Answer:
a) {3,5}{3,10}{5,10}
b) [tex]P(A)=\frac{1}{3}[/tex]
c) [tex]P(B)=\frac{2}{3}[/tex]
d) [tex]P(C)=\frac{1}{3}[/tex]
e) [tex]P(A and C)=0[/tex]
f) [tex]P(A or B)=1[/tex]
g) [tex]P(B and C)=\frac{1}{3}[/tex]
h) [tex]P(A or C)=\frac{2}{3}[/tex]
i) [tex]P(C given B)=\frac{1}{2}[/tex]
j) [tex]P(C given A)=0[/tex]
k) [tex]P(not B)=\frac{1}{3}[/tex]
l) [tex]P(not C)=\frac{2}{3}[/tex]
Yes, events A and B are mutually exclusive. Because the results can either be even or odd, not both. No, events B and C are not mutually exclusive because the result can be both, odd and prime.
Step-by-step explanation:
a)
In order to solve part a of the problem, we need to find the possible outcomes, in this case, the possible outcomes are:
{3,5}{3,10} and {5,10}
We could think of the oppsite order, for example {5,3}{10,3}{10,5} but these are basically the same as the previous outcomes, so we will just take three outcomes in our sample space. We can think of it as drawing the two chips at the same time.
b)
Now the probability of the sum of the chips to be even. There is only one outcome where the sum of the chips is even, {3,5} since 3+5=8 the other outcomes will give us an odd number, so:
[tex]P=\frac{#desired}{#possible}[/tex]
[tex]P(A)=\frac{1}{3}[/tex]
c) For the probability of the sum of the chips to be odd, there are two outcomes where the sum of the chips is odd, {3,10} since 3+10=13 and {5,10} since 5+10=15 the other outcomes will give us an even number, so:
[tex]P(B)=\frac{2}{3}[/tex]
d) The probability of the sum of the chips is prime. There is only one outcome where the sum of the chips is prime, {3,10} since 3+10=13 the other outcomes will give us non prime results, so:
[tex]P(C)=\frac{1}{3}[/tex]
e) The probability of the sum of the chips to be even and prime. There are no results where we can get an even and prime number, since the only even and prime number there is is number 2 and no outcome will give us that number, so:
P(A and C)=0
f) The probability of the sum of the chips is even or odd. We can either get even or odd results, so no matter what outcome we get, we will get an odd or even result so:
[tex]P(A or B)=1[/tex]
g) The probability of the sum of the chips is odd and prime. There is only one outcome where the sum of the chips is odd and prime, {3,10} since 3+10=13 the other outcomes will give us non prime results, so:
[tex]P(B and C)=\frac{1}{3}[/tex]
h) The probability of the sum of the chips is even or prime. There are two outcomes where the sum of the chips is even or prime, {3,10} since 3+10=13 and {3,5} since 3+5=8 so:
[tex]P(A or C)=\frac{2}{3}[/tex]
i) The probability of the sum of the chips is prime given that the sum of the chips is odd. There are two possible results where the sum of the chips is odd {3,10} and {5,10} and only one of those results is even, {3,10}, so
[tex]P(C given B)=\frac{1}{2}[/tex]
j) The probability of the sum of the chips is prime given that the sum of the chips is even. There is only one possible even result: {3,5} but that result isn't prime, so
[tex]P(C given A)=0[/tex]
k) The probability of the sum of the chips is not odd. There is only one outcome where the sum of the chips is not odd (even), {3,5} so:
[tex]P(not B)=\frac{1}{3}[/tex]
l) The probability of the sum of the chips is not prime. There are two outcomes where the sum of the chips is not prime, {3,5} and {5,10} so:
[tex]P(not C)=\frac{2}{3}[/tex]
Are events A and B mutually exclusive?
Yes, events A and B are mutually exclusive.
Why or why not?
Because the results can either be even or odd, not both.
Are events B and C mutually exclusive?
No, events B and C are not mutually exclusive.
Why or Why not?
Because the result can be both, odd and prime.
what is the solution to the system of equations below 2x - y = 10 and y=1/2 x+5
Answer:
(10, 10 )
Step-by-step explanation:
Given the 2 equations
2x - y = 10 → (1)
y = [tex]\frac{1}{2}[/tex] x + 5 → (2)
Substitute y = [tex]\frac{1}{2}[/tex] x + 5 into (1)
2x - ([tex]\frac{1}{2}[/tex] x + 5) = 10 ← distribute parenthesis on left side by - 1
2x - [tex]\frac{1}{2}[/tex] x - 5 = 10
[tex]\frac{3}{2}[/tex] x - 5 = 10 ( add 5 to both sides )
[tex]\frac{3}{2}[/tex] x = 15 ( multiply both sides by 2 to clear the fraction )
3x = 30 ( divide both sides by 3 )
x = 10
Substitute x = 10 into (2) and evaluate for y
y = [tex]\frac{1}{2}[/tex] (10) + 5 = 5 + 5 = 10
solution is (10, 10 )
Match the graph with the correct equation.
A. Y-1 = -1/4(x+5)
B. Y+1= -1/4(x+5)
C. Y-1= -4(x+5)
D. Y-1 =-1/4 (x-5)
Answer:
y - 1 = -1/4(x+5)
Step-by-step explanation:
Kobe is a basketball player. He is able to make a free throw 70% of the time. What is the probability that Kobe makes his 10th free throw on his 14th shot
Answer:
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
Step-by-step explanation:
For each free throw, there are only two possible outcomes. Either he makes it, or he misses. The probability of making a free throw is independent of any other free throw, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He is able to make a free throw 70% of the time.
This means that [tex]p = 0.7[/tex]
What is the probability that Kobe makes his 10th free throw on his 14th shot?
9 of his first 13(P(X = 9) when n = 13), and then the 10th with 0.7 probability.
Thus
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{13,9}.(0.7)^{9}.(0.3)^{3} = 0.2337[/tex]
0.7*0.2337 = 0.1636
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
What is the value of x if x/ 3 + 1 = -2 ?
For the same set of observations on a specified dependent variable, two different independent variables were used to develop two separate simple linear regression models. A portion of the results is presented below.
Based on the results given above, we can conclude that:_______.
A. A prediction based on Model 1 is better than a prediction based on Model 2.
B. A prediction based on Model 2 is better than a prediction based on Model 1.
C. There is no difference in the predictive ability between Model 1 and Model 2.
D. There is not sufficient information to determine which of two models is superior for prediction purposes.
Answer:
A. A prediction based on Model 1 is better than a prediction based on Model 2.
Step-by-step explanation:
Given :
Model 1 :
R² = 0.92
s = 1.65
Model 2 :
R² = 0.85
s = 1.91
The Coefficient of determination of the first model is 0.92 which is greater than the coefficient of determination of the Second model, the coefficient of determination gives the proportion of variation in the dependent variable which is caused by the regression line. Hence, we can say a prediction based on Model 1 is better than a prediction based on Model 2 because a larger proportion of the variation in the dependent variable is predictable from the independent variable.
in a five character password the first two characters must be digits and the last three characters must be letters if no characters are allowed to repeat how many unique passwords are possible
Answer:
1,404,000 unique passwords are possible.
Step-by-step explanation:
The order in which the letters and the digits are is important(AB is a different password than BA), which means that the permutations formula is used to solve this question.
Permutations formula:
The number of possible permutations of x elements from a set of n elements is given by the following formula:
[tex]P_{(n,x)} = \frac{n!}{(n-x)!}[/tex]
In this question:
2 digits from a set of 10(there are 10 possible digits, 0-9).
3 characters from a set of 26. So
[tex]P_{10,2}P_{26,3} = \frac{10!}{8!} \times \frac{26!}{23!} = 10*9*26*25*24 = 1404000[/tex]
1,404,000 unique passwords are possible.
The endpoints of a line are (10, 4) and (-2, 8). Find the slope of
the line.
Jimmy thought he had purchased 7 folders, but purchased 6. What was his percent error?
Answer:
Step-by-step explanation:
Percent Error = | Actual Yield-Theoretical/ Theoretical Yield | *100%
Error= |-1/7|*100%= 14.29%
Find the value of y in the equation y=-4x+9 when x=-3
Answer:
y = 21
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightStep-by-step explanation:
Step 1: Define
Identify
y = -4x + 9
x = -3
Step 2: Evaluate
Substitute in x [Equation]: y = -4(-3) + 9Multiply: y = 12 + 9Add: y = 21Help please!!!!! I’m using Plato
Answer:
[tex]\frac{y^{6} }{ x^{2} }[/tex]
Step-by-step explanation:
[tex]y^{6} x^{-2}[/tex]
Answer and Step-by-step explanation:
When there is a set of values within parenthesis, and an exponents on the values and on the parenthesis, you multiply the outer exponent with the inner exponent.
When a value has a negative exponent, the value that has the negative exponent will become a fraction and go to the denominator of the fraction (or go immediately to the denominator), or if it is already a fraction, goes to the denominator. If the value that has the negative exponent is in the denominator, the value will go to the numerator. In both instances, the negative exponent will then change to positive.
First, we need to simplify the expression inside the parenthesis.
[tex]y^{\frac{3}{2} } x^{-\frac{1}{2} } --> \frac{y^{\frac{3}{2} } }{x^{\frac{1}{2}} }[/tex]
Now we multiply the 4 to the exponents.
[tex]\frac{y^{\frac{3}{2} *\frac{x4}{1} } }{x^{\frac{1}{2}}*\frac{4}{1} } = \frac{y^{\frac{12}{2}} }{x^{\frac{4}{2}}} = \frac{y^6}{x^2}[/tex]
[tex]\frac{y^6}{x^2}[/tex] is the answer.
#teamtrees #PAW (Plant And Water)
Please help asap I needs someone to find the addition property added
A
Step-by-step explanation:
you can notice that at step 2 9 is added on both sides that is the addition property of equality
16.3 m 16.7 m What is the perimeter of the whole garden? LI m busti 2027
The perimeter of the whole garden would be 66m.
Hope this helps! :)
Jill has 32 crayons. She loses 4 of the crayons. How many are left?
Answer:
the answer here is d
the answer is d
Answer:
28
Step-by-step explanation:
Total number of crayons = 32
Number of crayons lost = 4
Therefore, number of crayons she is left with is : 32 - 4 = 28
Working :
[tex]32\\04 - \\\overline{28}[/tex]
Please help, been stuck on this for a while.
Answer:its blurry
Step-by-step explanation:
cant see it
Answer:
x = 34.6
Step-by-step explanation:
[tex]x\:=\:\frac{\left(20\cdot \:sin\left(60\right)\right)}{sin\left(30\right)}[/tex]
Find the interquartile range of the data set represented by this box plot.
25
20
45
35
Answer:
25
Step-by-step explanation:
im pretty sure i think only ok i think no saying bad things in the comment
Which function has a simplified base of 4RootIndex 3 StartRoot 4 EndRoot?
f(x) = 2(RootIndex 3 StartRoot 16 EndRoot) Superscript x
f(x) = 2(RootIndex 3 StartRoot 64 EndRoot) Superscript x
f(x) = 4(RootIndex 3 StartRoot 16 EndRoot) Superscript 2 x
f(x) = 4(RootIndex 3 StartRoot 64 EndRoot) Superscript 2 x
Answer is C f(x) = 4(RootIndex 3 StartRoot 16 EndRoot) Superscript 2 x
Answer:
c is answer
Step-by-step explanation:
yes
Answer:
C
Step-by-step explanation:
took test
Write the geometric sequence in function notation.
4,2,1,1/2,1/4,...
A) AX) = (2) - (1/4)x - 1
OB) Ax) = (2) - (1/2)x - 1
C) Ax) = (4) · (/4)x - 1
D AX) = (4) · (1/2)x - 1
Answer:
D
Step-by-step explanation:
As of 2012, the proportion of students who use a MacBook as their primary computer is 0.4. You believe that at your university the proportion is actually less than 0.4. If you conduct a hypothesis test, what will the null and alternative hypotheses be
Answer:
The null hypothesis is [tex]H_0: p = 0.4[/tex]
The alternative hypothesis is [tex]H_a: p < 0.4[/tex]
Step-by-step explanation:
As of 2012, the proportion of students who use a MacBook as their primary computer is 0.4.
At the null hypothesis, we test if the proportion is of 0.4, that is:
[tex]H_0: p = 0.4[/tex]
You believe that at your university the proportion is actually less than 0.4.
This means that at the alternative hypothesis, we test if the proportion is less than 0.4, that is:
[tex]H_a: p < 0.4[/tex]
2.
The height of a kicked football can be represented by the polynomial - 16+ + 22t+
3, where tis the time in seconds. Find the factored form of the polynomial.
-
5
A) (8t + 3)(-2t + 1)
OB) (-8t+ 3)(2t+ 1)
8
OC) (8t+ 1)(-2t + 3)
OD) (-8t + 1)(2t+ 3)
write expanded notion of 752 863?
Answer:
7 hundred thousands, 5 ten thousands, 2 thousands, 8 hundreds, 6 tens, 3 ones
Step-by-step explanation:
to write a number in expanded notation all you need to do is write out the number in words.
Which statement about y=x^2-14x+45 is true
Imagine that you need to compute e^0.4 but you have no calculator or other aid to enable you to compute it exactly, only paper and pencil. You decide to use a third-degree Taylor polynomial expanded around x =0. Use the fact that e^0.4 < e < 3 and the Error Bound for Taylor Polynomials to find an upper bound for the error in your approximation.
|error| <= _________
Answer:
0.0032
Step-by-step explanation:
We need to compute [tex]e^{0.4}[/tex] by the help of third-degree Taylor polynomial that is expanded around at x = 0.
Given :
[tex]e^{0.4}[/tex] < e < 3
Therefore, the Taylor's Error Bound formula is given by :
[tex]$|\text{Error}| \leq \frac{M}{(N+1)!} |x-a|^{N+1}$[/tex] , where [tex]$M=|F^{N+1}(x)|$[/tex]
[tex]$\leq \frac{3}{(3+1)!} |-0.4|^4$[/tex]
[tex]$\leq \frac{3}{24} \times (0.4)^4$[/tex]
[tex]$\leq 0.0032$[/tex]
Therefore, |Error| ≤ 0.0032
Finding probabilities associated with distributions that are standard normal distributions is equivalent to _______.
Answer:
finding the area of the shaded region representing that probability.
Step-by-step explanation:
In a normal distribution, standardardized probability is usually represented digramatically by a sketch which covers the area which always has a mean of 0 and a standard deviation of 1. The mean value is the midpoint of the area under the curve and has an equal difference of 1 to either side of graph which represents the standard deviation. The area of the shaded region under a normal probability curve represents the probability of associated with that particular standardized value.
find the measures of m and n.
Answer:
m = 4
n = 5
Step-by-step explanation:
[tex]m + 8 = 3m\\\\m - 3m = - 8\\\\-2m = - 8\\\\m = 4[/tex]
[tex]2n - 1 = 9 \\\\2n = 9 + 1\\\\2n = 10\\\\n = 5[/tex]
Robert paid $4.5 for 3 apples. Find the cost per apple.
Answer:
$1.50
Step-by-step explanation:
so its
4.5 ÷ 3
which
1.5
Which describes the transformation applied in the figure above?
1. Quadrilateral D’E’F’G’ was shifted down 6 units.
2. Quadrilateral DEFG was shifted up 6 units.
3. Quadrilateral D’E’F’G’ was reflected about the x-axis.
4. Quadrilateral DEFG was rotated counterclockwise 180 degrees about the point (-1,4).
Answer:
2 Quadrilateral DEFG was shifted up 6 units.
Step-by-step explanation:
trust me cuz when there is ' its not the orginal shape
Which function has least rate of change?
O y = 4x + 5
O 3x - y = 9
O x + y = 8
0 4x + 2y = 8
Answer:
O 4x+2y=8.
Hope this helps you
Explain relationship between ≠2 and the factor x – 2.
Answer:
It has a difference of x=2 of -4
Step-by-step explanation:
It has a difference of x=2 of -4
What is factor ?A number or algebraic expression that evenly divides another number or expression—i.e., leaves no remainder—is referred to as a factor in mathematics. As an illustration, 3 and 6 are factors of 12 because 12 3 = 4 and 12 6 = 2, respectively. 1, 2, 4, and 12 are the other components that make up 12.Given ,
x ≠ 2 ,
x - 2 =0
So, we put x = -2 because in question x ≠ 2 .
Then, x - 2 = 0
-2 -2 = 0
- 4 =0
Therefore, it has a difference of x= -2 of -4.
Learn more about factor brainly.com/question/19426180
#SPJ2
Translate this sentence into an equation.
The product of Rhonda's height and 4 is 52.
Use the variable r to represent Rhonda's height.
Answer: r•4=52
Step-by-step explanation:
The product of something means multiplication. So R is equal to Ronda’s height. So you would multiply r and 4 to get 52.
Please help solve this problem.
Answer:
Ang hirap naman niyan bakit kaya lahat na module mahirap