Answer please answer!!
I need the answer asap
Answer:
35 cm
Step-by-step explanation:
is the correct answer
PLZZZ HELP
This is due in 15 mins
I need 5
But I already have 4
So one more
Answer:
The hottest month for the northern hemisphere is August.
The hottest month for the southern hemisphere is January and February (these top two might be the opposite)
It's globally warmer during the months of June July and August
During april and november, the southern hemisphere and northern hemisphere are the same, or very close.
During July and August the southern and northern hemispheres have the largest difference in temperature
Enter the degree of the polynomial below.
6x + 9x + 3x – 4410 - 9x5 – 5x6
A. 9
B. 10
c. 6.
OD. 4
Answer:
the answer is d
Step-by-step explanation:
If a over 2 equals b over 3 then b over a equals what?
Which of the following describes a positive correlation?
As the number of hours spent on homework increases, the tests scores increase.
As the number of apples eaten per year increases, the number of times visiting the doctor every year remains the same.
As the number of times going to bed early increases, the number of times waking up late decreases.
The amount of time a team spent practicing increases, the number of games lost in a season decreases.
THIS IS A MULTIPLE CHOICE QUESTION
Answer:
First Choice: As the number of hours spent on homework increases, the tests scores increase.
Step-by-step explanation:
The definition of a positive correlation is a relationship between two given variables, in which both variables are moving in the same direction. This can mean when one variable increases and the other variable increases, too, or one variable decreases and the other decreases as well.
The first choice is a positive correlation because both variables are changing (increasing) in the same direction. As you spend more time on homework, you're likely to get a higher test score.
The second choice cannot be a positive correlation because only one variable is having some kind of change (increasing). The doctor visits amount remains the same, so we can call this a zero-correlation relationship because the number of apples eaten yearly doesn't affect the amount of doctor visits. An apple a day keeps the doctor a way is just a proverb, not to be taken literally.
The third choice cannot be a positive correlation because the two variables are going different directions. Even though the number of times going to bed early is increasing, the number of times waking up late decreases, which is not moving in the same direction as the other variable.
The fourth choice cannot be a positive correlation because, similarly to the third choice, the two variables are going different directions. One variable is increasing, which is the amount of practice time. Meanwhile, the other variable is decreasing (going in the opposite direction), which is the number of games lost in a season.
I am struggling and I would be so happy if any of you helped me. Can someone help me with the last two red boxes please? The rest of the question is for reference to help solve the problem. Thank you for your time!
Answer:
I think you can go with:
The margin of error is equal to half the width of the entire confidence interval.
so try .74 ± = [ .724 , .756] as the confidence interval
Step-by-step explanation:
Beginning in January, a person plans to deposit $1 at the end of each month into an account earning
15% compounded monthly. Each year taxes must be paid on the interest earned during that year. Find
the interest earned during each year for the first 3 years.
Answer:
hi I am a Nepal
[tex] {233333}^{2332} [/tex]
Let f(x) = e ^3x/5x − 2. Find f'(0).
Answer:
Step-by-step explanation:
Our friend asking what the actual function is has a point. I completed this under the assumption that what we have is:
[tex]f(x)=\frac{e^{3x}}{5x-2}[/tex] and used the quotient rule to find the derivative, as follows:
[tex]f'(x)=\frac{e^{3x}(5)-[(5x-2)(3e^{3x})]}{(5x-2)^2}[/tex] and simplifying a bit:
[tex]f'(x)=\frac{5e^{3x}-[15xe^{3x}-6e^{3x}]}{(5x-2)^2}[/tex]and a bit more to:
[tex]f'(x)=\frac{5e^{3x}-15xe^{3x}+6e^{3x}}{(5x-2)^2}[/tex] and combining like terms:
[tex]f'(x)=\frac{11e^{3x}-15xe^{3x}}{(5x-2)^2}[/tex] and factor out the GFC in the numerator to get:
[tex]f'(x)=\frac{e^{3x}(11-15x)}{(5x-2)^2}[/tex] That's the derivative simplified. If we want f'(0), we sub in 0's for the x's in there and get the value of the derivative at x = 0:
[tex]f'(0)=\frac{e^0(11-15(0))}{(5(0)-2)^2}[/tex] which simplifies to
[tex]f'(0)=\frac{11}{4}[/tex] which translates to
The slope of the function is 11/4 at the point (0, -1/2)
a store sells pencils pens and markers that sells two times as many markers as pencils and three times as many pens as pencils is the store sells a total of 1950 pencils and pens and markers in a week how many of each were sold
Answer:
Pencils = 325 ; Pens = 975 ; Markers = 650
Step-by-step explanation:
Let :
Number of Pencils = x
Number of pens = y
Number of markers = z
2 times as many markers as pencils
z = 2x
3 times as many pens as pencils
y = 3x
x + y + z = 1950
Write z and y in terms of x in the equation :
x + 3x + 2x = 1950
6x = 1950
Divide both sides by 6
6x / 6 = 1950 / 6
x = 325
Number of pencils = 325
Pens = 3 * 325 = 975
Markers = 2 * 325 = 650
Pencils = 325 ; Pens = 975 ; Markers = 650
A ball is thrown in air and it's height, h(t) in feet, at any time, t in seconds, is represented by the equation h(t)=−4t2+16t. When is the ball higher than 12 feet off the ground?
A. 3
B. 1
C. 1
D. 4
Hence the time that the ball will be height than 12 feet off the ground is 4secs
Given the expression for calculating the height in feet as;
h(t) = -4t²+16t
If the ball is higher than 12feet, h(t) > 12
Substituting h = 12 into the expression
-4t²+16t > 12
-4t²+16t - 12 > 0
4t²- 16t + 12 > 0
t²- 4t + 3 > 0
Factorize
(t²- 3t)-(t + 3) > 0
t(t-3)-1(t-3) > 0
(t-1)(t-3)>0
t > 1 and 3secs
Hence the time that the ball will be height than 12 feet off the ground is 4secs
Learn more: https://brainly.com/question/18405392
Please answer in detail
Answer:
y=5x-1 I think because the snd option doesn't make sense but you should try y =5x-1
if x¹=xcosA+ysinA and y¹=xsinA-ycosA, show that (x¹)²+(y¹)²=x²+y²
Expanding each square on the left side, you have
(x cos(A) + y sin(A))² = x² cos²(A) + 2xy cos(A) sin(A) + y² sin²(A)
(x sin(A) - y cos(A))² = x² sin²(A) - 2xy sin(A) cos(A) + y² cos²(A)
so that adding them together eliminates the identical middle terms and reduces to the sum to
x² cos²(A) + y² sin²(A) + x² sin²(A) + y² cos²(A)
Collecting terms to factorize gives us
(y² + x²) sin²(A) + (x² + y²) cos²(A)
(x² + y²) (sin²(A) + cos²(A))
and sin²(A) + cos²(A) = 1 for any A, so we end up with
x² + y²
as required.
Consider the probability that at most 85 out of 136 DVDs will work correctly. Assume the probability that a given DVD will work correctly is 52%. Specify whether the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
Answer:
Since both [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the necessary conditions are satisfied.
0.9945 = 99.45% probability that at most 85 out of 136 DVDs will work correctly.
Step-by-step explanation:
Test if the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
It is needed that:
[tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex]
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
Assume the probability that a given DVD will work correctly is 52%.
This means that [tex]p = 0.52[/tex]
136 DVDs
This means that [tex]n = 136[/tex]
Test the conditions:
[tex]np = 136*0.52 = 70.72 \geq 10[/tex]
[tex]n(1-p) = 136*0.48 = 65.28 \geq 10[/tex]
Since both [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the necessary conditions are satisfied.
Mean and standard deviation:
[tex]\mu = E(X) = np = 136*0.52 = 70.72[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{136*0.52*0.48} = 5.83[/tex]
Consider the probability that at most 85 out of 136 DVDs will work correctly.
Using continuity correction, this is [tex]P(X \leq 85 + 0.5) = P(X \leq 85.5)[/tex], which is the p-value of Z when X = 85.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{85.5 - 70.72}{5.83}[/tex]
[tex]Z = 2.54[/tex]
[tex]Z = 2.54[/tex] has a p-value of 0.9945.
0.9945 = 99.45% probability that at most 85 out of 136 DVDs will work correctly.
Plz urgennt look at the image over 1000 points im going to need help with the last 4 questions i have?
The three sides of a triangle are n, 3n+3, and 3n−1. If the perimeter of the triangle is 72m, what is the length of each side?
Answer: 10m, 33m, and 29m
Step-by-step explanation:
n + 3n+3 + 3n-1 = 72m
7n+2=72m
7n = 72-2
n = 70/7
n = 10
power sharing helps the ruling party to retain power for a long time. tick or wrong
a special window in the shape of a rectangle with semicircles at each end is to be constructed so that the outside perimeter is 100 feet. find the dimensions of the rectangle tha tmaximizes the total area of the window
Answer:
The dimensions of the rectangle are length 25 feet and width 15.92 feet
Step-by-step explanation:
Let L be the length of the rectangle and w be the width.
The area of the rectangular part of the shape is Lw while the area of the two semi-circular ends which have a diameter which equals the width of the rectangle is 2 × πw²/8 = πw²/4. The area of each semi-circle is πw²/4 ÷ 2 = πw²/8
So, the area of the shape A = Lw + πw²/4.
The perimeter of the shape, P equals the length of the semi-circular sides plus twice its length. The length of a semi-circular side is πw/2. So, both sides is 2 × πw/2 = πw
P = πw + 2L
Since the perimeter, P = 100 feet, we have
πw + 2L = 100
From this L = (100 - πw)/2
Substituting L into A, we have
A = Lw + πw²/4.
A = [(100 - πw)/2]w + πw²/4.
A = 50w - πw²/2 + πw²/4.
A = 50w - πw²/2
Now differentiating A with respect to w and equating it to zero to find the value of w which maximizes A.
So
dA/dw = d[50w - πw²/2]/dw
dA/dw = 50 - πw
50 - πw = 0
πw = 50
w = 50/π = 15.92 feet
differentiating A twice to get d²A/dw² = - π indicating that w = 50/π is a value at which A is maximum since d²A/dw² < 0.
So, substituting w = 50/π into L, we have
L = (100 - πw)/2
L = 50 - π(50/π)/2
L = 50 - 50/2
L = 50 - 25
L = 25 feet
So, the dimensions of the rectangle are length 25 feet and width 15.92 feet
The Susan B. Anthony dollar has a radius of 0.52 inches. Find the area of one side of the coin to the nearest
hundredth.
Answer:
0.85 in²
Step-by-step explanation:
really ? you need help with that ? you could not find the formula for the area of a circle on the internet and type it into your calculator ? I can't do anything else here.
a circle area is
A = pi×r²
r being the radius.
and pi being, well, pi (3.1415....)
r = 0.52 in
so,
A = pi×0.52² = pi×0.2704 = 0.849486654... in²
the area of one side of the coin is 0.85 in²
Let a=⟨1,−4,2⟩ and b=⟨−5,−5,−2⟩. Compute:
a+b=⟨ ,, ⟩
a−b=⟨ ,,⟩
2a=⟨ ,,⟩
3a+4b=⟨ ,, ⟩
|a|=
Answer:
a + b = ⟨-4, -9, 0⟩
a - b = ⟨6, 1, 4⟩
2a = ⟨2, -8, 4⟩
3a + 4b = ⟨-17, -32, -2⟩
|a| = √21
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightPre-Calculus
Vectors
OperationsScalars[Magnitude] ||v|| = √(x² + y² + z²)Step-by-step explanation:
Adding and subtracting vectors are follow the similar pattern of normal order of operations:
a + b = ⟨1 - 5, -4 - 5, 2 - 2⟩ = ⟨-4, -9, 0⟩
a - b = ⟨1 + 5, -4 + 5, 2 + 2⟩ = ⟨6, 1, 4⟩
Scalar multiplication multiplies each component:
2a = ⟨2(1), 2(-4), 2(2)⟩ = ⟨2, -8, 4⟩
Remember to multiply in the scalar before doing basic operations:
3a + 4b = ⟨3(1), 3(-4), 3(2)⟩ + ⟨4(-5), 4(-5), 4(-2)⟩ = ⟨3, -12, 6⟩ + ⟨-20, -20, -8⟩ = ⟨-17, -32, -2⟩
Absolute values surrounding a vector signifies magnitude of a vector. Follow the formula:
|a| = √[1² + (-4)² + 2²] = √21
The tree diagram below shows the possible combinations of juice and snack that can be offered at the school fair.
A tree diagram. Orange branches to popcorn and pretzels. Grape branches to popcorn and pretzels. Apple branches to popcorn and pretzels. Grapefruit branches to popcorn and pretzels.
How many different combinations are modeled by the diagram?
6
8
12
32
Answer:
B. 8Step-by-step explanation:
The combinations are:
Orange - 2 (with popcorn and pretzels)Grape - 2 (with popcorn and pretzels)Apple - 2 (with popcorn and pretzels)Grapefruit - 2 (with popcorn and pretzels)Total number of combinations:
4*2 = 8Correct choice is B
there are 8different combinations are modeled by the diagram.
Answer:
Solution given:
orange:2
grape:2
apple:2
grapefruit:2
no of term:4
now
total no. of combination ia 4*2=8
Find the length of side
x to the nearest tenth.
Which is the solution to-x/2<-4
A x<-8
B x2-8
C x <8
D x 8
Answer:
A.x<-8
Step-by-step explanation:
=1/2x<−4
=2*(1/2x)< (2)*(-4)
= x<-8
help i need help with math help if u can
Which graph is a function?
Answer:
B
Step-by-step explanation:
A function is a relation in which each input, x, has only one output, y.
There are two ways to determine if a relation is a function:
1. If each x-input has only one, unique y-output, then it's a function. If some x-inputs share the same y-outputs, it's not a function.
2. Vertical Line Test on Graphs:
To determine whether y is a function of x, when given a graph of relation, use the following criterion: if every vertical line you can draw goes though only 1 point, the relation can be a function. If you can draw a vertical line that goes though more than 1 point, the relation cannot be a function.
Since we're given a graph relation, let's test both of the answers out.
If I were to draw a vertical line in a specific place on the first graph, I'd be hitting more than one point in the coordinate plane.
If I were to draw a vertical line in a specific place on the second graph, I'd only be hitting one point in the coordinate plane.
Therefore, choice B is a function.
Instructions: Determine whether the following polygons are
similar. If yes, type in the similarity statement and scale factor. If
no, type 'None' in the blanks.
Answer:
None
Step-by-step explanation:
The given angles aren't equal which is needed for the polygon to be similar
No, the following polygons are not similar.
Used the concept of a similar figure that states,
In terms of Maths, when two figures have the same shape but their sizes are different, then such figures are called similar figures.
Given that,
Two polygons EFGH and JKLM are shown in the image.
Now the corresponding sides of both figures are,
EF = 27
JK = 63
And, EH = 27
JM = 63
Hence, the ratio of corresponding sides is,
EF/JK = 27/63
= 9/21
= 3/7
EH/JM = 27/63
= 3/7
So their corresponding sides are equal in ratio.
But their corresponding angles are not the same.
To learn more about the angle visit:;
https://brainly.com/question/25716982
#SPJ4
If a, b, c are in A.P. show that
a (b + c)/bc,b(c + a) /ca, c(a-b )/bc
are in A.P.
Answer:
Step-by-step explanation:
[tex]\frac{a(b+c)}{bc} ,\frac{b(c+a)}{ca} ,\frac{c(a+b)}{ab} ~are~in~A.P.\\if~\frac{ab+ca}{bc} ,\frac{bc+ab}{ca} ,\frac{ca+bc}{ab} ~are~in~A.P.\\add~1~to~each~term\\if~\frac{ab+ca}{bc} +1,\frac{bc+ab}{ca} +1,\frac{ca+bc}{ab} +1~are~in~A.P.\\if~\frac{ab+ca+bc}{bc} ,\frac{bc+ab+ca}{ca} ,\frac{ca+bc+ab\\}{ab} ~are~in~A.P.\\\\divide~each~by~ab+bc+ca\\if~\frac{1}{bc} ,\frac{1}{ca} ,\frac{1}{ab} ~are ~in~A.P.\\if~\frac{a}{abc} ,\frac{b}{abc} ,\frac{c}{abc} ~are~in~A.P.\\if~a,b,c~are~in~A.P.\\which~is~true.[/tex]
find the equation of Straight line which passes through the point A(-5,10) makes equal intercept on both axes.
Answer:
y = -x + 5
Step-by-step explanation:
The point is in quadrant 2, so the line must pass through points that look like (a, 0) and (0, a) where a is a positive number. The slope of such a line is -1.
If (x, y) is a point on the line, then the slope between points (x, y) and (-5, 10) is 1, and you can write
[tex]\frac{y-10}{x-(-5)}=-1\\y-10 = -1(x+5)\\y-10=-x-5\\y=-x+5[/tex]
Which number would be rounded UP to the nearest ten but DOWN to the nearest hundred?
A. 232
B. 238
C. 262
D. 268
Answer:
B
Step-by-step explanation:
I will give brainly.
How do you determine if a slope is positive or negative?
You have to find the slope .
How?
Take 2points
(x1,y1)(x2,y2)Slope formula[tex]\\ \rm\Rrightarrow \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
What the Slope Means A positive slope means that two variables are positively related—that is, when x increases, so does y, and when x decreases, y also decreases. Graphically, a positive slope means that as a line on the line graph moves from left to right, the line rises.
Geometry help I don’t get this stuff at all
Answer:
The last option
V = (-1.5,3)
other options dont lie where V is exact
V is only Exact at (-1.5,3)