Explanation:
Given:
L = 0.02 H
C = [tex]2\:\mu \text{F}[/tex]
f = 200 Hz
The general form of the impedance Z is given by
[tex]Z = \sqrt{R^2 + (X_L - X_C)^2}[/tex]
Since this is a purely inductive/capacitive circuit, R = 0 so Z reduces to
[tex]Z = \sqrt{(X_L - X_C)^2} = \sqrt{\left(\omega L - \dfrac{1}{\omega C} \right)^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{\left(2 \pi L - \dfrac{1}{2 \pi f C} \right)^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{\left[2 \pi (200\:\text{Hz})(0.02\:\text{H}) - \dfrac{1}{2 \pi (200\:\text{Hz})(2×10^{-6}\:\text{F})} \right]^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{(25.13\:\text{ohms} - 397.89\:\text{ohms})^2}[/tex]
[tex]\:\:\:\:\:\:\:=372.66\:\text{ohms}[/tex]
A car accelerates at 2 meters/s/s. Assuming the car starts from rest how far will it travel in 10 seconds
Answer:
Distance = velocity x time, so 10 m/s X 10 s = 100 m
Explanation:
If you accelerate at 2 m/s^2 for 10 seconds, at the end of the 10 seconds you are moving at a rate of 20 m/s.
V(f) = V(i) + a*t
Final velocity = initial velocity + acceleration x time
Your average velocity will be half of your final, because you accelerated at a constant rate. So your average velocity is 10 m/s.
Distance = velocity x time, so 10 m/s X 10 s = 100 m
Answer:
100 m
Explanation:
Given,
Initial velocity ( u ) = 0 m/s
Acceleration ( a ) = 2 m/s^2
Time ( t ) = 10 sec s
To find : Displacement ( s ) = ?
By 2nd equation of motion,
s = ut + at^2 / 2
= ( 0 ) ( 10 ) + ( 2 ) ( 10 )^2 / 2
= 0 + ( 2 ) ( 100 ) / 2
= 200 / 2
s = 100 m
A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.07, its wavelength will be:_________.
Explanation:
someone to check if the answer is correct
What is the value of the charge that experiences a force of 2.4×10^-3N in an electric field of 6.8×10^-5N/C
Hi there!
[tex]\large\boxed{\approx 35.29 C}[/tex]
Use the following formula:
E = F / C, where:
E = electric field (N/C)
F = force (N)
C = Charge (C)
Thus:
6.8 × 10⁻⁵ = 2.4 × 10⁻³ / C
Isolate for C:
C = 2.4 × 10⁻³ / 6.8 × 10⁻⁵
Solve:
≈ 35.29 C
You are helping your friend move a new refrigerator into his kitchen. You apply a horizontal force of 275 N in the positive x direction to try and move the 61 kg refrigerator. The coefficient of static friction is 0.58. (a) How much static frictional force does the floor exert on the refrigerator
Answer:
f = 347.08 N
Explanation:
The frictional force exerted by the floor on the refrigerator is given as follows:
[tex]f = \mu R = \mu W[/tex]
where,
f = frictional force = ?
μ = coefficient of static friction = 0.58
W = Weight of refrigerator = mg
m = mass of refrigerator = 61 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]f = \mu mg\\f = (0.58)(61\ kg)(9.81\ m/s^2)\\[/tex]
f = 347.08 N
You are holding one end of a horizontal stretched string. Flicking your wrist will send a pulse down the string. Which actions will make the pulse travel faster
Answer:
Use a lighter string of the same length, under the same tension.
Stretch the string tighter to increase the tension
Explanation:
The wave speed depends on propertices of the medium, not on how you generate the wave. For a string
Increasing the tension or decreasing the linear density (lighter string) will increase the wave speed.
A pulse will be sent down a horizontal extended thread if a person flicks the wrist. To raise the tension, pull the string tighter.
Define pulse.Pulse is the same thing as monitoring heartbeat. The pulse rate could also be measured via auscultation, which includes hearing to the heart rhythm using a stethoscope then counting it for one minute.
A pulse will be sent down a horizontal extended thread if a person holds one end of the rope and flicks their wrist.
To raise the tension, pull the string tighter.
Find out more information about pulse here:
https://brainly.com/question/14524756?referrer=searchResults
A 36.0 kg child slides down a long slide in a playground. She starts from rest at a height h1 of 24.00 m. When she is partway down the slide, at a height h2 of 11.00 m, she is moving at a speed of 7.80 m/s.
Calculate the mechanical energy lost due to friction (as heat, etc.).
Answer:
E = 3495.96 J
Explanation:
From the law of conservation of energy:
Total Mechanical Energy at h1 = Total Mechanical Energy at h2
Kinetic energy at h1 + potential energy at h1 = Kinetic energy at h2 + potential energy at h2 + Mechanical Energy Lost due to Friction
[tex]K.E_{h1}+P.E_{h1} = K.E_{h2}+P.E_{h2} + E\\\\\frac{1}{2}mv_1^2\ J + mgh_1 = \frac{1}{2}mv_2^2 + mgh_2 + E\\\\\frac{1}{2}(36\ kg)(0\ m/s)_1^2\ J + (36\ kg)(9.81\ m/s^2)(24\ m)_1 = \frac{1}{2}(36\ kg)(7.8\ m/s)_2^2 + (36\ kg)(9.81\ m/s^2)(11\ m)_2 + E\\\\0\ J + 8475.84\ J = 1095.12\ J + 3884.76\ J + E\\E = 8475.84\ J - 1095.12\ J - 3884.76\ J\\[/tex]
E = 3495.96 J
g A mass of 2.0 kg traveling at 3.0 m/s along a smooth, horizontal plane hits a relaxed spring. The mass is slowed to zero velocity when the spring has been compressed by 0.15 m. What is the spring constant of the spring
By the work-energy theorem, the total work done on the mass by the spring is equal to the change in the mass's kinetic energy:
W = ∆K
and the work done by a spring with constant k as it gets compressed a distance x is -1/2 kx ²; the work it does is negative because the restoring force of the spring points opposite the direction in which it's getting compressed.
So we have
-1/2 k (0.15 m)² = 0 - 1/2 (2.0 kg) (3.0 m/s)²
Solve for k to get k = 800 N/m.
A TV satellite dish is designed to receive radio waves of wavelength
0.0644 meters. What is the frequency of the waves it receives? _______GHz
Give your answer in gigahertz (GHz). 1 GHz = 10^9 Hz.
Give your answer to the nearest tenth of a GHz (one place after the decimal). Just enter the number; do NOT use scientific notation.
Answer:
4.7 GHz
Explanation:
Applying,
v = λf................. Equation 1
Where v = velocity of the radio wave, λ = wavelength, f = frequency
make f the subject of the equation
f = v/λ.............. Equation 2
Note: A radio wave is an electromagnetic wave, as such it moves with a velocity of 3.00 x 10⁸ m/s
From the question,
Given: λ = 0.0644 meters
Constant: v = 3.00 x 10⁸ m/s
Substitute these values into equation 2
f = (3.00 x 10⁸)/0.0644
f = 4.66×10⁹ Hz
f = 4.7 GHz
The image of the object formed by the lens is real, enlarged and inverted. What is the kind of lens ?
Answer:
Converging (convex) lens.
Explanation:
A lens can be defined as a transparent optical instrument that refracts rays of light to produce a real image.
Basically, there are two (2) main types of lens and these includes;
I. Diverging (concave) lens.
II. Converging (convex) lens.
A converging (convex) lens refers to a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image. Thus, this type of lens is usually thin at the lower and upper edges and thick across the middle.
Basically, the image of the object formed by a converging (convex) lens. lens is real, enlarged and inverted.
del tema de fuerza centripeta
1.- Un chico va en bicicleta a 10m/s por una curva plana de 200m de radio.
a) ¿Cuál es la aceleración?
b) si el chico y la bicicleta tienen una masa total de 70kg, ¿Qué fuerza se necesita para producir esta aceleración?
Answer:
a. C = 0.5 m/s²
b. F = 35 Newton
Explanation:
Given the following data;
Radius, r = 200 m
Velocity, v = 10 m/s
Mass, m = 70 kg
a. To find the centripetal acceleration;
Mathematically, centripetal acceleration is given by the formula;
C = v²/r
Where:
C is the centripetal acceleration
v is the velocity
r is the radius
Substituting into the formula, we have;
C = 10²/200
C = 100/200
C = 0.5 m/s²
b. To find the force;
F = mv²/r
F = (70*10²)/200
F = (70 * 100)/200
F = 7000/200
F = 35 Newton
In Trial II, the same spring is used as in Trial I. Let us use this information to find the suspended mass in Trial II. Use 0.517 ss for the value of the period.
Trial 1 Spring constant is 117N/m, period of oscillations .37s, mass of the block is .400kg .
Trial 2 oscillation period is .52s
Answer:
[tex]M_2=0.79kg[/tex]
Explanation:
From the question we are told that:
Period [tex]T=0.517s[/tex]
Trial 1
Spring constant [tex]\mu=117N/m[/tex]
Period [tex]T_1=0.37[/tex]
Mass [tex]m=0.400kg[/tex]
Trial 2
Period [tex]T_2=0.52[/tex]
Generally the equation for Spring Constant is mathematically given by
\mu=\frac{4 \pi^2 M}{T^2}
Since
[tex]\mu _1=\mu_2[/tex]
Therefore
[tex]\frac{4 \pi^2 M_1}{T_1^2}=\frac{4 \pi^2 M_2}{T_2^2}[/tex]
[tex]M_2=M_1*(\frac{T_2}{T_1})^2[/tex]
[tex]M_2=0.400*(\frac{0.52}{0.37}})^2[/tex]
[tex]M_2=0.79kg[/tex]
The image of an object placed 30cm from a diverging lens is formed 10cm in front of the lens.
Calculate the focal length of the lens.
Answer:
15cm
Explanation:
Since the lens is a diverging lens, the image distance is negative (virtual)
v = -30cm
u = 10cm
Required
focal length f
Using the lens formula;
1/u + 1/v = 1/u
1/10 - 1/30 = 1/f
(3-1)/30 = 1/f
2/30 = 1/f
f = 30/2
f = 15cm
Hence the focal length of the lens is 15cm
A body initially at rest travels a distance 100 m in 5 s with a constant acceleration. calculate
(i) Acceleration
(ii) Final velocity at the end of 5 s.
Answer:
(i)8m/s²(ii)40m/s
Explanation:
according to the formula
½at²=s.
then substituting the data
½a•5²=100
a=8m/s²
v=at=8•5=40m/s
Answer:
(I)
[tex]{ \bf{s = ut + \frac{1}{2} a {t}^{2} }} \\ 100 = (0 \times 5) + \frac{1}{2} \times a \times {5}^{2} \\ 200 = 25a \\ { \tt{acceleration = 8 \: m {s}^{ -2} }}[/tex]
(ii)
[tex]{ \bf{v = u + at}} \\ v = 0 + (8 \times 5) \\ { \tt{final \: velocity = 40 \: m {s}^{ - 1} }}[/tex]
Starting with the Ideal Gas Law, show that the relationship between volume and temperature in an adiabatic process is the one given by :
TfVf^γ^-1 = TiVi^γ-1 = Constant
Answer:
hope it helps
explanation:
In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g
Answer:
-45,597.07
Explanation:
if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh
find the distance travelled by a moving body if it attained acceleration of 2m/s2 after starting from rest in 5min
Answer:
300 meters
Explanation:
a= 2m/s^2
t= 5 min
Convert into seconds, 5*60= 300seconds
v0= 0
x0=0
use x-x0= v0t + 1/2at^2
plug in values
x= 1/2*2*(300)
Solve
x= 300 meters
Which simple machine is shown in the diagram?
a wedge
a screw
an inclined plane
a wheel and axle
Answer:
Wheel and axle
Explanation:
Which simple machine is shown in the diagram?
a wheel and axle
From the given diagram, the machine shown is actually a wheel and axle
Description of wheel and axle
The wheel and axle is a machine consisting of a wheel attached to a smaller axle so that these two parts rotate together in which a force is transferred from one to the other.
Answer:
Wheel and axle
Explanation:
A generator is designed to produce a maximum emf of 190 V while rotating with an angular speed of 3800 rpm. Each coil of the generator has an area of 0.016 m2. If the magnetic field used in the generator has a magnitude of 0.052 T, how many turns of wire are needed
Answer:
The number of turns of wire needed is 573.8 turns
Explanation:
Given;
maximum emf of the generator, = 190 V
angular speed of the generator, ω = 3800 rev/min =
area of the coil, A = 0.016 m²
magnetic field, B = 0.052 T
The number of turns of the generator is calculated as;
emf = NABω
where;
N is the number of turns
[tex]\omega = 3800 \frac{rev}{min} \times \frac{2\pi}{1 \ rev} \times \frac{1 \min}{60 \ s } = 397.99 \ rad/s[/tex]
[tex]N = \frac{emf}{AB\omega } \\\\N = \frac{190}{0.016 \times 0.052\times 397.99} \\\\N = 573.8 \ turns[/tex]
Therefore, the number of turns of wire needed is 573.8 turns
g A spherical container of inner diameter 0.9 meters contains nuclear waste that generates heat at the rate of 872 W/m3. Estimate the total rate of heat transfer from the container to its surroudings ignoring radiation.
Answer: The total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.
Explanation:
Given: Inner diameter = 0.9 m
q = 872 [tex]W/m^{3}[/tex]
Now, radii is calculated as follows.
[tex]r = \frac{diameter}{2}\\= \frac{0.9}{2}\\= 0.45 m[/tex]
Hence, the rate of heat transfer is as follows.
[tex]Q = q \times V[/tex]
where,
V = volume of sphere = [tex]\frac{4}{3} \pi r^{3}[/tex]
Substitute the values into above formula as follows.
[tex]Q = q \times \frac{4}{3} \pi r^{3}\\= 872 W/m^{3} \times \frac{4}{3} \times 3.14 \times (0.45 m)^{3}\\= 332.67 W[/tex]
Thus, we can conclude that the total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.
One hazard of space travel is the debris left by previous missions. There are several thousand objects orbiting Earth that are large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint. Calculate the force exerted by a 0.100-mg chip of paint that strikes a spacecraft window at a relative speed of 4.00×10^3 m/s, given the collision lasts 6.00×10^8s.
Answer:
F = 6666.7 N
Explanation:
Given that,
Mass of a chip, m = 0.1 mg
Initial speed, u = 0
Final speed,[tex]v=4\times 10^{3}\ m/s[/tex]
Time of collision,[tex]t=6\times 10^{-8}\ s[/tex]
We know that,
Force, F = ma
Put all the values,
[tex]F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{0.1\times 10^{-6}\times (4\times 10^3-0)}{6\times 10^{-8}}\\\\F=6666.7\ N[/tex]
So, the required force is 6666.7 N.
Larger animals have sturdier bones than smaller animals. A mouse's skeleton is only a few percent of its body weight, compared to 16% for an elephant. To see why this must be so, recall that the stress on the femur for a man standing on one leg is 1.4% of the bone's tensile strength.
Suppose we scale this man up by a factor of 10 in all dimensions, keeping the same body proportions. (Assume that a 70 kg person has a femur with a cross-section area (of the cortical bone) of 4.8 x 10−4 m2, a typical value.)
Both the inside and outside diameter of the femur, the region of cortical bone, will increase by a factor of 10. What will be the new cross-section area?
Answer:
[tex]a_s=4.8\times 10^{-2}~m^2[/tex]
Explanation:
Given:
cross sectional area of the bone, [tex]a=4.8 \times 10^{-4} ~m^2[/tex]
factor of up-scaling the dimensions, [tex]s=10[/tex]
Since we need to find the upscaled area having two degrees of the dimension therefore the scaling factor gets squared for the area being it in 2-dimensions.
The scaled up area is:
[tex]a_s=a\times s^2[/tex]
[tex]a_s=[4.8 \times 10^{-4}]\times 10^2[/tex]
[tex]a_s=4.8\times 10^{-2}~m^2[/tex]
The area is defined as the space covered by an object in 2 d dimension. For a rectangle, it is a product of length and breadth. The new cross-section area will be 4.8×10⁻² m².
What is the area?The area is defined as the space covered by an object in 2 d dimension. For a rectangle, it is a product of length and breadth. Its unit is m².
Given data in the problem
a is the crossectional area of conical bone = 4.8×10⁻⁴m².
s is the factor of up-scaling the dimensions =10
For two degrees of dimension, the upscaled area will be square of the given area.
The scaled-up area will be
[tex]\rm a_s=a\times s^2\\\\ a_s= 4.8\times10^{-4}\times {10}^2\\\\\ \rm a_s=4.8\times10^{-2}\;m^2[/tex]
Hence the new cross-section area will be 4.8×10⁻² m².
To learn more about the area refer to the link;
https://brainly.com/question/1631786
a baseball is thrown vertically upward with an initial velocity of 20m/s.
A,what maximum height will it attain? B,what time will elapse before it strike the ground?
C,what is the velocity just before it strike the ground?
Answer:
Look at explanation
Explanation:
a)Only force acting on the object is gravity, so a=-g (consider up to be positive)
use: v^2=v0^2+2a(y-y0)
plug in givens, at max height v=0
0=400-19.6(H)
Solve for H
H= 20.41m
b) Use: y=y0+v0t+1/2at^2
Plug in givens
0=0+20t-4.9t^2
solve for t
t=4.08 seconds
c) v=v0+at
v=20-39.984= -19.984m/s
can some one help me :< its music
General Circulation Models (GCM) :_________
a) use data collected exclusively from high-resolution satellites.
b) use spectral models derived from energy released from the earth and clouds.
c) can be run on powerful home computers, allowing citizen scientists to run models.
d) use complicated two-dimensional grid systems that change temporally.
Answer:
b)
Explanation:
GCMs (general circulation models) are useful instruments for gaining a quantitative knowledge of climate processes. Physical processes in the atmosphere, cryosphere, and land surface are represented by them. They are used for modeling the global climate system's reaction to rising greenhouse gas concentrations available at the moment by utilizing spectral models based on the energy emitted by the biosphere and clouds.
Where would the normal force exerted on the rover when it rests on the surface of the planet be greater
Answer:
Normal force exerted on the rover would be greater at a point on the surface of the planet where the weight of the rover is experienced to be greater.
Explanation:
Since weight is a vector quantity, it can vary with position. Weight is the amount of force the planet exerts on the rover centered towards the planet.
Such a force is the result of gravitational pull and is quantified as:
[tex]F=G\times \frac{M.m}{R^2}[/tex]
and [tex]M=\rho\times \frac{4\pi.r^3}{3}[/tex]
where:
R = distance between the center of mass of the two bodies (here planet & rover)
G = universal gravitational constant
M = mass of the planet
m = mass of the rover
This gravitational pull varies from place to place on the planet because the planet may not be perfectly spherical so the distance R varies from place to place and also the density of the planet may not be uniform hence there is variation in weight.
Weight is basically a force that a mass on the surface of the planet experiences.
According to Newton's third law the there is an equal and opposite reaction force on the body (here rover) which is the normal force.
A uniform horizontal bar of mass m1 and length L is supported by two identical massless strings. String A Both strings are vertical. String A is attached at a distance d
Answer:
a) T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex] , b) T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]
c) x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex], d) m₂ = m₁ ( [tex]\frac{ L}{2d} -1[/tex])
Explanation:
After carefully reading your long sentence, I understand your exercise. In the attachment is a diagram of the assembly described. This is a balancing act
a) The tension of string A is requested
The expression for the rotational equilibrium taking the ends of the bar as the turning point, the counterclockwise rotations are positive
∑ τ = 0
T_A d - W₂ x -W₁ L/2 = 0
T_A = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex]
b) the tension in string B
we write the expression of the translational equilibrium
∑ F = 0
T_A - W₂ - W₁ - T_B = 0
T_B = T_A -W₂ - W₁
T_ B = [tex]\frac{g}{d}\ ( m_2 x + m_1 \ \frac{L}{2} )[/tex] - g m₂ - g m₁
T_B = g [m₂ ( [tex]\frac{x}{d} -1[/tex]) + m₁ ( [tex]\frac{L}{ 2d} -1[/tex]) ]
c) The minimum value of x for the system to remain stable, we use the expression for the endowment equilibrium, for this case the axis of rotation is the support point of the chord A, for which we will write the equation for this system
T_A 0 + W₂ (d-x) - W₁ (L / 2-d) - T_B d = 0
at the point that begins to rotate T_B = 0
g m₂ (d -x) - g m₁ (0.5 L -d) + 0 = 0
m₂ (d-x) = m₁ (0.5 L- d)
m₂ x = m₂ d - m₁ (0.5 L- d)
x = [tex]d - \frac{m_1}{m_2} \ \frac{L}{2d}[/tex]
d) The mass of the block for which it is always in equilibrium
this is the mass for which x = 0
0 = d - \frac{m_1}{m_2} \ \frac{L}{2d}
[tex]\frac{m_1}{m_2} \ (0.5L -d) = d[/tex]
[tex]\frac{m_1}{m_2} = \frac{ d}{0.5L-d}[/tex]
m₂ = m₁ [tex]\frac{0.5 L -d}{d}[/tex]
m₂ = m₁ ( [tex]\frac{ L}{2d} -1[/tex])
which vector best represents the net force acting on the +3 C charge
Newspapers often talk about an energy crisis-about running out of certain energy sources in the not-so-distant future. About which kind of energy sources are they talking
Answer:
Nonrenewable energy
Explanation:
Renewable energy is also known as clean energy and it can be defined as a type of energy that are generated through natural sources or technology-based processes that are replenished constantly. Some examples of these natural sources are water (hydropower), wind (wind energy), sun (solar power), geothermal, biomass, waves etc.
Basically, a renewable energy source is sustainable and as such can not be exhausted.
On the other hand, a non-renewable energy refers to an energy source such as fossil fuels that takes a very long time to be created or their creation happened long ago and isn't likely to happen again e.g uranium.
For example, fossil fuels such as coal, oil, and natural gas, come from deep inside the Earth where they formed over millions of years ago.
In this scenario, the kind of energy the newspaper sources are talking about is a nonrenewable energy source because they are capable of being exhausted in the not-so-distant future.
A cylindrical tank with radius 7 m is being filled with water at a rate of 2 m3/min. How fast is the height of the water increasing (in m/min)?
Answer:
0.013 m/min
Explanation:
Applying,
dV/dt = (dh/dt)(dV/dh)............. Equation 1
Where
V = πr²h................ Equation 2
Where V = volume of the tank, r = radius, h = height.
dV/dh = πr²............ Equation 3
Substitute equation 3 into equation 1
dV/dt = πr²(dh/dt)
From the question,
Given: dV/dt = 2 m³/min, r = 7 m, π = 3.14
Substitute these values into equation 3
2 = (3.14)(7²)(dh/dt)
dh/dt = 2/(3.14×7²)
dh/dt = 0.013 m/min
Assuming the atmospheric pressure is 1 atm at sea level, determine the atmospheric pressure at Badwater (in Death Valley, California) where the elevation is 86.0 m below sea level.
Answer:
Atmospheric pressure at Badwater is 1.01022 atm
Explanation:
Data given:
1 atmospheric pressure (Pi) = 1.01 * 10[tex]^{5}[/tex] Pa
Elevation (h) = 86m
gravity (g) = 9.8 m/s2
Density of air P = 1.225 kg/m3
Therefore pressure at bad water Pb = Pi + Pgh
Pb = (1.01 * 10[tex]^{5}[/tex]) + (1.225 * 9.8 * 86)
Pb = (1.01 * 10[tex]^{5}[/tex]) + 1032.43 = 102032 Pa
hence:
Pb = 102032 /1.01 * 10[tex]^{5}[/tex] = 1.01022 atm