Answer:
0.08704 W
Explanation:
converting the mm to m (1000mm = 1m)
cross-sectional area of the fins, Ac = (0.003) (0.0004) = 0.0000012m^2
The wetted perimeter of the cross-section, P = 2 (0.003 + 0.0004) = 0.0068m
Thickness of solid in direction of heat flow, B^2 = (heat transient coefficient, h) (The wetted perimeter of the cross-section, P) ÷ (Thermal conductivity, k) (cross-sectional area of the fins, Ac)
B^2 = (8 W/m2K)(0.0068m) ÷ (175 W/mK)(0.0000012m^2)
=259.0476m^-2
B= square root of the result
B = 16.09m^-1
we now look for:
The Coordinate, x = B, multiplied by Length, L
x = (16.09m^-1) (0.04m) = 0.6436
finding the side area of a fin = P multiplied by Length, L
= 0.0068m X 0.04m = 0.000272m^2
Neglecting inefficiency, assuming the fins are all 100% efficient, the power they would dissipate =
h, Heat-transfer coefficient (PL) (temperature of at the base - temperature at the ambient air)
= (8) (0.000272m^2)(340 K- 300k)
= 0.08704 W
After earning a bachelor's degree, one must do which of the following before taking the PE examination to receive a Professional Engineering license?
Air at 25 m/s and 15°C is used to cool a square hot molded plastic plate 0.5 m to a side having a surface temperature of 140°C. To increase the throughput of the production process, it is proposed to cool the plate using an array of slotted nozzles with width and pitch of 4 mm and 56 mm, respectively, and a nozzle-to-plate separation of 40 mm. The air exits the nozzle at a temperature of 15°C and a velocity of 10 m/s.
Required:
a. Determine the improvement in cooling rate that can be achieved using the slotted nozzle arrangement in lieu of turbulated air at 10 m/s and 15°C in parallel flow over the plate.
b. Would the heat rates for both arrangements change significantly if the air velocities were increased by a factor of 2?
c. What is the air mass rate requirement for the slotted nozzle arrangement?
Answer:
a. 2.30
b. decreases with increasing velocity.
c. 0.179 kg/s.
Explanation:
Without mincing let's dive straight into the solution to the question above.
[a].
The improvement in cooling rate that can be achieved using the slotted nozzle arrangement in lieu of turbulated air at 10 m/s and 15°C in parallel flow over the plate can be determined by calculating turbulent flow:
The turbulent flow over the plate= 10 × 0.5/ 20.92 × 10⁻6 = 2.39 × 10⁵.
While the turbulent flow correlation = 0.037( 2.39 × 10⁵)^[tex]\frac{4}{5}[/tex] (0.7)^[tex]\frac{1}{3}[/tex] = 659.6.
Array of slot noozle = [10 × (2 × 0.004)]/ 20.92 × 10^-6] = 3824.
where A = 4/56 =0.714.
And Ar = [ 60 + 4 (40/2 × 4) - 2 ]^2 ]-1/2 = 0.1021.
N = 2/3 (0.1021)^3/4 [ 2 × 3824/ ( 0.0714 / 0.1021) + (.1021/0.0714)] (0.700)^0.42 =24.3.
h = 24.3 × 0.030/0.004 = 91.1 W/m^2k.
Therefore; 659.6 × 0.030/0.5 = 39.0 W/m²k.
The turbulent flow = 0.5 × 39.6 × 0.5( 140 -15) = 1237.5 W.
The slot noozle = 91.1 × 0.5 × 0.5 [ 140 -15] = 2846.87W.
The improvement in cooling rate = 2846.87/ 1237.5 = 2.30.
[b].
2.3 [ (2^2/3)/ 2^4/5] = 2.1
Thus, it decreases with increasing velocity
[c].
The air mass rate requirement for the slotted nozzle arrangement = 9 × 0.995 (0.5 × 0.004)10 = 0.179 kg/s.
Derive the next state equations for each type (D, T, SR, and JK) of basic memory element. The next state equation is a symbolic equation describing the next state (Q ) as a function of the inputs (D,T,SR, or JK) and state (Q). In order to determine the next state equations for a a JK memory element, build a 3-variable Kmap with Q, J, and K as the inputs. The entries in the Kmap should be Q . Solving this Kmap will yield the next state equation. Show all work for full credit.
Answer:
Attached below is the derived next state equations
Explanation:
Attached below is the derived next state equations
used for the solution of the given problem.
Automotive gas turbines have been under development for decades but have not been commonly used in automobiles. Yet helicopters routinely use gas turbines. Explore why different types of engines are used in these respective applications. Compare selection factors such as performance, power-to-weight ratio, space requirements, fuel availability, and environmental impact.
Required:
Summarize your findings in a report with at least three references.
Answer:
Gas turbines in Helicopters require lesser space.
Explanation:
[1] In terms of Space Requirements:
The gas used in helicopters requires lesser space as compared to Automotive gas turbines. The gas in automobile have higher thermal efficiency.
[2]. In terms of Environmental impact:
The occurrence of environmental solution is very slim when used in helicopters' engines.
[3]. In terms of power-to-weight ratio:
The vibrations in engines of helicopters make it to have lesser efficiency as compared to automobile.
[4]. In terms of Fuel availability:
Fuel is available. Automobile can make use of gas as fuel.
Leland wants to work in a Production career operating heavy machinery. Which type of education or training should Leland seek?
a bachelor’s degree then a master’s degree
vocational school certificate or master’s degree
on-the-job training or vocational school certificate
associate’s degree then a bachelor’s degree
Answer:
it is indeed C
Explanation:
Answer:
c
Explanation: