Answer:
6.28 m
Step-by-step explanation:
If a wheel travels with one full revolution, it would have travelled the circumference's distance from it's starting point.
The circumference of a circle is [tex]2\pi r[/tex]
Let's assume [tex]\pi[/tex] is 3.14 and solve for the equation.
[tex]2\cdot3.14\cdot1\\6.28[/tex]
Hope this helped!
The table shows the results of a survey in which 10th-grade students were asked how many siblings (brothers and/or sisters) they have. A 2-column table has 4 rows. The first column is labeled Number of siblings with entries 0, 1, 2, 3. The second column is labeled number of students with entries 4, 18, 10, 8. What is the experimental probability that a 10th-grade student chosen at random has at least one, but no more than two, siblings? Round to the nearest whole percent. 65% 70% 75% 80%
Answer:
70%
Step-by-step explanation:
Given
Number of Siblings: || 0 || 1 || 2 || 3
Number of Students: || 4 || 18 || 10 || 8
Required
Determine the probability of a student having at least one but not more than 2 siblings
First, we have to determine the total number of 10th grade students
[tex]Total = 4 + 18 + 10 + 8[/tex]
[tex]Total = 40[/tex]
The probability of a student having at least one but not more than 2 siblings = P(1) + P(2)
Solving for P(1)
P(1) = number of students with 1 sibling / total number of students
From the given parameters, we have that:
Number of students with 1 sibling = 18
So:
[tex]P(1) = \frac{18}{40}[/tex]
Solving for P(2)
P(2) = number of students with 2 siblings / total number of students
From the given parameters, we have that:
Number of students with 2 siblings = 10
So:
[tex]P(2) = \frac{10}{40}[/tex]
[tex]P(1) + P(2) = \frac{18}{40} + \frac{10}{40}[/tex]
Take LCM
[tex]P(1) + P(2) = \frac{18 + 10}{40}[/tex]
[tex]P(1) + P(2) = \frac{28}{40}[/tex]
Divide numerator and denominator by 4
[tex]P(1) + P(2) = \frac{7}{10}[/tex]
[tex]P(1) + P(2) = 0.7[/tex]
Convert to percentage
[tex]P(1) + P(2) = 70\%[/tex]
Hence, the required probability is 70%
Answer:
Step-by-step explanation:
bB
In recent years, the interest rates on home mortgages have declined to less than 6%. However, a
recent study shows that the rate charged on credit card debt is more than 14%. A sample of 10 credit
cards showed that the mean rate charged is 15.64% with a standard deviation of 1.561%. At 1% level
of significance, is it reasonable to conclude the mean rate charged is greater than 14%?
Answer:
Yes it is reasonable to conclude the mean rate charged is greater than 14%
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 0.14[/tex]
The sample size is [tex]n = 10[/tex]
The sample mean is [tex]\= x = 0.1564[/tex]
The standard deviation is [tex]\sigma = 0.01561[/tex]
The level of significance is [tex]\alpha = 0.01[/tex]
The null hypothesis is [tex]H_o: \mu = 0.14[/tex]
The alternative hypothesis is [tex]H_a : \mu > 0.14[/tex]
Generally the test statistic is mathematically represented as
[tex]t = \frac{ \= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 0.1564 - 0.14 }{ \frac{0.01561 }{\sqrt{10} } }[/tex]
[tex]t = 3.322[/tex]
Now the p-value obtained from the z-table is
[tex]p-value = P(t > 3.322) = 0.00044687[/tex]
Since the [tex]p-value < \alpha[/tex] then we reject the null hypothesis, hence we can conclude that the mean rate charged is greater than 14%
If I chose a number uniformly from the integers from 1 to 25, calculate the conditional probability that the number is a multiple of 6 (including 6) given that it is larger than 18.
Answer:
1/7Step-by-step explanation:
If I choose a number from the integers 1 to 25, the total number of integers I can pick is the total outcome which is 25. n(U) = 25
Let the probability that the number chosen at random is a multiple of 6 be P(A) and the probability that the number chosen at random is is larger than 18 be P(B)
P(A) = P(multiple of 6)
P(B) = P(number larger than 18)
A = {6, 12, 18, 24}
B = {19, 20, 21, 22, 23, 24, 25}
The conditional probability that the number is a multiple of 6 (including 6) given that it is larger than 18 is expressed as P(A|B).
P(A|B) = P(A∩B)/P(B)
Since probability = expected outcome/total outcome
A∩B = {24}
n(A∩B) = 1
P(A∩B) = n(A∩B)/n(U)
P(A∩B) = 1/25
Given B = {19, 20, 21, 22, 23, 24, 25}.
n(B) = 7
p(B) = n(B)/n(U)
p(B) = 7/25
Since P(A|B) = P(A∩B)/P(B)
P(A|B) = (1/25)/(7/24)
P(A|B) = 1/25*25/7
P(A|B) = 1/7
Hence the conditional probability that the number is a multiple of 6 (including 6) given that it is larger than 18 is 1/7
83=4k-7(1+7k) How to solve
Answer:
k = -2
Step-by-step explanation:
83=4k-7(1+7k)
Distribute
83=4k-7-49k
Combine like terms
83 = -45k -7
Add 7 to each side
83+7 = -45k-7+7
90 = -45k
Divide each side by -45
90/-45 = -45k/-45
-2 = k
Answer:
k = -2Step-by-step explanation:
Step 1: Use 7 to open the bracket :
-7(1+7k)=-7-49k
Step 2: Collect like terms
Step 3 : Divide both sides of the equation by -45
[tex]83=4k-7(1+7k) \\ \\83 = 4k-7-49k\\\\ 83+7=4k-49k\\\\90 = -45k\\\\\frac{90}{-45} = \frac{-45k}{-45} \\\\k = -2[/tex]
Aiko and Kendra arrive at the Texas
State Fair with $60. What is the total
number of rides they can go on if
they each pay the entrance fee of
$17 and rides cost $3 each?
Answer:
They can go on 14 rides the maximum.
Step-by-step explanation:
First, you have to set up the equation. Basically, Aiko and Kendra only carry $60 with them. They cannot go over that limit. Furthermore, the entrance free is $17. Each ride is $3.
(x = the amount of rides)
17 + 3x ≤ 60
17 represents the entrance fee which only has to be paid one time. 3x represents the cost of each ride (x equals to the amount of rides).
Now you solve.
Isolate the variable, which is 3x.
3x ≤ 60 - 17
3x ≤ 43
Now, divide 43 by 3 to find the value of x.
x ≤ 43 ÷ 3
x ≤ 14.3333333333
They can go on a max of 14 rides. Anymore, and they will go over budget. Normally, with problems like this one, if you have a decimal, you should round down unless your instructor says otherwise.
After all, who would you be able to go on a third of a ride? It isn't possible, so generally, they just have you round down.
If you conducting a test for statistical study and you got outcome with the likelihood of 0.005. Please evaluate outcome.
Here is the complete question:
a. Statistically significant at 0.01
b. Not statistically significant
Answer:
The test is significant
Step-by-step explanation:
When a p value is smaller than or less than alpha we say it is statistically significant.
We are testing the p value or likelihood of 0005 against a significant level of 0.01
P value = 0.005 < 0.01
0.005 is less than 0.01 which shows the test to be significant.
The decision rule would be to reject the null hypothesis and say the result is statistically significant.
Hey guys! I have this problem and I dont really understand how to solve it, could you guys help me? :' )
Answer:
Step-by-step explanation:
Answer:
-7
Step-by-step explanation:
Diane has a rectangular poster that is 20 centimeters long and 15 centimeters wide. What is the area of the poster in square meters? Do not round your answer. Be sure to include the correct unit in your answer.
Answer:
0.03 square meters
Step-by-step explanation:
1. convert 20 cm, 15 cm into m by dividing the number by 100 then you got 0.2 m and 0.15 m respectively
2. calculate the area by multiply 2 numbers together
0.2 × 0.15 = 0.03 square meter
HELP ASAP HELP ASAP HELP ASAP HELP ASAP HELP ASAP HELP ASAP HELP ASAP HELP ASAP HELP ASAP
Answer:
Segment LM Corresponds to RQ
Segment R corresponds to angle M
Answer:
Step-by-step explanation:
six hundred men,six hundred men with big mouths to feed
There are 8 books needing re-shelving in a library where 65% of the library's collection consists of reference books. Let X be the number of reference books a student helper re-shelves out of the 8 on her cart. a) What is the probability that all 8 of them are reference books
Answer:
0.0319
Step-by-step explanation:
To approximate this probability, we shall be using the Bernoulli approximation of the Binomial distribution.
Let p = probability of selecting a reference book = 65% = 0.65
Let q = probability of selecting other books= 1-p = 1-0.65 = 0.35
Now, we want to find the probability that all of these 8 books to be re-shelved are reference book.
We set up the probability as follows;
P(X = 8) = 8C8 •p^8•q^0
P(X = 8) = 1 * (0.65)^8 * (0.35)^0
P(X = 8) = 0.031864481289 which is 0.0319 to 4 decimal places
how do you figure out ratios? the problem is 12 quarters to 34 dollars. thanks
Step-by-step explanation:
When you have a ratio, you put one number as the numerator and than one number as the denominator.
so it would be (12/34)=(x/68)
In this example I made the ratio you are comparing it to have 68 dollars, so when you solve for the amount of quarters you need it should be 24, since all of the numbers in this example are just being doubled.
To solve for x, you multiply 68 on both sides of the equation, 68×(12/34)=x
24=x
So this proves that this is how ratios, are used. It also does not matter what number you place on the numerator or denominator.
Solve for X: 1+1*12/80-2+3=56x
Answer:
NOT SURE
Step-by-step explanation:
WILL GIVE BRAINILY 5 STARS AND THANKS FOR CORRECT ANSWERLenora wants to buy granola bars for her hiking trip. Eight bars cost $2.40. She wants to buy 12 bars. How much will 12 bars cost?
Answer:
$3.60
Step-by-step explanation:
2.40/8=.30
$.30 per bar
.3 x 12= $3.60
Answer:
$3.60
Step-by-step explanation:
Proportions
8 bars ⇔ $2.4
12 bars ⇔ $W
W = 12*2.4/8
W = $3.6
Name one real-world object that suggests A. Points B. Lines and C. Planes
There are many examples to pick from, one is
point = location on map
line = straight road between two locations (aka two points)
plane = flat ground (the ground cannot have any hills or valleys)
First, let's write some useful definitions:
Point: it is an entity that has a location in a given space or plane, and do not have any surface nor measure.
Line: if we have two points, we can define a line as a straight, infinite ray that connects them. Still does not have a surface
Plane: We can define a plane as a line and a point outside of it, here appears the concept of the surface.
So, the easier one is a plane, a sheet of paper could be a good representation of a plane. And in the same way that a sheet of paper can bend in different ways, also do the planes.
For the line, we could use a really straight wire.
Finally, the point, which is the hardest one to describe (notice that we used points to describe the other two, lines, and planes) so here we could choose something small, that has near to no surface and that also has a location in the space. An example of this could be an electron or any other elemental particle.
If you want to learn more, you can read:
https://brainly.com/question/17213603
The range of values for x?
Answer:
x = 32
but
I would say anything from 30 to 33
but truly i have no clue about the range
Step-by-step explanation:
3x-9=87 (because 180 -93 =87)
3x = 96
x = 32
Answer:
it is 32
Step-by-step explanation:
find the range. 83, 71, 62, 86, 90, 95, 61, 60, 87, 72, 95, 74, 82, 54, 99, 62, 78, 76, 84, 92
Answer: 45
Step-by-step explanation: The range is the difference between the greatest number in the data set and the least number in the data set which in this case is 99 - 54 or 45. So the range of this data set is 45.
Answer:
[tex] \boxed{45}[/tex]Step-by-step explanation:
Given data:
83 , 71 , 62 , 86 , 90 , 95 , 61 , 60 , 87 , 72 , 95 , 74 , 82 , 54 , 99 , 62 , 78 , 76 , 84 , 92
largest value = 99
Smallest value = 54
Let's find the range:
Range = Largest value - smallest value
= 99 - 54
= 45
Extra information:
Range
It is the simple method of measuring the variations. A range is defined as the difference between the largest and the smallest value of distribution. If the data are arranged in ascending or descending order, then the difference between the largest and smallest value is called the range.
The range is defined by
Range = Largest value - smallest value i.e ( highest value - lowest value )
= L - S
Range is the absolute measure of dispersion = L - S
Thus, if a₁ , a₂ , a₃ ...............aₙ are n term in a sequence arranged in ascending order, the range is given by
R = aₙ - a₁ where a₁ is the smallest value and aₙ is the highest value or R = L - S , where L is the largest value and S is the smallest value.
Hope I helped!
Best regards!
SOMEONE PLEASE HELP.............
Select the type of equations.
consistent
equivalent
inconsistent
Answer:
this is an inconsistent because no solutions
A multiple regression model involves 5 independent variables and a sample of 10 data points. If we want to test the validity of the model at the 5% significance level, the critical value is:
Answer:
The critical value is 6.26.
Step-by-step explanation:
It is provided that there are 5 independent variables involved in a multiple regression model and the sample consist of 10 data points.
The critical value of F to test the significance of the model is:
[tex]\text{Critical Value}=F_{\alpha, (k, n-k-1)}[/tex]
Here,
k = number of independent variables
n = number of observations.
Then the critical value is:
[tex]\text{Critical Value}=F_{\alpha, (k, n-k-1)}[/tex]
[tex]=F_{\alpha, (5, 10-5-1)}\\=F_{0.05,(5, 4)}\\=6.2561\\\approx 6.26[/tex]
*Use a F-table.
Thus, the critical value is 6.26.
A sport jacket is on sale for 35% off, if the originsl price is $140, what is the sale price?
Answer:
$91
Step-by-step explanation:
If a jacket is on sale for 35% off, that means that the price of the jacket is [tex]100-35=65[/tex]% of its original price.
We can find 65% of 140 by making 65% into a decimal - 0.65, then multiply it by 140.
[tex]140\cdot0.65=91[/tex]
Hope this helped!
Answer:
$91.00
Step-by-step explanation:
The jacket is on sale for 35%. Usually, you pay for 100% of the jacket's price. Since it is on sale, we can subtract 35% from 100%.
100%-35%=65%
With the sale, you only pay for 65% of the price.
Now, we can multiply 65% and 140.
65% * 140
Convert 65% to a decimal. Divide 65 by 100 or move the decimal place 2 spots to the left.
65/100=0.65
65.0 --> 6.5 --> 0.65
0.65 * 140
Multiply
91
$91
The sale price for the sports jacket is $91.00
Adam’s house is 2 centimeters from Juan’s house on a map. If each centimeter on the map represents 6 kilometers, how far apart are the two houses?
Answer:
Since 1 cm represents 6 km
2 cm will represent 12 km
Hence Adam's house is 12 km away
Answer:
The answer is C. 3
Step-by-step explanation:
If u divide 6 divided by 2 it will get you 3
i also got it right bc i took the quiz.
Mark each of the following as true or false and explain how you know.
true false false true...is the quick answer
Remember that negatives are always less than positive numbers.
Which statement about the angle measures is true?
m_BAC + m2 ACB 85
m.BAC MACB 95
95°
m..BACA BC 85
m. BACIMBC 95
B
Answer:
Option (4)
Step-by-step explanation:
By the property of exterior angle of a triangle,
"Exterior angle of a triangle is equal to the sum of two opposite interior angles."
In the triangle ABC,
∠ACD is an exterior angle and ∠BAC and ∠ABC are the opposite interior angles.
m∠ACD = m∠BAC + m∠ABC
95° = m∠BAC + m∠ABC
Therefore, Option (4) will be the correct option.
It is advertised that the average braking distance for a small car traveling at 65 miles per hour equals 122 feet. A transportation researcher wants to determine if the statement made in the advertisement is false. She randomly test drives 38 small cars at 65 miles per hour and records the braking distance. The sample average braking distance is computed as 116 feet. Assume that the population standard deviation is 21 feet. (You may find it useful to reference the appropriate table: z table or t table) a. State the null and the alternative hypotheses for the test.
Complete Question
The complete question is shown on the first uploaded image
Answer:
the null hypothesis is [tex]H_o : \mu = 122[/tex]
the alternative hypothesis is [tex]H_a : \mu \ne 122[/tex]
The test statistics is [tex]t = - 1.761[/tex]
The p-value is [tex]p = P(Z < t ) = 0.039119[/tex]
so
[tex]p \ge 0.01[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 122[/tex]
The sample size is n= 38
The sample mean is [tex]\= x = 116 \ feet[/tex]
The standard deviation is [tex]\sigma = 21[/tex]
Generally the null hypothesis is [tex]H_o : \mu = 122[/tex]
the alternative hypothesis is [tex]H_a : \mu \ne 122[/tex]
Generally the test statistics is mathematically evaluated as
[tex]t = \frac { \= x - \mu }{\frac{ \sigma }{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac { 116 - 122 }{\frac{ 21 }{ \sqrt{ 38} } }[/tex]
[tex]t = - 1.761[/tex]
The p-value is mathematically represented as
[tex]p = P(Z < t )[/tex]
From the z- table
[tex]p = P(Z < t ) = 0.039119[/tex]
So
[tex]p \ge 0.01[/tex]
Help and show work plz
Answer:
30
Step-by-step explanation:
If we have 4 integers that have an average of 9, then all the numbers will add up to [tex]9\cdot4=36[/tex].
If we want the greatest number possible, the other 3 need to be the lowest possible.
Since they are all different, the lowest possible values of the first 3 numbers are 1, 2, and 3.
[tex]1 + 2 + 3 = 6[/tex]
[tex]36 - 6 = 30[/tex]
So 30 is the greatest value of one of the integers.
Hope this helped!
How do I solve these equations:
sin(2θ) + sin θ = 0
sin(2θ) = sqrt 3 cos θ
for intervals 0=< θ < 2pi
Answer:
Step-by-step explanation:
Given that
sin(2θ)+sinθ=0
We know that
sin(2θ)=2 sinθ x cosθ
Therefore
2 sinθ x cosθ + sinθ=0
sinθ(2 cosθ+1)=0
sinθ= 0
θ=0
2 cosθ+1=0
cosθ= - 1/2
θ=120°
_______________________________________________________
[tex]sin 2\theta=\sqrt{3cos\theta}[/tex]
By squaring both sides
[tex]sin^2 2\theta={3cos\theta}[/tex]
4 sin²θ x cos²θ=3 cosθ
4 sin²θ x cos²θ - 3 cosθ=0
cos θ = 0
θ= 90°
4 sin²θ=3
θ=60°
Solve 45 - [4 - 2y - 4(y + 7)] = -4(1 + 3y) - [4 - 3(y + 2) - 2(2y -5)] (make sure to type the number only - rounded to the tenth)
Answer:
Rounded: -5.5
Step-by-step explanation:
Work above :)
Find the equation with the given slope through the given point. Write the equation in the given form AX+BY=C m=1/9 (-6,2)
Answer:
x - 3y = 12
Step-by-step explanation:
Find the point-slope form of this equation and then convert the point-slope form into standard form (ax + by = c):
y - k = m(x - h) becomes y - 2 = (1/9)(x + 6).
Multiplying all three terms by 9 removes the fraction:
3y - 6 = x + 6, or x - 3y = 12
A methods and measurements analyst for Timepiece, Inc., needs to develop a time standard for the task of attaching a watch to a wristband. How many observations should be made if he wants to be 95.44 percent confident that the maximum error in the observed time is one second
In a preliminary study, he observed one of his workers perform this task five times, with the following results:
Observation: Time (secs):
1 27
2 19
3 20
4 21
5 13
Answer:
100 Observations
Step-by-step explanation:
Z value = 2 (due to confidence percentage of 95.44)
S = 5
A = 1
N equals to square of (ZxS/A)
N = (ZxS/A)^2
N = (2x5/1)^2
N = 10^2 = 100
NEED ASAP I WILL GIVE BRAINLEYEST What is the value of the expression 22 + 82 ÷ 22? 8 10 17 20
Answer:
Exact Form:
283 /11
Decimal Form:
25. 72
Mixed Number Form:
25 8 /11
Step-by-step explanation:
Answer:
17
Step-by-step explanation:
musah stands at the center of a rectangular field . He first takes 50 steps north, then 25 step west and finally 50 steps on a bearing of 315°. How far west and how far north is Musah final point from the center?
Answer:
85.36 far north from the center
10.36 far east from the center
Step-by-step explanation:
The extra direction taken in the north side is x
X/sin(360-315)=50/sin 90
Sin 90= 1
X/sin 45= 50
X= sin45 *50
X= 0.7071*50
X= 35.355 steps
X= 35.36
Then the west direction traveled
West =√(50² - 35.355²)
West = √(2500-1249.6225)
West= √1250.3775
West= 35.36 steps
But this was taken in an opposite west direction
From the center
He is 35.36 +50
= 85.36 far north from the center
And
25-35.36=-10.36
10.36 far east from the center