If an answer is not exact then that will be unequal.
What is inequality?A difference between two values indicates whether one is smaller, larger, or basically not similar to the other.
A mathematical phrase in which the sides are not equal is referred to as being unequal. In essence, a comparison of any two values reveals whether one is less than, larger than, or equal to the value on the opposite side of the equation.
In other words, inequality is just the opposite of equality for example 2 =2 then it is equal but if I say 3 =6 then it is wrong the correct expression is 3 < 6.
If a value is not equal to the answer of that value then that is called unequal.
For example 2 and 3 then 2 is not equal to 3 so it will be inequal i.e. 2<3.
Hence "If an answer is not exact then that will be unequal".
For more about inequality?
brainly.com/question/20383699
#SPJ2
CAN SOMEONE HELP ME PLEASE CAN YOU FIGURE OUT WHERE I PUT 4 PI ON THE NUMBER LINE
Answer:
see below
Step-by-step explanation:
Pi is approximately 3.14
4*3.14 =12.56
So about halfway between 12 and 13
What is 3.142857 rounded three decimal places
Answer:
3.143
Step-by-step explanation:
Since you're rounded it to the third decimal, you look at the fourth one. And since the fourth one is 8, ur going round 2, which is the third decimal to 3.
Answer:
The answer is below
Step-by-step explanation:
In this question, to round three decimal place, we need to count three numbers after the dot.
Here..
the three numbers are 142
so after that we round it, so first of all we ignore 1 and, and focus on the number 2 and 4.
and if the number is below 5, it is rounded to the last number, but if the number is 5 or more than it, then we round it to the next number.
For example
142 - here we have 2, which is below 5, so we round it to '140'
where as if we have..
147 - here we have 7, which is above 7, so we round it to '150'
____________________________________________________________
So in this problem we round 142, so the number 2 is below 5 so it is round to 140
therefore the answer is - 3.14
If 2x - 5y – 7 = 0 is perpendicular to the line ax - y - 3 = 0 what is the value of a ?
A) a =2/3
B) a =5/2
C) a = -2/3
D) a = -5/2
Answer:
D) a = - 5/2
Step-by-step explanation:
2x -5y - 7 = 0
5y = 2x - 7
y = 2/5 x - 7
the slope of this line is therefore 2/5 (factor of x).
the perpendicular slope is then (exchange y and x and flip the sign) -5/2, which is then a and the factor of x.
Find the value of x.
A. 85
B. 131
C. 73
D. 95
Answer:
b
Step-by-step explanation:
The value of x 85.
What is the arc of the circle?The arc period of a circle can be calculated with the radius and relevant perspective using the arc period method.
⇒angle= arc/radius
⇒ 107°=arc/7
⇒ arc =1o7°*7
⇒arc=107π/180° *7
⇒arc = 85
Learn more about circle here:-brainly.com/question/24375372
#SPJ2
For what numbers is f(0) = sec 0 not defined?
Answer:
stundeez
Step-by-step explanation:
Nicki Minaj hdhsbskdhsnsk
Which function represents the graph of f(x)=−4|x| after it is translated 3 units down?
Answer:
The function with blue line (see attachment) represents the graph of [tex]f(x) = -4\cdot |x|[/tex] after it is translated 3 units down.
Step-by-step explanation:
Mathematically speaking, a translation in the y-direction is defined by the following expression:
[tex]g(x) = f(x) + k[/tex] (1)
Where:
[tex]g(x)[/tex] - Resulting function.
[tex]f(x)[/tex] - Original function.
[tex]k[/tex] - Translation factor ([tex]k > 0[/tex] - Translation in the +y direction/[tex]k< 0[/tex] - Translation in the -y direction).
If we know that original function is translated 3 units down and [tex]f(x) = -4\cdot |x|[/tex], then the resulting function is:
[tex]g(x) = -4\cdot |x|-3[/tex]
Lastly, we graph both original and resulting functions with the help of a graphing tool, whose outcome is presented in the image attached below:
Please notice that the red line represents the original function, whereas the blue line represents the resulting function.
The length side of xy is?
Answer:
10
Step-by-step explanation:
ok so you do 12/30 and u get a 0.4 ratio. boom multiply 0.4 by 25 and u get 10. so boom the length is 10
Answer:
XY=10
Step-by-step explanation:
Since they are similar the ratio between each sides should be the same.
Ratio is .4. Found by dividing 12/30.
Multiply .4 by 25= 10
Point D is 8 units away from the origin along the x-axis, and is 6 units away along the y-axis. Which of the following could be the coordinates of Point D
Answer:
The distance between two points (x₁, y₁) and (x₂, y₂) is given by:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Now we know that point D, which we can write as (x, y), is at a distance of 8 units from the origin.
Where the origin is written as (0, 0)
We also know that point D is 6 units away along the y-axis.
Then point D could be:
(x, 6)
or
(x, -6)
Now, let's find the x-value for each case, we need to solve:
[tex]8 = \sqrt{(x - 0)^2 + (\pm6 - 0)^2}[/tex]
notice that because we have an even power, we will get the same value of x, regardless of which y value we choose.
[tex]8 = \sqrt{x^2 + 36} \\\\8^2 = x^2 + 36\\64 - 36 = x^2\\28 = x^2\\\pm\sqrt{28} = x\\\pm 5.29 = x[/tex]
So we have two possible values of x.
x = 5.29
and
x = -5.29
Then the points that are at a distance of 8 units from the origin, and that are 6 units away along the y-axis are:
(5.29, 6)
(5.29, -6)
(-5.29, 6)
(-5.29, -6)
Consider this equation. √x - 1 - 5 = x - 8 The equation has(two valid solutions, one valid solution) and(one extraneous solution, no extraneous solutions) A valid solution for x is(0, 4, 2, 5)
The equation has 2 valid solutions; no extraneous solutions
The given equation is:
[tex]\sqrt{x - 1} - 5= x - 8[/tex]
First, we determine the solutions
[tex]\sqrt{x - 1} - 5= x - 8[/tex]
Add 5 to both sides
[tex]\sqrt{x - 1} = x - 8 + 5[/tex]
[tex]\sqrt{x - 1} = x - 3[/tex]
Square both sides
[tex]x - 1 = (x - 3)^2[/tex]
Expand
[tex]x - 1 = x^2- 3x - 3x + 9[/tex]
[tex]x - 1 = x^2- 6x + 9[/tex]
Collect like terms
[tex]x^2 - 6x - x + 9 + 1 = 0[/tex]
[tex]x^2 - 7x + 10 = 0[/tex]
Expand again
[tex]x^2 - 2x-5x + 10 = 0[/tex]
Factorize
[tex]x(x - 2) -5(x -2)= 0[/tex]
Factor out x - 2
[tex](x - 5)(x -2)= 0[/tex]
Split
[tex]x - 5=0[/tex] or [tex]x - 2 = 0[/tex]
[tex]x= 5[/tex] or [tex]x = 2[/tex]
The above values are valid values of x.
Hence, the equation has 2 valid solutions; no extraneous solutions
Read more about equations at:
https://brainly.com/question/2396830
Answer:
That person is wrong, First blank is : one valid solution , Second blank is : one extraneous solution, and I'm not sure what the 3rd blank is but I think It's 4.
Step-by-step explanation:
for plato users
11. Find the equation of the straight line that passes through (-4,2), (3,2) and (7,2).
Step-by-step explanation:
[tex](2 - 1 \frac{3 {3}^{2} }{?} [/tex]
Answer:
[tex]y=2[/tex]
Step-by-step explanation:
To solve this question, we can use the point-slope formula as we are given points on the line. This is the format:
[tex]y-y_{1} =m(x-x_{1} )[/tex]
The first step is to find the slope by substituting in two of the points. Let's try using (7,2) and (3,2):
[tex]2-2=m(7-3)\\0=4m\\m=0[/tex]
So now we have found that our slope is 0 meaning it is a flat line (shown by the unchanging y values through all three points).
The form for line equations is:
[tex]y=mx+c[/tex]
However, since our m=0, it is simplified to this:
[tex]y=c[/tex]
The y-value for all the points is 2, meaning c=2 (as it is also the y-intercept)
Therefore our final equation is:
[tex]y=2[/tex]
Hope this helped!
10
8
12
10
14
?
a. 16
b. 10
c. 12
d. 18
Answer:
12
Step-by-step explanation:
10 8 subtract 2
8 12 add 4
12-10 subtract 2
10 14 add 4
Now we subtract 2
14-2 = 12
Help? Thanks!!!!!!!! If possible show work please!
Answer:
[tex]B =102[/tex]
[tex]Y = 32[/tex]
Step-by-step explanation:
Solving (47):
To solve for B, we have:
[tex]B + 50 + 28 = 180[/tex] --- sum of angles in a triangle
This gives
[tex]B + 78 = 180[/tex]
Collect like terms
[tex]B =- 78 + 180[/tex]
[tex]B =102[/tex]
Solving (48):
To solve for Y, we have:
[tex]X + Y+ Z = 180[/tex] --- sum of angles in a triangle
This gives
[tex]Y = 180 - X - Z[/tex]
Where
[tex]W+ X=180[/tex] -- angle on a straight line
Solve for X
[tex]X=180 -W[/tex]
[tex]X=180 -100 = 80[/tex]
So, we have:
[tex]Y = 180 - X - Z[/tex]
[tex]Y = 180 - 80 - 68[/tex]
[tex]Y = 32[/tex]
Pls help I literally am crying I don’t understand ):
Answer: Passes out in slow
Step-by-step explanation:
Step 1 be Einstein
In an experiment, you choose to have two randomly assigned groups. In one, you take measurements both pretest and posttest; with the second, a posttest-only measure. This describes which task of conducting an experiment
Answer:
The answer is "Specific treatment levels".
Step-by-step explanation:
When we experimenting with 'level' which is related to the quantity or magnitude of treatment. For this part of an experiment or study, a group or individual is exposed to a specified set of circumstances. For example: If four categories are exposed to different doses of a given drug, then each dose reflects a level of a treatment factor in the model.
On the first day of a two-day meeting, 10 coffees and 10 doughnuts were purchased for a total of $20.00. Since nobody drank the coffee and all the doughnuts were eaten, the next day only 2 coffees and 14 doughnuts were purchased for a total of $13.00. How much did each coffee and each doughnut cost?
Answer:
1.25 dollars- the value of each coffee
0.75 dollars- the value of each doughnut
Step-by-step explanation:
Suppose that value of one coffee is x dollars, when one doughnut costs y dollars. The value o 10 coffee is 10x, when 10 doughnuts cost 10y. The sum is 10x+10y and it is 20.
10x+10y= 20 (we can divide each part by 10)
x+y=2
2coffee cost 2x, 14 doughnuts cost 14y
2x+14y=13 (it can be divided by two)
x+7y=6.5
We have the system of equations x+y=2, x+7y=6.5
Subtract the first equation from the second one (the left side of the first equation from the left side
x+7y - (x+y)= 6.5-2
6y=4.5
y=4.5/6= 3/4 = 0.75 dollars- the value of each doughnut
x=2-0.75=1.25 dollars- the value of each coffee
a store sign reads "Take 75% of the original price when you take an additional 15% off the sale price, which is 60% off the original price." Is the stores sign accurate?
Answer:
The new price is 66% off the original not 75% off
Step-by-step explanation:
Let x be the original price
First take 60 percent off
x - x*60% = new price
x- .60x = .40x
The new price is .40x
Then take 15 % off
(.40x) - (.40x)*15%
.40x - .40x*.15
.40x - .06x
.34x
100 -.34 =.66
The new price is 66% off the original not 75% off
1. Choose the correct decimal for "three tenths."
3
0.03
0.003
0.3
Please hurry, if you do reply thank u, it means alot! <3 :)
Answer:
3 tenths means 3 over ten represented as as 3/10 and 10 has one zero I.e tenth different from hundredths which has 2 zeros so our decimal shld also have one zero which is 0.3...so 0.3 is the answe hope it helps❤
(a) Find a vector parallel to the line of intersection of the planes −4x+2y−z=1 and 3x−2y+2z=1.
v⃗ =
(b) Show that the point (−1,−1,1) lies on both planes. Then find a vector parametric equation for the line of intersection.
r⃗ (t)=
Find the intersection of the two planes. Do this by solving for z in terms of x and y ; then solve for y in terms of x ; then again for z but only in terms of x.
-4x + 2y - z = 1 ==> z = -4x + 2y - 1
3x - 2y + 2z = 1 ==> z = (1 - 3x + 2y)/2
==> -4x + 2y - 1 = (1 - 3x + 2y)/2
==> -8x + 4y - 2 = 1 - 3x + 2y
==> -5x + 2y = 3
==> y = (3 + 5x)/2
==> z = -4x + 2 (3 + 5x)/2 - 1 = x + 2
So if we take x = t, the line of intersection is parameterized by
r(t) = ⟨t, (3 + 5t )/2, 2 + t⟩
Just to not have to work with fractions, scale this by a factor of 2, so that
r(t) = ⟨2t, 3 + 5t, 4 + 2t⟩
(a) The tangent vector to r(t) is parallel to this line, so you can use
v = dr/dt = d/dt ⟨2t, 3 + 5t, 4 + 2t⟩ = ⟨2, 5, 2⟩
or any scalar multiple of this.
(b) (-1, -1, 1) indeed lies in both planes. Plug in x = -1, y = 1, and z = 1 to both plane equations to see this for yourself. We already found the parameterization for the intersection,
r(t) = ⟨2t, 3 + 5t, 4 + 2t⟩
Complete the table y+1=7/8x
Answer:
y = 7/8x - 1
Step-by-step explanation:
graph shown
Algebra 2, please help! thank you
The function y = 2 cos 3(x + 2π∕3) +1 has a phase shift (or horizontal shift) of
A) –2π∕3
B) 3
C) 1
D) 2
Answer:
-2pi/3
Step-by-step explanation:
y = 2 cos 3(x + 2π∕3) +1
y = A sin(B(x + C)) + D
amplitude is A
period is 2π/B
phase shift is C (positive is to the left)
vertical shift is D
We have a shift to the left of 2 pi /3
Answer:
A
Step-by-step explanation:
The standard cosine function has the form:
[tex]\displaystyle y = a\cos (b(x-c)) + d[/tex]
Where |a| is the amplitude, 2π / b is the period, c is the phase shift, and d is the vertical shift.
We have the function:
[tex]\displaystyle y = 2 \cos 3\left(x + \frac{2\pi}{3}\right) + 1[/tex]
We can rewrite this as:
[tex]\displaystyle y = \left(2\right)\cos 3\left(x - \left(-\frac{2\pi}{3}\right)\right) + 1[/tex]
Therefore, a = 2, b = 3, c = -2π/3, and d = 1.
Our phase shift is represented by c. Thus, the phase shift is -2π/3.
Our answer is A.
*WILL GIVE BRAINLIEST* Find the length of side xx in simplest radical form with a rational denominator.
Answer:
[tex]x = \frac{4 \sqrt{3} }{3} [/tex]
Step-by-step explanation:
The explanation is in the picture!❤
12.5% of it is 6 hrs
Answer:
48 hours
Step-by-step explanation:
12.5/100 = 6/x
1. cross-multiply
12.5 × x = 12.5x
100 × 6 = 600
2. divide
12.5x/12.5 = x
600/12.5 = 48
3. answer
x = 48
ABC are points; (2,3), (4,7), (7,3) respectively. Find the equation of the line through the point (3,-5) which is parallel to the line with the equation 3x+2y-5=0
Answer:
y = -3x/2 - 1/2
Step-by-step explanation:
slope m = -3/2
-5 = (-3/2)×3+b
or, b = -1/2
putting it into y = mx + b
y = -3x/2 - 1/2
Answered by GAUTHMATH
A hose is left running for 240 minutes to 2 significant figures. The amount of water coming out of the hose each minute is 2.1 litres to 2 significant figures. Calculate the lower and upper bounds of the total amount of water that comes out of the hose.
Answer:
Hello,
Step-by-step explanation:
Let say t the time the hose is left running
235 ≤ t < 245 (in min)
Let say d the amount of water coming out of the hose each minute
2.05 ≤ d < 2.15 (why d : débit in french)
235*2.05 ≤ t*d < 245*2.15
481.75 ≤ t*d < 526.75 (litres)
Answer:
Lower bound: [tex]495\; \rm L[/tex] (inclusive.)
Upper bound: [tex]505\; \rm L[/tex] (exclusive.)
Step-by-step explanation:
The amount of water from the hose is the product of time and the rate at which water comes out.
When multiplying two numbers, the product would have as many significant figures as the less accurate factor.
In this example, both factors are accurate to two significant figures. Hence, the product would also be accurate to two significant figures. That is:
[tex]240 \times 2.1 = 5.0 \times 10^{2}\; \rm L[/tex] ([tex]500\; \rm L[/tex] with only two significant figures.)
Let [tex]x[/tex] denote the amount of water in liters. For [tex]x\![/tex] to round to [tex]5.0 \times 10^{2}\; \rm L[/tex] only two significant figures are kept, [tex]495 \le x < 505[/tex]. That gives a bound on the quantity of water from the hose.
surface area of a prism please help its my last day 120 points
Answer:
Area of the base = (8×6)/2 = 24 yd²
Height of the prism = 8 yd
Perimeter of the base = 8+6+10 = 24 yd
Surface area = 2B + Ph = (2×24)+(24×8) = 48+192 = 240 yd²
Ayuda por fa con estos ejercicios por fa urgente
Step-by-step explanation:
A ball is thrown straight up from a rooftop 320 feet high. The formula below describes the ball's height above the ground, h, in feet, t seconds after it was thrown. The ball misses the rooftop on its way down and eventually strikes the ground. How long will it take for the ball to hit the ground? Use this information to provide tick marks with appropriate numbers along the horizontal axis in the figure shown.
h=-16t^2+16t+32
Nasa is building a satellite that is roughly the shape of a sphere. If the satellite weighs 14.25 pounds per cubic foot before the launch and has a diameter of 4.7 feet. What is the total weight in pounds?
Answer:
Step-by-step explanation:
Find the area If you get this correct i WILL GIVE YOU 100 POINTS
Answer:
Area of yellow portion =54 in
T
On Melissa's 6th birthday, she gets a $2000 CD that earns 5% interest, compounded semiannually. If the
CD matures on her 16th birthday, how much money will be available?
TE
$
(S
9514 1404 393
Answer:
$3277.23
Step-by-step explanation:
The future value of the CD with interest at rate r compounded semiannually for t years will be given by ...
A = P(1 +r/2)^(2t)
where P is the principal value.
For the given rate and time, this is ...
A = $2000(1 +0.05/2)^(2·10) = $2000(1.025^20) ≈ $3277.23
The value of the CD at maturity will be $3277.23.
what is the prime product of 120
Answer:
[tex]2^{3} * 3 * 5[/tex]
Step-by-step explanation: