Answer:
The velocity of the motorcycle is 50km/hr due east.
TRUE OR FALSE
2 QUESTIONS
please HELP ASAP
1. false
2. true
I hope this helps ^-^
The water line from the street to my house is 1 inch diameter and made of PVC (i.e. smooth). The line is roughly 450 ft long. The water pressure in the line at the street is 130 psig. If I flow 10 gpm through the pipe, what pressure would I expect when I get to my house. My house is 10 ft higher in elevation than the water line at the street
Answer:
The right solution is "126 Psi".
Explanation:
The given values are:
P₁ = 130 psig
i.e.,
= [tex]130\times 6.894[/tex]
= [tex]896.22 \ Kpa[/tex]
or,
= [tex]896.22\times 10^3 \ Pa[/tex]
Z₂ = 10ft
= 3.05 m
[tex]\delta[/tex] = 1000 kg/m³
According to the question,
Z₁ = 0
V₁ = V₂
As we know,
⇒ [tex]\frac{P_1}{\delta_g} +\frac{V_1^2}{2g} +Z_1=\frac{P_2}{\delta_g} +\frac{V_2^2}{2g} +Z_2[/tex]
On substituting the values, we get
⇒ [tex]\frac{P_1}{\delta_g} +0+0=\frac{P_2}{\delta_g} +0+Z_2[/tex]
⇒ [tex]\frac{896.22\times 10^3}{1000\times 9.8} =\frac{P_2}{1000\times 9.8} +3.05[/tex]
⇒ [tex]P_2=866330 \ P_a[/tex]
i.e.,
⇒ [tex]=866330\times 0.000145[/tex]
⇒ [tex]=126 \ Psi[/tex]
A ball is sitting at the top of a ramp. As the ball rolls down the ramp, the potential energy of the ball decreases, what happens to the potential energy as the ball moves
Answer:
the potential energy decreases as it is converted to kinetic energy.
Explanation:
As things move, their potential energy converts to kinetic energy to power them along. When a ball rolls down the top of a ramp, all the potential energy it accumulated at the top of the ramp converts to kinetic energy to help it roll down. In other words, its potential energy decreases as its kinetic energy increases.
5. How much heat is needed to warm .052 kg of gold from 30°C to 120°C? Note: Gold has a specific heat of 136
J/kg °C
Answer:
Q = 636.48 J
Explanation:
Given that,
The mass of gold, m = 0.052 kg
The temperature increase from 30°C to 120°C.
The specific heat of gold is 136 J/kg °C.
We need to find the heat needed to warm the gold. The formula for heat needed is given by :
[tex]Q=mc\Delta T\\\\Q=0.052\times 136\times (120-30)\\\\Q=636.48\ J[/tex]
So, 636.48 J of heat is needed to warm gold.
an inventor makes a clock using a brass rod and a heavy mass as a pendulum.WHAT Happens when the clock get colder?
An inventor makes a clock using a brass rod and a heavy mass as a pendulum. when the clock gets colder then the time clock would gain time
What is thermal expansion?The expansion of any material due to the variation of the temperature is known as thermal expansion. It varied differently for different materials according to their corresponding values of the coefficient of the thermal expansion.
As given in the problem statement that an inventor makes a clock using a brass rod and a heavy mass as a pendulum, when the clock gets colder then the length of the brass decreases due to thermal expansion.
The length of the pendulum gets reduced which further results in the reduction in the time period, as per the formula of the time period for the pendulum
T = 2π√(L/g)
As the length of the brass gets reduced. This means the pendulum of the clock moves faster and the clock would gain time
Thus, if a pendulum made of a heavy mass and a brass rod is used to create a clock by an inventor. The time clock would advance in time as the clock get colder
Learn more about Thermal expansion here
brainly.com/question/14092908
#SPJ5
A long, uninsulated steam line with a diameter of 100 mm and a surface emissivity of 0.8 transports steam at 150°C and is exposed to atmospheric air and large surroundings at an equivalent temperature of 20°C. (a) Calculate the rate of heat loss per unit length for a calm day. (b) Calculate the rate of heat loss on a breezy day when the wind speed is 8
Answer:
Heat loss per unit length = 642.358 W/m
The heat loss per unit length on a breezy day during 8 m/s speed is = 1760.205 W/m
Explanation:
From the information given:
Diameter D [tex]= 100 mm = 0.1 m[/tex]
Surface emissivity ε = 0.8
Temperature of steam [tex]T_s[/tex] = 150° C = 423K
Atmospheric air temperature [tex]T_{\infty} = 20^0 \ C = 293 \ K[/tex]
Velocity of wind V = 8 m/s
To calculate average film temperature:
[tex]T_f = \dfrac{T_s+T_{\infty}}{2}[/tex]
[tex]T_f = \dfrac{423+293}{2}[/tex]
[tex]T_f = \dfrac{716}{2}[/tex]
[tex]T_f = 358 \ K[/tex]
To calculate volume expansion coefficient
[tex]\beta= \dfrac{1}{T_f} \\ \\ \beta= \dfrac{1}{358} \\ \\ \beta= 2.79 \times 10^{-3} \ K^{-1}[/tex]
From the table of "Thermophysical properties of gases at atmospheric pressure" relating to 358 K of average film temperature; the following data are obtained;
Kinematic viscosity (v) = 21.7984 × 10⁻⁶ m²/s
Thermal conductivity k = 30.608 × 10⁻³ W/m.K
Thermal diffusivity ∝ = 31.244 × 10⁻⁶ m²/s
Prandtl no. Pr = 0.698
Rayleigh No. for the steam line is determined as follows:
[tex]Ra_{D} = \dfrac{g \times \beta (T_s-T_{\infty}) \times D_b^3}{\alpha\times v}[/tex]
[tex]Ra_{D} = \dfrac{9.8 \times (2.79 *10^{-3})(150-20) \times (0.1)^3}{(31.244\times 10^{-6}) \times (21.7984\times 10^{-6})}[/tex]
[tex]Ra_{D} = 5.224 \times 10^6[/tex]
The average Nusselt number is:
[tex]Nu_D = \Big \{ 0.60 + \dfrac{0.387(Ra_D)^{1/6}}{[ 1+ (0.559/Pr)^{9/16}]^{8/27}} \Big \}^2[/tex]
[tex]Nu_D = \Big \{ 0.60 + \dfrac{0.387(5.224\times 10^6)^{1/6}}{[ 1+ (0.559/0.698)^{9/16}]^{8/27}} \Big \}^2[/tex]
[tex]Nu_D = \Big \{ 0.60 + \dfrac{5.0977}{[ 1.8826]^{8/27}}\Big \}^2[/tex]
[tex]Nu_D = \Big \{ 0.60 + 4.226 \Big \}^2[/tex]
[tex]Nu_D = 23.29[/tex]
However, for the heat transfer coefficient; we have:
[tex]h_D = \dfrac{Nu_D\times k}{D_b} \\ \\ h_D = \dfrac{(23.29) \times (30.608 \times 10^{-3} )}{0.1}[/tex]
[tex]h_D = 7.129 \ Wm^2 .K[/tex]
Hence, Stefan-Boltzmann constant [tex]\sigma = 5.67 \times 10^{-8} \ W/m^2.K^4[/tex]
Now;
To determine the heat loss using the formula:
[tex]q'_b = q'_{ev} + q'_{rad} \\ \\ q'_b = h_D (\pi D_o) (T_t-T_{\infty})+\varepsilon(\pi D_b)\sigma (T_t^4-T_{\infty }^4)[/tex]
[tex]q'_b = (7.129)(\pi*0.1) (423-293) + (0.8) (\pi*0.1) (5.67 *10^{-8}) (423^4-293^4) \\ \\ q'_b = 291.153 + 351.205 \\ \\ \mathbf{q'_b = 642.258 \ W/m}[/tex]
Now; here we need to determine the Reynold no and the average Nusselt number:
[tex]Re_D = \dfrac{VD_b}{v } \\ \\ Re_D = \dfrac{8 *0.1}{21.7984 \times 10^{-6}} \\ \\ Re_D = 3.6699 \times 10^4[/tex]
However, to determine the avg. Nusselt no by using Churchill-Bernstein correlation, we have;
[tex]Nu_D = 0.3 + \dfrac{0.62 \times Re_D^{1/2}* Pr^{1/3}}{[1+(0.4/Pr)^{2/3}]^{1/4}} [1+ (\dfrac{Re_D}{282000})^{5/8}]^{4/5}[/tex]
[tex]Nu_D = 0.3 + \dfrac{0.62 \times (3.6699*10^4)^{1/2}* (0.698)^{1/3}}{[1+(0.4/0.698)^{2/3}]^{1/4}} [1+ (\dfrac{3.669*10^4}{282000})^{5/8}]^{4/5}[/tex]
[tex]Nu_D = (0.3 +\dfrac{105.359}{1.140}\times 1.218) \\ \\ Nu_D = 112.86[/tex]
SO, the heat transfer coefficient for forced convection is determined as follows afterward:
[tex]h_D = \dfrac{Nu_{D}* k}{D_b} \\ \ h_D = \dfrac{112.86*30.608 *10^{-3}}{0.1} \\ \\ h_D = 34.5 \ W/m^2 .K[/tex]
Finally; The heat loss per unit length on a breezy day during 8 m/s speed is:
[tex]q'b = h_D (\pi D_b) (T_s-T_{\infty}) + \varepsilon (\pi D_b) \sigma (T_s^4-T_ {\infty}^4) \\ \\ q'b = (34.5) (\pi *0.1) (423-293) + (0.8) (\pi*0.1) (5.67*10^{-8}) (423^4 - 293^4) \\ \\ = 1409 +351.205 \\ \\ \mathbf{q'b = 1760.205 \ W/m}[/tex]
g Two long parallel wires are a center-to-center distance of 2.50 cm apart and carry equal anti-parallel currents of 2.70 A. Find the magnitude of the magnetic field at the point P which is equidistant from the wires. (R
Answer:
864 mT
Explanation:
The magnetic field due to a long straight wire B = μ₀i/2πR where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, i = current in wire, and R = distance from center of wire to point of magnetic field.
The magnitude of magnetic field due to the first wire carrying current i = 2.70 A at distance R which is mid-point between the wires is B = μ₀i/2πR.
Since the other wire also carries the same current at distance R, the magnitude of the magnetic field is B = μ₀i/2πR.
The resultant magnetic field at B is B' = B + B = 2B = 2(μ₀i/2πR) = μ₀i/πR
Now R = 2.50 cm/2 = 1.25 cm = 1.25 × 10⁻² m and i = 2.70 A.
Substituting these into B' = μ₀i/πR, we have
B' = 4π × 10⁻⁷ H/m × 2.70 A/π(1.25 × 10⁻² m)
B = 10.8/1.25 × 10⁻⁵ T
B = 8.64 × 10⁻⁵ T
B = 864 × 10⁻³ T
B = 864 mT
This question involves the concept of the magnetic field due to two current-carrying wires in the same direction, parallel to each other.
The magnitude of the magnetic field at the point P, which is equidistant from the wires is "8.64 x 10⁻⁵ T".
The following formula is used to find the magnetic field at the center distance between two parallel current-carrying wires in the same direction:
[tex]B = \frac{\mu_oI_1}{2\pi r}+\frac{\mu_oI_2}{2\pi r}\\\\But,\ I_1=I_2=I\\\\B = \frac{\mu_oI}{\pi r}[/tex]
where,
B = magnetic field at required point = ?
μ₀ = permeability of free space = 4π x 10⁻⁷ H/m
I = current = 2.7 A
r = distance from wires to the point = 2.5 cm/2 = 1.25 cm = 0.0125 m
Therefore,
[tex]B=\frac{(4\pi\ x\ 10^{-7}\ H/m)(2.7\ A)}{\pi (0.0125\ m)}[/tex]
B = 8.64 x 10⁻⁵ T
Learn more about the magnetic field here:
https://brainly.com/question/23096032?referrer=searchResults
In high air pressure the molecules are
A-Warm and moving fast
b-Close together and moving slowly
c-far apart and moving slowly
d-hot and moving rapidly
1. What types of natural phenomena could serve as time standards?
Answer:
The movement of Sun and moon
Explanation:
When the sun rise.it is am and when it sets .it is pm.
3. Materials that lets electricity to pass
Answer:
materials that allow electricity to pass through them are called conductors, some examples of conductors are many metals, such as copper, iron and steel.
a sharp image is formed when light reflects from a
Answer:
Regular reflection
Explanation:
Regular reflection occurs when light reflects off a very smooth surface and forms a clear image.
i hope this helps a bit.
According to the context, a sharp image is formed when light reflects from a regular reflection.
What is regular reflection?It is reflection without diffusion that obeys the laws of geometrical optics, as in mirrors.
This reflection of light happens when the angles that the two rays determine with the surface are equal.
Therefore, we can conclude that according to the context, a sharp image is formed when light reflects from a regular reflection.
Learn more about regular reflection here: https://brainly.com/question/3778324
#SPJ2
At the base of a hill, a 90 kg cart drives at 13 m/s toward it then lifts off the accelerator pedal). If the cart just barely makes it to the top of this hill and stops, how high must the hill be?
Answer:
8.45 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 90 Kg
Initial velocity (u) = 13 m/s
Final velocity (v) = 0 m/s
Height (h) =?
NOTE: Acceleration due to gravity (g) = 10 m/s²
The height of the hill can be obtained as follow:
v² = u² – 2gh (since the cart is going against gravity)
0² = 13² – (2 × 10 × h)
0 = 169 – 20h
Rearrange
20h = 169
Divide both side by 20
h = 169/20
h = 8.45 m
Therefore, the height of the hill is 8.45 m
Define Mechanical advantage
fe effort of 2125N is used to lift a Lead of 500N
through a Verticle high of 2.N using a buly System
if the distance Moved by the effort is 45m
Calculate 1. Work done on the load
2. work done by the effort
3. Efficiency of the System
Answer:
1) 1000Nm
2) 95,625Nm
3) 1.05%
Explanation:
Mechanical Advantage is the ratio of the load to the effort applied to an object.
MA = Load/Effort
1) Workdone on the load = Force(Load) * distance covered by the load
Workdone on the load = 500N * 2m
Workdone on the load = 1000Nm
2) work done by the effort = Effort * distance moves d by effort
work done by the effort = 2125 * 45
work done by the effort = 95,625Nm
3) Efficiency = Workdone on the load/ work done by the effort * 100
Efficiency = 1000/95625 * 100
Efficiency = 1.05%
Hence the efficiency of the system is 1.05%
On a 10 kg cart (shown below), the cart is brought up to speed with 50N of force for 7m, horizontally. At this point (A), the cart begins to experience an average frictional force of 15N throughout the ride.
Find:
a) The total energy at (A)
b) The velocity at (B)
c) The velocity at (C)
d) Can the cart make it to Point (D)? Why or why not?
Calculate the momentum of a 10 kg bowling ball rolling at 2m/s towards north.
Answer:
momentum=mass x velocity= 10 x 2 = 20kgm/s
(d) Suppose you use a spring to launch a payload horizontally from the asteroid so that the payload ends up far from the asteroid, travelling at a speed of 3 m/s. The payload has a mass of 29 kg. If the spring is to be compressed initially an amount of 1.4 m, what stiffness ks must the spring be designed to have
Answer:
ks= 133.2 N/m
Explanation:
Assuming that we can neglect the gravitational potential energy of the mass, and that no other forces acting on the payload, total mechanical energy must be conserved.This energy, at any time, is part elastic potential energy (stored in the spring) and part kinetic energy.When the spring is initially compressed, the payload is at rest, so all energy is elastic potential.Once the spring has returned to its natural state, all this elastic potential energy must have been turned into kinetic energy.If the payload is launched horizontally, and no gravity is present,this means that its final speed will be horizontal only also, according to Newton's First Law.So, we can write the following equation:[tex]\Delta U + \Delta K = 0 (1)[/tex]
where ΔU = -1/2*k*(Δx)² (2)and ΔK = 1/2*m*v² (3)Replacing in (2) and (3) by the givens, and simplifying, we can find the stiffness ks as follows:[tex]k_{s} =\frac{m*v^{2}}{\Delta x^{2}} = \frac{29 kg*(3m/s)^{2}}{(1.4m)^{2}} = 133.2 N/M (4)[/tex]
Would sound travel faster in an oven or a freezer?
Answer:
An Oven
Explanation:
The heat is higher, so it moves faster. Shile in a freezer the particles are extremely slow!
How much energy would be required to move the earth into a circular orbit with a radius 2.0 kmkm larger than its current radius
Answer:
[tex]3.52\times 10^{25}\ \text{J}[/tex]
Explanation:
G = Gravitational constant = [tex]6.674\times 10^{-11}\ \text{Nm}^2/\text{kg}^2[/tex]
M = Mass of Sun = [tex]1.989\times 10^{30}\ \text{kg}[/tex]
m = Mass of Earth = [tex]5.972\times 10^{24}\ \text{kg}[/tex]
[tex]r_i[/tex] = Initial radius of orbit = [tex]1.5\times 10^{11}\ \text{m}[/tex]
[tex]r_f[/tex] = Final radius of orbit = [tex]((1.5\times 10^{11})+2\times 10^3)\ \text{m}[/tex]
Energy required is given by
[tex]E=\dfrac{1}{2}\Delta U\\\Rightarrow E=\dfrac{GMm}{2}(\dfrac{1}{r_i}-\dfrac{1}{r_f})\\\Rightarrow E=\dfrac{6.674\times 10^{-11}\times 1.989\times 10^{30}\times 5.972\times 10^{24}}{2}(\dfrac{1}{1.5\times 10^{11}}-\dfrac{1}{(1.5\times 10^{11})+2\times 10^3})\\\Rightarrow E=3.52\times 10^{25}\ \text{J}[/tex]
The energy required would be [tex]3.52\times 10^{25}\ \text{J}[/tex].
(will give brainliest to whoever is correct and shows reasoning) What is the acceleration of an object that has a velocity of 60m/s and is moving in a circle of radius 50m?
Answer:
5.0/s
Explanation:
Answer:
b and a it is this that abewsr
why doesn't a radio operating with two batteries function when one of the batteries is reversed?
Answer:
If you have two batteries and they have precisely the same voltage then placing one backwards will effectively cancel out the voltages and no current will flow. However, batteries aren't like that. The slightest difference in voltages mean that current will flow.
Explanation:
Calculate the kinetic energy of an 80,000 kg airplane that is flying with a velocity of 167 m/s.
Answer:
1115560000 J
Explanation:
1/2 * 80,000 * 167^2 m/s = 1115560000 J
३.रात में घूमने वाला write one word substitute
Explanation:
रात में घूमने वाला arthaarat निशाचर
The mass of the Moon is 7.3x1022 kg and its radius is 1738 km. What is the strength of the gravitational field on the
surface of the Moon? (Do all required steps)
Answer:
1.61 N/kg
Explanation:
Take the universal gravitational constant G as 6.67 × 10^(-11) Nm²/kg²
The required gravitational field strength
= 6.67 × 10^(-11) × 7.3 × 10^(22) / (1738000)²
= 1.61194103 N/kg
= 1.61 N/kg (corr. to 3 sig. fig.)
A snail traveled 3.12 meters in 27.13 minutes. What is the snails speed in meters per second
Answer:
0.002 m/s
Explanation:
27.13(60) = 1,627.8 seconds
3.12/1,627.8 = 0.00191 ≈ 0.002 = s
Are you sure you're not looking for cm/s?
Sam moves an 800 N wheelbarrow 5 meters in 15 seconds. How much work did he do?
Answer:
work done= force × displacement
=800×5
=4000J
Explanation:
The amount of work done is the result of the magnitude of force applied and the displacement of the body due to the force applied. Therefore, work done is defined as the product of the applied force and the displacement of the body.
A hollow sphere is attached to the end of a uniform rod. The sphere has a radius of 0.64 m and a mass of 0.48 kg. The rod has a length of 1.78 m and a mass of 0.50 kg. The rod is placed on a fulcrum (pivot) at X = 0.34 m from the left end of the rod.
(a) Calculate the moment of inertia (click for graphical table) of the contraption around the fulcrum. kg m2
(b) Calculate the torque about the fulcrum, using CCW as positive. N.m
(c) Calculate the angular acceleration of the contraption, using CCW as positive. rad/s2
(d) Calculate the linear acceleration of the right end of the rod, using up as positive. m/s2
The image of this hollow sphere and uniform rod is missing, so i have attached it.
Answer:
A) J = 0.7443 kg•m²
B) T = 1.9169 N•m CCW
C) α = 2.5754 rad/s²
D) a = 3.966 m/s²
Explanation:
A) The moment of inertia J of the contraption around the fulcrum is given by the formula;
J = Jℓ + Jr
Let's calculate Jℓ
Jℓ = [((0.34²/3) × 0.50 × 0.34)/1.78] + (0.48 × (0.34 + 0.64)²)
Jℓ = 0.4647 kg•m²
Now, let's Calculate Jr
Jr = ((1.78 - 0.34)²/3) × ((1.78 - 0.34)/1.78) × 0.50
Jr = 0.2796 kg•m²
Thus;
J = 0.4647 + 0.2796
J = 0.7443 kg•m²
(b) Using CCW as positive, Torque in Nm is calculated as;
T = Tℓ - Tr
Let's calculate Tℓ
Tℓ = [(0.48 × (0.64 + 0.34)) + (0.50 × 0.34/1.78) × 0.34/2)] × 9.81
Tℓ = 4.7739 N•m CCW
Now, let's Calculate Tr;
Tr = [(0.50 × (1.78 - 0.34)/1.78) × (1.78 - 0.34)/2)] × 9.81
Tr = 2.857 N•m CW
Thus;
T = 4.7739 - 2.857
T = 1.9169 N•m CCW
(c) The angular acceleration α of the contraption, using CCW is gotten from the formula;
α = T/J
α = 1.9169/0.7443
α = 2.5754 rad/s²
(d) The linear acceleration a of the right end of the rod, using up as positive is given by;
a = α*(1.78 - 0.34)
a = 2.5754 × 1.54
a = 3.966 m/s²
A) the moment of inertia of the contraption is 0.7443 kgm²
B) The torque about the fulcrum is 1.9169 Nm
C) Angular acceleration of the contraption is 2.5754 rad/s²
D) The linear acceleration of the contraption is 3.966 m/s²
Moment of inertia:(A) The moment of inertia I of the contraption around the fulcrum is given by :
[tex]I = [(0.34^2/3) \times 0.50 \times 0.34)/1.78 + (0.48 \times (0.34 + 0.64)^2)] + [(1.78 - 0.34)^2/3) \times (1.78 - 0.34)/1.78) \times 0.50][/tex]
I = 0.4647 + 0.2796
I = 0.7443 kgm²
(B) Using CCW as positive, Torque in Nm is given by;
T = [(0.48 × (0.64 + 0.34)) + (0.50 × 0.34/1.78) × 0.34/2)] × 9.81 - [(0.50 × (1.78 - 0.34)/1.78) × (1.78 - 0.34)/2)] × 9.81
T = 4.7739 - 2.857
T = 1.9169 Nm
(C) The angular acceleration (α) of the contraption is given by:
α = T/I
since, torque is defined as T = Iα
α = 1.9169/0.7443
α = 2.5754 rad/s²
(D) The linear acceleration (a) of the right end of the rod
a = αr
where r is the distance from the pivot
a = α × (1.78 - 0.34)
a = 2.5754 × 1.54
a = 3.966 m/s²
Learn more about moment of inertia:
https://brainly.com/question/6953943?referrer=searchResults
Mechanical energy is the most concentrated form of energy.
a. true
b. false
3
How does the electrical conductivity of metals
and metalloids change with an increase in
temperature?
Answer:
In metals there are free electrons at normal temperature so when we increase temperature it resistivity gets increases,so conductivity decreases,while in semiconductor the electrons are not free so when we increase the temperature the covalent bonds begin to break and the electron becomes free so conductivity get.
Explanation:
Is there a way to see moon and the sun at once?
What would happen if the molecules in a sample moving entirely ?
Answer:
Molecular scale. The story begins a long time ago
when the idea that molecules are in constant motion
was first discovered. Part of the evidence that you can
see in everyday life was discovered by Robert Brown
about 150 years ago when he used a microscope to
watch how tiny dust particles move.
So how fast do molecules move? It all depends upon
the molecule and its state: molecules in a solid state
move slower than in a liquid state, and much slower
than gas molecules. One estimate puts gas molecules
in the range of 1,100 mph at room temperature. Cool
them down to almost absolute zero and they slow
down to less than 0.1 mph (slower than the average
couch potato). The fact that they are always moving
makes it a challenge to see molecules and make stuff
out of them, but it’s a challenge that scientists
work hard to figure out.
Explanation: