Answer:
a)
[tex]|z| < 2.054[/tex]: Do not reject the null hypothesis.
[tex]|z| > 2.054[/tex]: Reject the null hypothesis.
b) [tex]z = 2.81[/tex]
c) Reject.
d) The p-value is 0.005.
Step-by-step explanation:
Before testing the hypothesis, we need to understand the central limit theorem and the subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Population 1:
Sample of 42, standard deviation of 3.3, mean of 101, so:
[tex]\mu_1 = 101[/tex]
[tex]s_1 = \frac{3.3}{\sqrt{42}} = 0.51[/tex]
Population 2:
Sample of 53, standard deviation of 3.6, mean of 99, so:
[tex]\mu_2 = 99[/tex]
[tex]s_2 = \frac{3.6}{\sqrt{53}} = 0.495[/tex]
H0 : μ1 = μ2
Can also be written as:
[tex]H_0: \mu_1 - \mu_2 = 0[/tex]
H1 : μ1 ≠ μ2
Can also be written as:
[tex]H_1: \mu_1 - \mu_2 \neq 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error .
a. State the decision rule.
0.04 significance level.
Two-tailed test(test if the means are different), so between the 0 + (4/2) = 2nd and the 100 - (4/2) = 98th percentile of the z-distribution, and looking at the z-table, we get that:
[tex]|z| < 2.054[/tex]: Do not reject the null hypothesis.
[tex]|z| > 2.054[/tex]: Reject the null hypothesis.
b. Compute the value of the test statistic.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the samples:
[tex]X = \mu_1 - \mu_2 = 101 - 99 = 2[/tex]
[tex]s = \sqrt{s_1^2 + s_2^2} = \sqrt{0.51^2 + 0.495^2} = 0.71[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{2 - 0}{0.71}[/tex]
[tex]z = 2.81[/tex]
c. What is your decision regarding H0?
[tex]|z| = 2.81 > 2.054[/tex], which means that the decision is to reject the null hypothesis.
d. What is the p-value?
Probability that the means differ by at least 2, either plus or minus, which is P(|z| > 2.81), which is 2 multiplied by the p-value of z = -2.81.
Looking at the z-table, z = -2.81 has a p-value of 0.0025.
2*0.0025 = 0.005
The p-value is 0.005.
The following section is a statement from the rental agreement Tim signed when he rented his car this past weekend. “Upon checkout, the fuel level of the vehicle will be determined by turning the vehicle on and visually inspecting the fuel gauge. The approximate fuel level will be recorded on the Check-Out sheet and verified with initials by the vehicle Renter. One copy of the Check-Out sheet will be given to the customer. Another copy will be kept with the on-site records of the vehicle. The rented vehicle must be returned with a minimum fuel level the same as that indicated on the Check-Out sheet. A vehicle returned with a fuel level less than the approximate level indicated on the Check-Out sheet will be completely refueled with on-site pumps. The price of the fuel used to refuel the vehicle will be added to the Renter’s total charge at a cost of $4.50 per gallon plus a $5.00 re-fueling charge.” As a part of the check-out process, it is customary for a car rental agency to look over the car with the customer and fill out the Check-Out sheet together. As Tim was walking around the car looking for damages that he didn’t want to be held responsible for, the agency representative turned on the car, took note of the fuel level, and indicated it on the Check-Out sheet. Since Tim didn’t have any questions, the clerk handed him the keys and a copy of the Check-Out sheet and wished him well. Which action invalidates the contract Tim signed with the rental agency? a. Tim failed to notice a dent under the right front fender. b. The representative failed to give Tim a copy of the Check-Out sheet. c. The representative failed to have Tim initial by the fuel level on the Check-Out sheet. d. Neither Tim nor the representative checked the oil level in the car.
Answer:
C. The representative failed to have Tim initial by the fuel level on the Check-Out sheet.
Step-by-step explanation:
After reading the paragraph, we can eliminate B, by seeing that the representative did give him a copy of the Check-Out sheet, as quoted. "Since Tim didn’t have any questions, the clerk handed him the keys and a copy of the Check-Out sheet and wished him well.".
We can also eliminate A and D, as the contract stated nothing about dents or the oil level in the car.
The answer is C, as the representative failed to have Tim initial on the Check-Out sheet. That is a requirement for the contract to be valid, as stated. "The approximate fuel level will be recorded on the Check-Out sheet and verified with initials by the vehicle Renter.". However, Tim never initialed by the fuel level, as stated here. "...the agency representative turned on the car, took note of the fuel level, and indicated it on the Check-Out sheet. Since Tim didn’t have any questions, the clerk handed him the keys and a copy of the Check-Out sheet and wished him well.". No where here does it state that Tim initialed on the Check-Out sheet, meaning that he didn't. Him not doing so invalidates the contract.
X/6 - y/3 = 1
please explain in detail!
Answer:
x=12,y=3
Step-by-step explanation:
x/6-y/3=1
x can equal 12 because 12/6 is equal to 2.
y can equal 3 because 3/3 equals 1
2-1=1
I need help
With these
Answer:
"A"
Step-by-step explanation:
a+b >c
a+c>b
b+c>a
~~~~~~~~~~~~
A. T,T,T
B. T,T,F
C. T,F,T
work out the value of y when x = 4 30 points
Answer:
y = 54/25 when x = 4.
Step-by-step explanation:
y is given by the equation:
[tex]\displaystyle y = p\times q^{x-1}[/tex]
Where p and q are numbers.
We are also given that when x = 1, y = 10 and when x = 6, y = 0.7776.
And we want to determine the value of y when x = 4.
Since y = 10 when x = 1:
[tex]\displaystyle (10) = p\times q^{(1)-1}[/tex]
Simplify:
[tex]10 = p \times q^0[/tex]
Any number (except for zero) to the zeroth power is one. Hence:
[tex]p=10[/tex]
Thus, our equation is now:
[tex]y = 10\times q^{x-1}[/tex]
When x = 6, y = 0.7776. Thus:
[tex](0.7776) = 10\times q^{(6)-1}[/tex]
Simplify and divide both sides by ten:
[tex]\displaystyle 0.07776 = q^5[/tex]
Take the fifth root of both sides:
[tex]\displaystyle q = \sqrt[5]{0.07776}[/tex]
Use a calculator. Hence:
[tex]\displaystyle q = \frac{3}{5} = 0.6[/tex]
Our completed equation is:
[tex]\displaystyle y = 10\times \left(\frac{3}{5}\right)^{x-1}[/tex]
Then when x = 4, y equals:
[tex]\displaystyle \begin{aligned} y &= 10\times \left(\frac{3}{5}\right)^{(4)-1} \\ \\ &= 10\times \left(\frac{3}{5}\right)^3 \\ \\ &= 10\times \left(\frac{27}{125}\right) \\ \\ &= \frac{54}{25}\end{aligned}[/tex]
A woman bought some large frames for $17 each and some small frames for $6 each at a closeout sale. If she bought 18 frames for $141, find how many of each type she bought. She bought ____ large frames.
Answer:
3 large frames
Step-by-step explanation:
Let the large frames she bought be x in number and small frames be y in number.
ATQ, 17x+6y=141 and x+y=18. Solving it, we will get x=3 and y=15. So she bought 3 large frames
Solve for x
X-8 = -10
A) X = 2
B) X = -2
C) X = 18
D) X = -18
Answer:
x=–2
Step-by-step explanation:
x-8=-10
x=-10-8
x=–2
Answer:
-8= -10
, = -10+8
, = -2
A truck is said to get 18 miles per gallon on a highway, but this value can fluctuate, at most, by 4 miles per gallon. Which of the following absolute value inequalities matches this scenario? Question 23 options: |x + 18| ≤ 4 |x – 18| ≤ 4 |x – 4| > 18 |x + 18| > 4
Answer:
the correct answer is |x – 18| ≤ 4
just took the test
Step-by-step explanation:
help me now where are you all helppppp
A fraction means division.
To find the decimal equivalent of a fraction, divide the top number by the bottom number.
find the value of z, angles related to a circle
find the surface area of the prism
Answer:
114 cm²
Step-by-step explanation:
Surface area of the rectangular prism,
2×(wl+hl+hw)
=2×(3×8+3×8+3×3)
= 2×(24+24+9)
= 2×(57)
=114 cm²
√10 Multiple √15 is equal to
(a) 5√6
(b) 6√5
(c) √30
(d) √25
step by step for BRAINLIST
Solve :-
Answer:
a). 5√6
[tex] \sqrt{10} \times \sqrt{15} \\ = ( \sqrt{5} \times \sqrt{2} ) \times ( \sqrt{5} \times \sqrt{3} ) \\ = {( \sqrt{5}) }^{2} \times ( \sqrt{2} \times \sqrt{3} ) \\ = 5 \times ( \sqrt{6} ) \\ = 5 \sqrt{6} [/tex]
Decompose -6x/(x+2)(x+8) into partial fractions.
The partial fraction expansion takes the form
-6x/((x + 2) (x + 8)) = a/(x + 2) + b/(x + 8)
Both factors in the denominator are linear, so the numerators in the corresponding partial fractions have degree 1 - 1 = 0 and are thus constants.
Combine the fractions on the right side into one with a common denominator, then set the numerators on both sides of the equation equal to each other:
-6x = a (x + 8) + b (x + 2)
Expand the right side and collect terms by powers of x :
-6x = (a + b) x + (8a + 2b)
It follows that
a + b = -6 and 8a + 2b = 0
==> a = -2 and b = 8
So we end up with
-6x/((x + 2) (x + 8)) = -2/(x + 2) + 8/(x + 8)
What is the output of the function: f(x)=2x+5, if the input is 3?
Answer:
2*3+5=11
Step-by-step explanation:
Answer:
[tex]\boxed {\boxed {\sf 11}}[/tex]
Step-by-step explanation:
We are given the following function and asked to find the output if the input is 3.
[tex]f(x)= 2x+5[/tex]
The input is what is plugged into the function and its variable is x. The output is the result of plugging in the input and its variable is y.
Substitute 3 in for x,
[tex]f(3)= 2(3)+5[/tex]
Solve according to PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction. Multiply 2 and 3.
[tex]f(3)= 6+5[/tex]
Add.
[tex]f(3)= 11[/tex]
If the input is 3, then the output is 11.
16: The temperature yesterday at noon was 68.5 degrees. Today at noon
it was 59.9 degrees. What was the difference in temperature?
O A. 8.4 degrees
OB. 8.5 degrees
C. 8.6 degrees
O D. 8.7 degrees
Answer:
C
Step-by-step explanation:
It is 8.6 because we are finding the difference and using subtraction.
So I did 68.8-59.9 and I got 8.6
urgent !!!!!! plz image below
Answer:
[tex]216\ km^2[/tex]
Step-by-step explanation:
1. Approach
The surface area of a three-dimensional figure is the two-dimensional distance around the figure. The easiest way to find the surface area of a figure is to find the area of each of its facets, then add up the area to get the total surface area. The given pyramid is composed of four congruent triangles and a square. Find the area of one of the triangles, and then the area of the rectangle. Multiply the area of the triangle by four to account for the fact that there are four congruent triangles. Then add the area of the base to the result, the result attained is the surface area of the prism.
2. Find the area of the triangles
The formula to find the area of a triangle is the following:
[tex]A_t=\frac{b*h}{2}[/tex]
Where (b) represents the base and (h) represents the height of the triangle. Substitute the given values into the formula and solve for the answer.
[tex]A_t=\frac{b*h}{2}[/tex]
[tex]A_t=\frac{9*7.5}{2}[/tex]
[tex]A_t=\frac{67.5}{2}[/tex]
[tex]A_t=33.75[/tex]
3. Find the area of the rectangle
The formula to find the area of a rectangle is the following,
[tex]A_r=b*h[/tex]
Substitute the given values in and solve,
[tex]A_r=b*h[/tex]
[tex]A_r=9*9[/tex]
[tex]A_r=81[/tex]
4. Find the total surface area
Multiply the area of the triangle by four to account for the fact that there are four triangles. Then add its area to the area of the rectangle.
[tex]A_t+A_t+A_t+A_t+A_r=A[/tex]
[tex]4(A_t)+(A_r)=A[/tex]
[tex]4*33.75+81=A[/tex]
[tex]135+81=A[/tex]
[tex]216=A[/tex]
A lab technician needs 35 ml of 15% base solution for a certain experiment,
but she has only 10% solution and 20% solution. How many milliliters of
the 10% and the 20% solutions should she mix to get what she needs?
Answer:
17.5ml- of 10 percent solution, 17.5ml- of 20 percent solution
Step-by-step explanation:
35:100*15=5.25- ml of alkali in the base solution
Suppose we need x ml of 10 percents solution and 35-x - of 20 percents.
Then The quantity of alkali in the first one (10 percents) is x/100*10=0.1x
when in the second one we have (35-x)/100*20= 7-0.2x of alkali
0.1x+7-0.2x=5.25
7-0.1x= 5.25
0.1x=1.75
x=17.5- 0f 10 percents
35-17.5=17.5 - of 20 percents
Find hyperbola equation. center (0,0) vertex (-2,0) focus (-5,0)
[tex] \frac{ {x}^{2} }{4} - \frac{ {y}^{2} }{21} = 1[/tex]
[tex] \frac{(x - h)^{2} }{ {a}^{2} } - \frac{(y - k) ^{2} }{ {b}^{2} } = 1 \\ [/tex]
a= (–2, 0) ; Center =(0,0)[tex]distance = \sqrt{(x2 - x1)^{2} + (y2 - y1) ^{2} } \\ a = \sqrt{(( - 2) - 0)^{2} + (0 - 0) ^{2} } \\ a = \sqrt{ {2}^{2} } \\ a = 2[/tex]C = (–5,0) ; Center =(0,0)[tex]distance = \sqrt{(x2 - x1) ^{2} + (y2 - y1) ^{2} } \\ c = \sqrt{(( - 5) - 0)^{2} + (0 - 0) ^{2} } \\ c = \sqrt{ {5}^{2} } \\ c = 5[/tex]
C²= a²+ b²(5)²= (2)² + b²b²= 25–4 —> b² = 21[tex]b = + \sqrt{21} , - \sqrt{21} [/tex]
[tex]m = \frac{y2 - y1}{x2 - x1} = \frac{0 - 0}{0 - ( -5 )} = 0[/tex]
[tex] \frac{(x - h)^{2} }{ {a}^{2} } - \frac{(y - k) ^{2} }{ {b}^{2} } = 1 \\ [/tex]
[tex]\frac{(x - 0)^{2} }{ {2}^{2} } - \frac{(y - 0) ^{2} }{ { \sqrt{2} }^{2} } = 1 \\ [/tex]
[tex] \frac{ {x}^{2} }{4} - \frac{ {y}^{2} }{21} = 1[/tex]
I hope I helped you^_^
A bank quotes an interest rate as 0.06341 annual effective yield. What interest rate, compounded monthly, will provide that
annual effective interest rate? Round your answer to five decimal places and do not round any intermediate calculations to
less than seven decimal places.
9514 1404 393
Answer:
0.06164
Step-by-step explanation:
The effective annual rate obtained by compounding nominal annual rate r monthly is ...
eff rate = (1 +r/12)^12 -1
Then the value of r is ...
r = 12×((eff rate) +1)^(1/12) -1)
For the given effective rate, that is ...
r = 12×(1.06341^(1/12) -1) ≈ 0.06164 . . . . nominal annual interest rate
Which best describes the process of selecting a cluster sample?
Clusters that each represent the population are sampled from such that no two members of the same cluster are included in the sample.
Members of a population are organized in clusters, each of which is representative of the population, and then whole clusters are randomly selected to make up the sample.
Members of a population are ordered by some characteristic, and then a cluster sample is formed by selecting every kth member.
Members of a population are separated into clusters based on a characteristic important to the study and a random sample is selected from each cluster.
Answer:
"Members of a population are organized in clusters, each of which is representative of the population, and then whole clusters are randomly selected to make up the sample"
Step-by-step explanation:
In cluster random sampling, "the population is divided, usually geographically, into groups that generally have the same size. A certain number of groups are randomly chosen, and every individual in the chosen groups are chosen for the sample."
In accord with this logic, the second choice, "Members of a population are organized in clusters, each of which is representative of the population, and then whole clusters are randomly selected to make up the sample" seems to be correct.
NOTE: This may not be the correct answer. I am simply basing my answer on the definition I have learnt.
Answer:
B
Step-by-step explanation:
If an angle of a right angle triangle is 81 find the remaining angle in grades
Answer:
9
Step-by-step explanation:
90+81+mising angle=180, missing angle is 9
Translate the sentence into an equation.
Four times the sum of a number and 7 equals 3
Answer:
[tex]4(x+7)=3[/tex]
Step-by-step explanation:
Since the sum is being multiplied 4 different times, it's best to write the equation of the sum and the number 4 being in the outside. and since it's saying it equals 3, just add the equal sign
Hope this helps!
- doomdabomb
Help please and thank you!!!!!
9514 1404 393
Answer:
a) 2 and 4; b) 1&2, 2&3, 3&4x = 16Step-by-step explanation:
1a. Vertical angles share a vertex and are composed of opposite rays. Here, angles 2 and 4 are vertical angles.
1b. Consecutively numbered angles are adjacent, as are angles 1 and 5. The pairs of interest can be chosen from ...
1&2, 2&3, 3&4, 4&5, 5&1
__
2. Angles 1 and 3 have the same measure, because they are vertical angles. Then we have ...
78° = (5x -2)°
80 = 5x . . . . . . . divide by °, add 2
16 = x . . . . . . . divide by 5
If f(x)=logx, show that f(x+h)-f(x)/h=log[1+h/x]^1/h, h=/=0 (Picture attached, thank you!)
Answer:
Step by step proof shown below.
Step-by-step explanation:
To prove the equation, you need to apply the Logarithm quotient rule and the Logarithm power rule. Here's how the quotient rule looks like.
[tex]log_b(x/y) = log_b(x) - log_b(y)[/tex]
And here's how the power rule looks like
[tex]log_a(x)^n = nlog_a(x)[/tex]
First let's apply the quotient rule.
[tex]\frac{f(x+h)-f(x)}{h} = \frac{log_a(x+h)-log_a(x) }{h} = \frac{log_a(\frac{x+h}{x} )}{h}[/tex]
Now we can do some quick simplification, and apply the power rule.
[tex]\frac{1}{h} log_a(1 + \frac{h}{x} ) = log_a(1+\frac{h}{x} )^\frac{1}{h}[/tex]
sold 72 books, if ratio of books to bookmarks sols was 9:2, how many bookmarks sold?
16 book marks has been sold
Answer:
16 bookmarks
Step-by-step explanation:
9/72 = 2/x
72/9 = 8
2 x 8 = 16
hope this helps
Which of the following choices is equivalent to -6x > -42?
Answer:
Where is the rest?
Step-by-step explanation:
%7"7:7;9
Tìm vi phân toàn phần của các hàm số sau:
ln(x+√(x^2+y^2 ) ) ln(sin(y/x))
Let f = ln(x + √(x ² + y ²)) ln(sin(y/x)).
Then the total differential is
[tex]\mathrm df = \dfrac{\mathrm d\left(x+\sqrt{x^2+y^2}\right)}{x+\sqrt{x^2+y^2}}\ln\left(\sin\left(\dfrac yx\right)\right) + \ln\left(x+\sqrt{x^2+y^2}\right)\dfrac{\mathrm d\left(\sin\left(\frac yx\right)\right)}{\sin\left(\frac yx\right)}[/tex]
[tex]\mathrm df = \dfrac{\mathrm dx + \frac{\mathrm d(x^2+y^2)}{\sqrt{x^2+y^2}}}{x+\sqrt{x^2+y^2}}\ln\left(\sin\left(\dfrac yx\right)\right) + \ln\left(x+\sqrt{x^2+y^2}\right)\dfrac{\cos\left(\frac yx\right)\,\mathrm d\left(\frac yx\right)}{\sin\left(\frac yx\right)}[/tex]
[tex]\mathrm df = \dfrac{\mathrm dx + \frac{2x\,\mathrm dx+2y\,\mathrm dy}{\sqrt{x^2+y^2}}}{x+\sqrt{x^2+y^2}\right)\ln\left(\sin\left(\dfrac yx\right)\right) + \ln\left(x+\sqrt{x^2+y^2}}\right)\dfrac{\cos\left(\frac yx\right)\frac{x\,\mathrm dy-y\,\mathrm dx}{x^2}}{\sin\left(\frac yx\right)}[/tex]
[tex]\mathrm df = \dfrac{\left(2x+\sqrt{x^2+y^2}\right)\,\mathrm dx +2y\,\mathrm dy}{x\sqrt{x^2+y^2}+x^2+y^2\right)\ln\left(\sin\left(\dfrac yx\right)\right) \\\\ \indent + \dfrac1{x^2}\cot\left(\dfrac yx\right)\ln\left(x+\sqrt{x^2+y^2}}\right)(x\,\mathrm dy-y\,\mathrm dx)[/tex]
[tex]\mathrm df = \left(\left(\dfrac{2x+\sqrt{x^2+y^2}}{x\sqrt{x^2+y^2}+x^2+y^2}\right)\ln\left(\sin\left(\dfrac yx\right)\right) - \dfrac y{x^2}\cot\left(\dfrac yx\right)\ln\left(x+\sqrt{x^2+y^2}\right)\right)\,\mathrm dx \\\\ \indent + \left(\dfrac{2y}{x\sqrt{x^2+y^2}+x^2+y^2}\ln\left(\sin\left(\dfrac yx\right)\right)+\dfrac1x\cot\left(\dfrac yx\right)\ln\left(x+\sqrt{x^2+y^2}\right)\right)\,\mathrm dy[/tex]
What is $124,503 rounded to the nearest thousand?
Answer:
124,503 round to 125,000
Step-by-step explanation:
4 is in the thousands place
We look at the hundreds place
5 is in the hundreds place. Since 5 is 5 or greater, we round the 4 up
124,503 round to 125,000
Find the measure of the missing angles.
Answer:
Step-by-step explanation:
e = 61°, f = 119°, and d = 90°
We know that vertically opposite angles are equal.
So, e = 61° [Vertically opposite angles]
We know that linear pair of angles are supplementary (180°).
So, f + 61° = 180° [Linear pair of angles]
=> f = 180° - 61°
=> f = 119°
and d + 90° = 180° [Linear pair of angles]
=> d = 180° - 90°
=> d = 90°
25(0.3x-4)-5(1.5x-6)+100(13/4) simplify the following expression and evaluate for x=0.345
Answer:
255
Step-by-step explanation:
Given :
Simplify the expression :
25(0.3x-4)-5(1.5x-6)+100(13/4)
Open each Bracket:
7.5x - 100 - 7.5x + 30 + 325
7.5x - 7.5x - 100 + 30 + 325
= 255
The simplified equation = 255
Use the differential to approximate the expression. Then use a calculator to approximate the quantity, and give the absolute value of the difference in the two results to four decimal places.
√
53
9514 1404 393
Answer:
0.0056
Step-by-step explanation:
f(x) = √(49 +x)
f'(x) = 1/(2√(49 +x))
A linear approximation of f(x) expanded about x=0 is ...
f(x) ≈ f(0) + f'(0)x = 7 +x/(2·7)
Then for √53, we have x=4
f(4) ≈ 7 +4/14 = 7 2/7 . . . . . approximate √53 using differentials
__
The calculator value of √53 is about 7.280110, so the difference in results is ...
approx - actual ≈ 7.285714 -7.280110 = 0.005604 ≈ 0.0056