Answer:
1.79 T
Explanation:
Applying,
F = BILsin∅................ Equation 1
Where F = Force, B = magnetic field, I = current flowing through the wire, L = length of the wire, ∅ = angle between the magntic field and the force
make B the subject of the equation
B = F/ILsin∅............. Equation 2
From the question,
Given: F = 2.15 N, I = 30 A, L = 4.00 cm = 0.04 m, ∅ = 90° (perpendicular to the field)
Substitute these values into equation 2
B = 2.15/(30×0.04×sin90°)
B = 2.15/1.2
B = 1.79 T
Hence the average field strength is 1.79 T
A wire carrying a 23.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's field, and there is a 2.45 N force on the 3.00 cm of wire in the field. What is the average field strength (in T) between the poles of the magnet?
Answer:
3.55 T
Explanation:
Applying,
F = BILsin∅.............. Equation 1
Where F = Force, B = magnetic Field, I = current, L = Length of the wire, ∅ = Angle between the wire and the magnetic field
make B the subject of the equation
B = F/ILsin∅.................. Equation 2
From the question,
Given: F = 2.45 N, L = 3.00 cm = 0.03 m, I = 23.0 A, ∅ = 90° (Perpendicular)
Substitute these values into equation 2
B = 2.45/(0.03×23×sin90)
B = 2.45/0.69
B = 3.55 T
A 1030 kg car has four 12.0 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles
Answer:
The required fraction is 0.023.
Explanation:
Given that
Mass of a car, m = 1030 kg
Mass of 4 wheels = 12 kg
We need to find the fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles.
The rotational kinetic energy due to four wheel is
[tex]=4\times \dfrac{1}{2}I\omega^2\\\\=4\times \dfrac{1}{2}\times \dfrac{1}{2}mR^2(\dfrac{v}{R})^2\\\\=mv^2[/tex]
Linear kinetic Energy of the car is:
[tex]=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times Mv^2[/tex]
Fraction,
[tex]f=\dfrac{mv^2}{\dfrac{1}{2}Mv^2}\\\\f=\dfrac{m}{\dfrac{1}{2}M}\\\\f=\dfrac{12}{\dfrac{1}{2}\times 1030}\\\\=0.023[/tex]
So, the required fraction is 0.023.
Two distinct systems have the same amount of stored internal energy. 500 J are added by heat to the first system and 300 J are added by heat to the second system. What will be the change in internal energy of the first system if it does 200 J of work? How much work will the second system have to do in order to have the same internal energy?
Answer:
The change in the internal energy of the first system is 300 J
The second system will do zero work in order to have the same internal energy.
Explanation:
Given;
heat added to the first system, Q₁ = 500 J
heat added to the second system, Q₂ = 300 J
work done by the first system, W₁ = 200 J
The change in the internal energy of the system is given by the first law of thermodynamics;
ΔU = Q - W
where;
ΔU is the change in internal energy of the system
The change in the internal energy of the first system is calculated as;
ΔU₁ = Q₁ - W₁
ΔU₁ = 500 J - 200 J
ΔU₁ = = 300 J
The work done by the second system to have the same internal energy with the first.
ΔU₁ = Q₂ - W₂
W₂ = Q₂ - ΔU₁
W₂ = 300 J - 300 J
W₂ = 0
The second system will do zero work in order to have the same internal energy.
You throw a Frisbee of mass m and radius r so that it is spinning about a horizontal axis perpendicular to the plane of the Frisbee. Ignoring air resistance, the torque exerted about its center of mass by gravity is: __________
a. 0.
b. mgr
c. 2mgr
d. a function of the angular velocity.
e. small at first, then increasing as the Frisbee loses the torque given it by your hand.
Answer:
the correct answer is a
Explanation:
The torque is
τ = F x r
where the bold letters indicate vectors, in this case the vector of the center of mass is perpendicular to the weight of the body
τ = mg r
in body weight it is applied at the point of the center of mass, therefore as the distance of the force from the axis of rotation (center of amas) is zero, the die is zero
the correct answer is a
Calculate the buoyant force due to the surrounding air on a man weighing 600 N . Assume his average density is the same as that of water. Suppose that the density of air is 1.20 kg/m3.
Answer:
[tex]F_b= 0.720 N[/tex]
Explanation:
From the question we are told that:
Weight [tex]W=600N[/tex]
Average density [tex]\rho=1.20kg/m^3[/tex]
Mass
[tex]m=\frac{W}{g}[/tex]
[tex]m=\frac{600}{9.81}[/tex]
[tex]m=61.22kg[/tex]
Generally the equation for Volume is mathematically given by
[tex]V =\frac{ mass}{density}[/tex]
[tex]V= \frac{61.22}{1000}[/tex]
[tex]V=0.06122 m^3[/tex]
Therefore
Buoyant force [tex]F_b[/tex]
[tex]F_b=\rho*V*g[/tex]
[tex]F_b= rho_air*V*g[/tex]
[tex]F_b= 0.720 N[/tex]
What would you expect to happen to the velocity of the bobber if the mass of the washers in the cylinder remained the same and the radius was doubled?
Answer:
The velocity becomes [tex]v\sqrt 2[/tex].
Explanation:
The force acting on the bobber is centripetal force.
The centripetal force is given by
[tex]F =\frac{mv^2}{r}[/tex]
when mass remains same, radius is doubled and the force is same, so the velocity is v'.
[tex]F =\frac{mv^2}{r}=\frac{mv'^2}{2r}\\\\v'=v\sqrt 2[/tex]
Can an electron be diffracted? Can it exhibit interference?
Answer:
Yeah, it can be diffracted. Though it depends on a diffracting medium.
It must have some magnetic fields .
Forexample; X-ray diffraction where electrons are diffracted to the target filament.
What is the meant of by renewable energy and non-renewrable with example of each.
Answer:
Renewable energy is a type of energy that can be renewed easily, such as sunlight. By using Solar panels to collect the suns energy, we are not depleting it, so this source is renewable.
Non-renewable energy is something that cannot easily be replenished. An example would be oil because oil takes millions of years to form and cannot be renewed easily.
A bird has a kinetic energy of 3 J and a potential energy of 25 J. What is the mechanical energy of the bird?
Answer:
28 j
Explanation:
because when you add you get 28
Why must scientists be careful when studying
nanotechnology?
Answer:
When studying nanotechnology, scientists must be aware that their ideas may not work out. Their work could be very time consuming and cost a lot of money. Finally, scientists do not yet know all of the effects of nanotechnology on human health.
Hope it helps u:)
The distance between the two object is fixed at 5.0 m. The uncertainty distance measurement is? The percentage error in the distance is?
A stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy … (use g = 10 m/s 2)
A) at the moment of impact.
B) 2 seconds after the stone is released.
C) after the stone has fallen 40 m.
D) when the stone is moving at 20 m/s.
At the moment of impact both Kinetic Energy and Potential Energy should be 0, right? So it can't be A), right? Or is this wrong? Is it indeed A)? Please show work and explain it well.
Answer:
Explanation:
The answer is C because the building is 80 meters high. Before the stone is dropped, it has ONLY potential energy since kinetic energy involves velocity and a still stone has no velocity. At impact, there is no potential energy because potential energy involves the height of the stone relative to the ground and a stone ON the ground has no height; here there is ONLY kinetic.
From the First Law of Thermodynamics, we know that energy cannot be created or destroyed, it can only change form. Therefore, that means that at the halfway point of 40 meters, half of the stone's potential energy has been lost, and it has been lost to kinetic energy. Here, at 40 meters, there is an equality between PE and KE. It only last for however long the stone is AT 40 meters, which is probably a millisecond of time, but that's where they are equal.
A car travelling at 14.0 m/s approaches a traffic light. The driver applies the brakes and is able to come to halt in 5.6 s. Determine the average acceleration of the car during this time interval.
Answer:
[tex]a=2.5\ m/s^2[/tex]
Explanation:
Given that,
Initial speed of the car, u = 14 m/s
Finally, it comes to rest, v = 0
Time, t = 5.6 s
We need to find the average acceleration of the car during this time interval. We know that,
[tex]a=\dfrac{v-u}{t}\\\\a=\dfrac{0-14}{5.6}\\\\a=-2.5\ m/s^2[/tex]
So, the acceleration of the car is [tex]2.5\ m/s^2[/tex] in the opposite direction of motion.
The pan flute is a musical instrument consisting of a number of closed-end tubes of different lengths. When the musician blows over the open ends, each tube plays a different note. The longest pipe is 0.31 m long.
What is the frequency of the note it plays? Assume room temperature of 20∘C.
Answer:
f = 276.6 Hz
Explanation:
This musical instrument can be approximated to a tube system where each tube has one end open and the other closed.
In the closed part there is a node and in the open part a belly or antinode. Therefore the wavelength is
L = λ/ 4
speed is related to wavelength and frequency
v = λ f
λ = v / f
we substitute
L = v / 4f
f = v / 4L
the speed of sound at 20ºC is
v = 343 m / s
let's calculate
f = [tex]\frac{343 }{4 \ 0.31}[/tex]
f = 276.6 Hz
An ideal parallel plate capacitor with a cross-sectional area of 0.4 cm2 contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2 x 108 V/m. The separation between the plates of the capacitor is 5 mm. What is the maximum electric charge (in nC) that can be stored in the capacitor before dielectric breakdown
Answer: [tex]283.2\times 10^{-9}\ nC[/tex]
Explanation:
Given
Cross-sectional area [tex]A=0.4\ cm^2[/tex]
Dielectric constant [tex]k=4[/tex]
Dielectric strength [tex]E=2\times 10^8\ V/m[/tex]
Distance between capacitors [tex]d=5\ mm[/tex]
Maximum charge that can be stored before dielectric breakdown is given by
[tex]\Rightarrow Q=CV\\\\\Rightarrow Q=\dfrac{k\epsilon_oA}{d}\cdot (Ed)\quad\quad [V=E\cdot d]\\\\\Rightarrow Q=k\epsilon_oAE\\\\\Rightarrow Q=4\times 8.85\times 10^{-12}\times 0.4\times 10^{-4}\times 2\times 10^8\\\\\Rightarrow Q=28.32\times 10^{-8}\\\\\Rightarrow Q=283.2\times 10^{-9}\ nC[/tex]
Answer:
The maximum charge is 7.08 x 10^-8 C.
Explanation:
Area, A = 0.4 cm^2
K = 4
Electric field, E = 2 x 10^8 V/m
separation, d = 5 mm = 0.005 m
Let the capacitance is C and the charge is q.
[tex]q = CV\\\\q=\frac{\varepsilon o A}{d}\times E d\\\\q = \varepsilon o A E\\\\q = 8.85\times 10^{-12}\times0.4\times 10^{-4}\times 2\times 10^8\\\\q = 7.08\times 10^{-8}C[/tex]
1) Consider an electric power transmission line that carries a constant electric current of i = 500 A. The cylindrical copper cable used to transmit this current has a diameter o = 2.00 cm and a length L = 150 km. If there are 8.43x10^28 free electrons per cubic meter (m^3 ) in the cable, calculate how long it would take for an electron to cross the entire length of the transmitter line.
Answer:
t = 1.27 x 10⁹ s
Explanation:
First, we will find the volume of the wire:
Volume = V = AL
where,
A = Cross-sectional area of wire = πr² = π(1 cm)² = π(0.01 m)² = 3.14 x 10⁻⁴ m²
L = Length of wire = 150 km = 150000 m
Therefore,
V = 47.12 m³
Now, we will find the number of electrons in the wire:
No. of electrons = n = (Electrons per unit Volume)(V)
n = (8.43 x 10²⁸ electrons/m³)(47.12 m³)
n = 3.97 x 10³⁰ electrons
Now, we will use the formula of current to find out the time taken by each electron to cross the wire:
[tex]I =\frac{q}{t}[/tex]
where,
t = time = ?
I = current = 500 A
q = total charge = (n)(chareg on one electron)
q = (3.97 x 10³⁰ electrons)(1.6 x 10⁻¹⁹ C/electron)
q = 6.36 x 10¹¹ C
[tex]500\ A = \frac{6.36\ x\ 10^{11}\ C}{t}\\\\t = \frac{6.36\ x\ 10^{11}\ C}{500\ A}[/tex]
Therefore,
t = 1.27 x 10⁹ s
A 0.40-kg mass attached to the end of a string swings in a vertical circle having a radius of 1.8 m. At an instant when the string makes an angle of 40 degrees below the horizontal, the speed of the mass is 5.0 m/s. What is the magnitude of the tension in the string at this instant
Answer:
[tex]T=8.1N[/tex]
Explanation:
From the question we are told that:
Mass m=0.40
Radius r=1.8m
Angle Beneath the Horizontal \theta =40 \textdegree
Speed v=5.0m/s
The Tension Angle
[tex]\alpha=90-\theta\\\\\alpha=90-40[/tex]
[tex]\alpha=50 \textdegree[/tex]
Generally the equation for Tension is is mathematically given by
[tex]T=\frac{mv^2}{r}+mgcos \alpha[/tex]
[tex]T=\frac{0.40*5^2}{1.8}+0.40*5cos50[/tex]
[tex]T=8.1N[/tex]
In a similar rolling race (no slipping), the two objects are a solid cylinder and hollow cylinder of the same radius and mass. Which reaches the bottom first
Answer:
solid cylinder
Explanation:
the object that arrives first is the object that has more speed, let's use the concepts of energy
starting point. Highest point
Em₀ = U = m g h
final point. Lowest point
Em_f = K = ½ mv² + ½ I w²
since the body has rotational and translational movement
how energy is conserved
m g h = ½ mv² + ½ I w²
linear and angular velocity are related
v = w r
w = v / r
we substitute
m g h = ½ mv² + ½ I (v/r) ²
mg h = ½ v² (m + I /r²)
v = [tex]\sqrt{2gh \ \frac{m}{m + \frac{I}{r^2} } }[/tex]
the tabulated moments of inertia for the bodies are
solid cylinder I = ½ m r²
hollow cylinder I = m r²
we look for the speed for each body
solid cylinder
v₁ = [tex]\sqrt {2gh} \ \sqrt{\frac{m}{m + m/2} }[/tex]
v₁ = [tex]\sqrt{2gh} \ \sqrt{2/3}[/tex]
let's call v₀ = [tex]\sqrt{2gh}[/tex]
v₁ = 0.816 v₀
hollow cylinder
v₂ = [tex]\sqrt{2gh } \ \sqrt{\frac{m}{m+ m} }[/tex]
v₂ = v₀ √½
v₂ = 0.707 v₀
Therefore, the body that has the highest speed is the solid cylinder and since time is the inverse of speed, this is the body that spends less time to reach the bottom, that is, it is the first to arrive
derive expression for pressure exerted by gas
Nhiệt dung riêng của một chất là ?
Answer:
enchantment table language
Explanation:
Urgent please help me
1433 km
Explanation:
Let g' = the gravitational field strength at an altitude h
[tex]g' = G\dfrac{M_E}{(R_E + h)^2}[/tex]
We also know that g at the earth's surface is
[tex]g = G\dfrac{M_E}{R_E^2}[/tex]
Since g' = (2/3)g, we can write
[tex]G\dfrac{M_E}{(R_E + h)^2} = \dfrac{2}{3}\left(G\dfrac{M_E}{R_E^2} \right)[/tex]
Simplifying the above expression by cancelling out common factors, we get
[tex](R_E + h)^2 = \dfrac{3}{2} R_E^2[/tex]
Taking the square root of both sides, this becomes
[tex]R_E + h = \left(\!\sqrt{\dfrac{3}{2}}\right) R_E[/tex]
Solving for h, we get
[tex]h = \left(\!\sqrt{\dfrac{3}{2}} - 1\right) R_E= 0.225(6.371×10^2\:\text{km})[/tex]
[tex]\:\:\:\:\:= 1433\:\text{km}[/tex]
If you double the current in a long straight wire, the magnetic field at a fixed point will... be cut in half. triple. double. quadruple.
Answer:
the magnetic field must double
Explanation:
For this exercise we use Ampere's law
∫ B . ds = μ₀ I
Where the bold indicate vectors
With this expression we can see that if we double the current, keeping the same trajectory, the magnetic field must double
Write a short note of the following
a) Reflection
b) Refraction
c) Diffraction
Answer:
a) Light that passes through the floor to reveal yourself (not shadow).
b) 2 rays of light that bounce between 2 transparent media.
c) I don't know what is Diffraction?
How much work does the electric field do in moving a proton from a point with a potential of 170 V to a point where it is -50 V
What is the name of the invisible line that runs
down the center of the axial region?
Answer:
An axis is an invisible line around which an object rotates, or spins. The points where an axis intersects with an object's surface are the object's North and South Poles.
Explanation:
The Earth's axis is represented by the red line. The white circle represents axial precission, the slow "wobble" of the axis.
Two identical cars, each traveling at 16 m>s, slam into a concrete wall and come to rest. In car A the air bag does not deploy and the driver hits the steering wheel; in car B the driver contacts the deployed air bag. (a) Is the impulse delivered by the steering wheel to driver A greater than, less than, or equal to the impulse delivered by the air bag to driver B
Answer:
I = - m 16 the two impulses are the same,
Explanation:
The impulse is given by the relationship
I = Δp
I = p_f - p₀
in this case the final velocity is zero therefore p_f = 0
I = -p₀
For driver A the steering wheel impulse is
I = - m v₀
I = - m 16
For driver B, the airbag gives an impulse
I = - m 16
We can see that the two impulses are the same, the difference is that in the air bag more time is used to give this impulse therefore the force on the driver is less
Wind instruments like trumpets and saxophones work on the same principle as the "tube closed on one end" that we examined in our last experiment. What effect would it have on the pitch of a saxophone if you take it from inside your house (at 76 degrees F) to the outside on a cold day when the outside temperature is 45 degrees F ?
Answer:
The correct answer would be - Low pitch.
Explanation:
As it is known that if frequency increases then pitch will be increase as well as pitch depends on frequency, Now for the question it is mentioned that the tube closed on one end frequency is:
f = v/2l
Where,
l = length of the tube
v = velocity of longitudinal wave of gas filled in the tube
Now increase with the temperature the density of the gas decreases and velocity v is inversely proportional to density of gas so velocity increases. So if there is an increase in frequency so pitch also increases. As the temperature inside the house is at 750 F more than outsideat 450 Fso pitch is more inside and the pitch is low outside.
Suppose that 2 J of work is needed to stretch a spring from its natural length of 34 cm to a length of 46 cm. (a) How much work is needed to stretch the spring from 36 cm to 41 cm
Answer:
0.83 J of work
Explanation:
2 J of work is required to stretch a spring from 34cm to 46cm
So that is 12cm stretched with 2 J of work
We can make that 6cm for 1 J of work
So, we need the find the work for stretching 36cm to 41cm
Which is 5cm
So, What is the work required to stretch 5cm?
1 J of work for 6cm
x work for 5cm
So, by proportion method
1 : 6 :: x : 5
6 * x = 1 * 5
6x = 5
x = 5/6
= 0.83
So to stretch 36cm to 41cm we need 0.83 J of work
1. A turtle and a rabbit are to have a race. The turtle’s average speed is 0.9 m/s. The rabbit’s average speed is 9 m/s. The distance from the starting line to the finish line is 1500 m. The rabbit decides to let the turtle run before he starts running to give the turtle a head start. If the rabbit started to run 30 minutes after the turtle started, can he win the race? Explain.
Answer:no
Explanation:because 0.9*(30*60)=0.9*1800=1620
The turtle has already won the race
Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours
What will be the speed of the rabbit and the turtle?It is given
[tex]V_{t} = 0.9 \frac{m}{s}[/tex]
[tex]V_{r} = 9 \frac{m}{s}[/tex]
[tex]D=1500 m[/tex]
Time taken by turtle
[tex]T= \dfrac{D}{V_{t} }=\dfrac{1500}{0.9_{} }[/tex]
[tex]T=1666 minutes= 27 hours[/tex]
Time taken by rabbit
[tex]T= \dfrac{D}{V_{r} }=\dfrac{1500}{9_{} }[/tex]
[tex]T=166 minutes[/tex]
since rabbit started 30 minutes after turtle then
[tex]T= 136+30=196 minutes[/tex]
[tex]T= 3.2 hours[/tex]
Hence Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours
To know more about average velocity follow
https://brainly.com/question/6504879
At what angle torque is half of the max