence probability is 2/9 ≈ 0.22.
16.Brendan practiced soccer for 12 hours on Monday, 1 hours on
Tuesday, 14 hours on Wednesday, and hour on Thursday in
preparation for the game on Friday. How many total hours did
Brendan practice soccer in this week
Answer:
27
Step-by-step explanation:
f(x)=2^x. show that f(x=3)=8 f(x)?
Step-by-step explanation:
[tex]f(x) = {2}^{x} [/tex]
x = 3
f(3) = 2³ = 2×2×2 = 4×2 = 8
If 5000 is divided by 10 and 10 again what answer will be reached
Hey there!
First, divide 5,000 by 10. You will get 500.
Now, 500 ÷ 10, and you will get your answer, 50.
Hope this helps! Have a great day!
There is 2 questions here please help me! Thank you!
Answer:
3×(-4)×2
= -24
good day god bless you
Answer:
(−25)(5) = −125; he withdrew $125
-24
Step-by-step explanation:
Because he is withdrawing money, he is deducing money form his account, which makes the $25 negative in the equation. The weeks however, cannot be negative. so the correct answer is (−25)(5) = −125; he withdrew $125.
(3) x (-4) x (2)
(3 x -4) x (2)
(-12) x (2)
(-12 x 2)
-24
hope this helps! if you have any questions, let me know!
A company wants to decrease their energy use by 17%. If their electric bill is currently $2500 a month, what will their bill be if they are successful
The length of a rectangular field is 25 m more than its width. The perimeter of the field is 450 m. What is the actual width and length?
Answer:
length= 125
width= 100
Step-by-step explanation:
let width have a length of x m
therefore length= (x+25)m
perimeter=2(length +width)
p=2((x+25)+x)
p=4x+50
but we have perimeter to be 450,, we equate it to 4x+50 above,
450=4x+50
4x=400
x=100 m
length= 125
width= 100
Look at images below. : ]
Answer:
1) A
B) 5.818 stops
Step-by-step explanation:
Number One is less than or equal to 21 because the person only has 21 dollars, so she can't spend more than 21.
B can be solved through the equation by first subtracting $5, and then dividing 2.75 by 16.
[tex] \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = what[/tex]
Answer I'll make and mark as brainlist.
Answer Fast.
Post on - 2 Aug 2021
[tex]f(x)=e^{3x} .sinx[/tex] . tính [tex]d^{2} f(0)[/tex]
Answer:
6
Step-by-step explanation:
đạo hàm cấp 2 của f(x) rồi thế 0 vào
A capark has 34 rows and each row can acommodate 40 cars. If there are 976 cars parked, how many cars can still be parked?
Answer:
384 cars
Step-by-step explanation:
To find the total number of spaces in the carpark, we must multiply the number of rows by how many cars they can accommodate:
34 ⋅ 40 = 1360
As you can see, we have 1360 total spaces. Since there are 976 cars parked, and we want to find out how many spaces are left, we have to subtract the amount of cars parked from the total spaces.
1360 - 976 = 384
Therefore, our answer is 384, specifically, 384 cars.
Answer:
384 cars.
Step-by-step explanation:
40 * 34 - 976
= 1360 - 976
= 384.
Hannah's suitcase has the following dimensions.
length: 27 inches
width: 21 inches
depth: 14 inches
What is the volume of Hannah's suitcase in cubic inches?
Answer:7938 inches square
Step-by-step explanation:
multiply everything
Answer:
7938
Step-by-step explanation:
Find the surface area of a cube that has side length of 3.5 inches
Answer:
73.5
Step-by-step explanation:
Use the power series method to solve the given initial-value problem. (Format your final answer as an elementary function.)
(x − 1)y'' − xy' + y = 0, y(0) = −7, y'(0) = 3
You're looking for a solution of the form
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n[/tex]
Differentiating twice yields
[tex]\displaystyle y' = \sum_{n=0}^\infty n a_n x^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n[/tex]
[tex]\displaystyle y'' = \sum_{n=0}^\infty n(n-1) a_n x^{n-2} = \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n[/tex]
Substitute these series into the DE:
[tex]\displaystyle (x-1) \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n - x \sum_{n=0}^\infty (n+1) a_{n+1} x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^{n+1} - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=0}^\infty (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=1}^\infty n(n+1) a_{n+1} x^n - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=1}^\infty n a_n x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
Two of these series start with a linear term, while the other two start with a constant. Remove the constant terms of the latter two series, then condense the remaining series into one:
[tex]\displaystyle a_0-2a_2 + \sum_{n=1}^\infty \bigg(n(n+1)a_{n+1}-(n+1)(n+2)a_{n+2}-na_n+a_n\bigg) x^n = 0[/tex]
which indicates that the coefficients in the series solution are governed by the recurrence,
[tex]\begin{cases}y(0)=a_0 = -7\\y'(0)=a_1 = 3\\(n+1)(n+2)a_{n+2}-n(n+1)a_{n+1}+(n-1)a_n=0&\text{for }n\ge0\end{cases}[/tex]
Use the recurrence to get the first few coefficients:
[tex]\{a_n\}_{n\ge0} = \left\{-7,3,-\dfrac72,-\dfrac76,-\dfrac7{24},-\dfrac7{120},\ldots\right\}[/tex]
You might recognize that each coefficient in the n-th position of the list (starting at n = 0) involving a factor of -7 has a denominator resembling a factorial. Indeed,
-7 = -7/0!
-7/2 = -7/2!
-7/6 = -7/3!
and so on, with only the coefficient in the n = 1 position being the odd one out. So we have
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n \\\\ y = -\frac7{0!} + 3x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots[/tex]
which looks a lot like the power series expansion for -7eˣ.
Fortunately, we can rewrite the linear term as
3x = 10x - 7x = 10x - 7/1! x
and in doing so, we can condense this solution to
[tex]\displaystyle y = 10x -\frac7{0!} - \frac7{1!}x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots \\\\ \boxed{y = 10x - 7e^x}[/tex]
Just to confirm this solution is valid: we have
y = 10x - 7eˣ ==> y (0) = 0 - 7 = -7
y' = 10 - 7eˣ ==> y' (0) = 10 - 7 = 3
y'' = -7eˣ
and substituting into the DE gives
-7eˣ (x - 1) - x (10 - 7eˣ ) + (10x - 7eˣ ) = 0
as required.
HURRY plSSSSSSSSSSSSSSSSSSSSSS
What is the measure of the unknown angle?
Image of a straight angle divided into two angles. One angle is eighty degrees and the other is unknown.
Answer:
The unknown is 100
Step-by-step explanation:
A straight line is 180 degrees
We have two angles x, and 80
x+80 = 180
x = 180-80
x= 100
a) Everyone on the team talks until the entire team agrees on one decision. O b) Everyone on the team discusses options and then votes. O c) The team passes the decision-making responsibility to an outside person. O di The team leader makes a decision without input from the other members.
Answer:
a) Everyone on the team talks until the entire team agrees on one decision.
Step-by-step explanation:
Option B consists of voting and not everyone would like the outcome. Option C is making an outsider the decision maker, which can't be helpful since he / she won't have as strong opinions as the team itself. Option D is just plain wrong as it defeats the purpose of team work and deciding as one team. So, I believe option A makes the most sense