The propeller shaft of the submarine experiences both torsional and axial loads. Draw Mohr's Circle for a stress element on the outside surface of the solid shaft. Determine the principal stresses, the maximum in-plane shear stress and average normal stress using Mohr's Circle.
Answer: Attached below is the missing detail and Mohr's circle.
i) б1 = 9.6 Ksi
б2 = -10.7 ksi
ii) 10.2 Ksi
iii) -0.51Ksi
Explanation:
First step :
direct compressive stress on shaft
бd = P / π/4 * d^2
= -20 / 0.785 * 5^2 = -1.09 Ksi
shear stress at the outer surface due to torsion
ζ = 16*T / πd^3
= (16 * 250 ) / π * 5^3 = 010.19 Ksi
Calculate the Principal stress, maximum in-plane shear stress and average normal stress
Using Mohr's circle ( attached below )
i) principal stresses:
б1 = 4.8 cm * 2 = 9.6 Ksi
б2 = -5.35 cm * 2 = -10.7 ksi
ii) maximum in-plane shear stress
ζ = radius of Mohr's circle
= 5.1 cm = 10.2 Ksi ( Given that ; 1 cm = 2Ksi )
iii) average normal stress
= 9.6 + ( - 10.7 ) / 2
= -0.51Ksi
In low speed subsonic wind tunnels, the value of test section velocity can be controlled by adjusting the pressure difference between the inlet and test-section for a fixed ratio of inlet-to-test section cross-sectional area.
a. True
b. false
Answer:
Hence the given statement is false.
Explanation:
For low-speed subsonic wind tunnels, the air density remains nearly constant decreasing the cross-section area cause the flow to extend velocity, and reduce pressure. Similarly increasing the world cause to decrease and therefore the pressure to extend.
The speed within the test section is decided by the planning of the tunnel.
Thus by adjusting the pressure difference won't change the worth of test section velocity.
Answer:
The given statement is false .
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
The temperature gradient in a spherical (or cylindrical) wall at steady state will always decrease (in magnitude) with increasing distance from the center (line), i.e. radial distance.
A. True
B. False
Answer:
True
Explanation:
Yes it is true that the Temperature gradient would also decrease with magnitude just as the distances rise from the centre line.
We have this cylinder equation as
[T1-T2 / ln(r1-r2)]2πKL
The radial distance is r2-r1
The gradient of temperature is T1-T2
From the equation,
The temperature gradient has a direct and proportional relationship to radial distance
T1-T2 ∝ ln(r2-r1)
1/T1-T2 = k(r2-r1)
This inverse relationship above confirms that the statement is true
Determine the pressure difference in N/m2,between two points 800m apart in horizontal pipe-line,150 mm diameter, discharging water at the rate of 12.5litres per second. Take the frictional coefficient ,f, as being 0.008
Answer: [tex]10.631\times 10^3\ N/m^2[/tex]
Explanation:
Given
Discharge is [tex]Q=12.5\ L[/tex]
Diameter of pipe [tex]d=150\ mm[/tex]
Distance between two ends of pipe [tex]L=800\ m[/tex]
friction factor [tex]f=0.008[/tex]
Average velocity is given by
[tex]\Rightarrow v_{avg}=\dfrac{12.5\times 10^{-3}}{\frac{\pi }{4}(0.15)^2}\\\\\Rightarrow v_{avg}=\dfrac{15.9134\times 10^{-3}}{2.25\times 10^{-2}}\\\\\Rightarrow v_{avg}=7.07\times 10^{-1}\\\Rightarrow v_{avg}=0.707\ m/s[/tex]
Pressure difference is given by
[tex]\Rightarrow \Delta P=f\ \dfrac{L}{d}\dfrac{\rho v_{avg}^2}{2}\\\\\Rightarrow \Delta P=0.008\times \dfrac{800}{0.15}\times \dfrac{997\times (0.707)^2}{2}\\\\\Rightarrow \Delta P=10,631.45\ N/m^2\\\Rightarrow \Delta P=10.631\ kPa[/tex]
Identify the first step in preparing a spectrophotometer for use.
A. Make sure all samples and the blank are ready for measurement.
B. Prepare a calibration curve.
C. Measure the absorbance of the blank.
D. Turn on the light source and the spectrophotometer.
Answer:
D. Turn on the light source and the spectrophotometer.
Explanation:
A spectrophotometer is a machine used to measure the presence of any light-absorbing particle in a solution as well as its concentration. To prepare a spectrophotometer for use, the first step is to turn on the spectrophotometer and allow it to warm up for at least 15 minutes. After this is done, the next step will be to ensure that the samples and blank are ready. Next, an appropriate wavelength is set for the solute being determined. Finally, the absorbance is measured of both the blank and samples.
A signalized intersection has a sum of critical flow ratios of 0.72 and a total cycle lost time of 12 seconds. Assuming a critical intersection v/c ration of 0.9, calculate the minimum necessary cycle length.
Answer:
[tex]T_o=82.1sec[/tex]
Explanation:
From the question we are told that:
Lost Time [tex]t=12secs[/tex]
Sum of critical flow ratios [tex]X=0.72[/tex]
Generally the Webster Method's equation for Optimum cycle time is is mathematically given by
[tex]T_o=\frac{1.5t+5}{1-x}[/tex]
[tex]T_o=\frac{1.5*12+5}{1-0.72}[/tex]
[tex]T_o=82.1sec[/tex]
Set the leak rate to zero and choose a non-zero value for the proportional feedback gain.Restart the simulation and turn on the outflow valve.What happens to the liquid level in the tank?Repeat this process with higher and lower values for the proportional feedback gain.What happens when the proportional feedback gain is increased?What happens when it is decreased?Find the proportional gain that will reach steady state the quickest without oscillationin the state of the valve and restart the simulation.What is the system time constant, as determined from the tank level versus time plot.
Answer:
Explanation:
The proportional gain K is usually a fixed property of the controller . If proportional gain is increased , The sensitivity of the controller to error is increased but the stability is impaired. The system approaches the behaviour of on off controlled system and it response become oscillatory
Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a uniformly distributed load = w, what is the moment present at a length of L/4?
Answer:
jsow
hfhcffnbxhdhdhdhdhdhdddhdhdgdhdhdhdhdhdhhhdhdjsksmalalaksjdhfgrgubfghhhhhhh
Explanation:
j
grudbow Pass Filter Design 0.0/5.0 points (graded) Determine the transfer function H(s) for a low pass filter with the following characteristics: a cutoff frequency of 100 kHz a stopband attenuation rate of 40 dB/decade. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency Write the formula for H(s) that satisfies these requirements:
Answer:
H(s) = 20 / [ 1 + s / 10^5 ]^2
Explanation:
Given data:
cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20 dB
new nominal passband gain at cutoff = 14 dB
Represent the transfer function H(s)
The attenuation rate show that there are two(2) poles
H(s) = k / [ 1 + s/Wc ]^2 ----- ( 1 )
where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20
Input values into equation 1
H(s) = 20 / [ 1 + s / 10^5 ]^2
Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.
A 20-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is not to exceed 110 MPa when one end is twisted through an angle of 15°, what must be the length of the bar?
Answer:
1.887 m
Explanation:
(15 *pi)/180
= 0.2618 rad
Polar moment
= Pi*d⁴/32
= (22/7*20⁴)/32
= 15707.96
Torque on shaft
= ((22/7)*20³*110)/16
= 172857.14
= 172.8nm
Shear modulus
G = 79.3
L = Gjθ/T
= 79.3x10⁹x(1.571*10^-8)x0.2618/172.8
= 1.887 m
The length of the bar is therefore 1.887 meters
The following is a correlation for the average Nusselt number for natural convection over spherical surface. As can be seen in the above, the Nusselt number approaches 2 as Rayleigh number approaches zero. Prove that this situation corresponds to conduction heat transfer and in conduction heat transfer over sphere, the Nusselt number becomes 2. Hint: First step: Write an expression for heat transfer between two spherical shells that share the same center. Second step: Assume the outer spherical shell is infinitely large.
Answer:
Explanation:
[tex]r_2=[/tex]∞
[tex]q=4\pi kT_1(T_2-T_1)\\[/tex]
[tex]q=2\pi kD.[/tex]ΔT--------(1)
[tex]q=hA[/tex] ΔT[tex]=4\pi r_1^2(T_2_s-T_1_s)\\[/tex]
[tex]N_u=\frac{hD}{k} = 2+\frac{0.589 R_a^\frac{1}{4} }{[1+(\frac{0.046}{p_r}\frac{9}{16} )^\frac{4}{9} } ------(3)[/tex]
By equation (1) and (2)
[tex]2\pi kD.[/tex]ΔT=h.4[tex]\pi r_1^2[/tex]ΔT
[tex]2kD=hD^2\\\frac{hD}{k} =2\\N_u=\frac{hD}{k}=2\\[/tex]-------(4)
From equation (3) and (4)
So for sphere [tex]R_a[/tex]→0
A flow inside a centrifuge can be approximated by a combination of a central cylinder and a radial line source flow, giving the following potential function:
Ø= a2/r -cosØ + aßlnr = r
Where a is the radius of the central base of the centrifuge and ß is a constant.
a) Provide expressions for the velocities Vr and vo .
b) Find the expression for the stream function.
Answer:
a) Vr = - a^2/r cosθ + aß / r
Vθ = 1/r [ -a^2/r * sinθ ]
b) attached below
Explanation:
potential function
Ø= a^2 /r cosØ + aßlnr ----- ( 1 )
a = radius , ß = constant
a) Expressions for Vr and Vθ
Vr = dØ / dr ----- ( 2 )
hence expression : Vr = - a^2/r cosθ + aß / r
Vθ = 1/r dØ / dθ ------ ( 3 )
back to equation 1
dØ / dr = - a^2/r sinθ + 0 --- ( 4 )
Resolving equations 3 and 4
Vθ = 1/r [ -a^2/r * sinθ ]
b) expression for stream function
attached below
An ideal neon sign transformer provides 9130 V at 51.0 mA with an input voltage of 240 V. Calculate the transformer's input power and current.
Answer:
Input power = 465.63 W
current = 1.94 A
Explanation:
we have the following data to answer this question
V = 9130
i = 0.051
the input power = VI
I = 51.0 mA = 0.051
= 9130 * 0.051
= 465.63 watts
the current = 465.63/240
= 1.94A
therefore the input power is 465.63 wwatts
while the current is 1.94A
the input power is the same thing as the output power.