by an echo meter
please flw me and thank my answers
#Genius kudi
reviews the general principles in this problem. A projectile is launched from ground level at an angle of 13.0 ° above the horizontal. It returns to ground level. To what value should the launch angle be adjusted, without changing the launch speed, so that the range doubles?
Answer: θ would equal approximately 28.7°
This is a kinematics problem, where one is only given the theta value 13.0° in regards to the range; thus, the problem is testing one's understanding of the relationships between the variables.
Range (aka x) = (v₀ sin (2θ₀))/g, where θ₀ = 13.0°
Now if we multiply the range by 2, we get:
2x = 2((v₀ sin (2θ₀))/g) → to verbalize, if range equates to (v₀ sin (2θ₀))/g, and doubling the range equals twice the product value, then:
2θ = sin⁻¹(2sin(2(13.0° )) = sin⁻¹(2(0.76255845048)) = sin⁻¹ (1.52511690096) = 57.35560850015109°/2 = θ
Thus, θ = 28.67780425
It's been awhile since I did this; though I hope it helped!
What happens in the gray zone between solid and liquid?-,-
An electric device, which heats water by immersing a resistance wire in the water, generates 20 cal of heat
per second when an electric potential difference of 6 V is placed across its leads. What is the resistance in Ω
of the heater wire? (Note: 1 cal = 4.186 J)
Select one:
a. 0.86
b. 0.17
c. 0.29
d. 0.43
Answer:
1 cal/s =4.184w
p=50 cal/s =2093w
v=12v
P = V*I
I =P/V
I = 17.43 A
P =1²*R
R = P/I²
R = 0.68What recommendations would you give to the global government to help Decrease the global effects of human impact on the environment mystery recommendations and how they will positively impact our planet
Answer:
We can help to keep it magnificent for ourselves, our children and grandchildren, and other living things besides us.
Explanation:
5 ways our governments can confront climate change
PROTECT AND RESTORE KEY ECOSYSTEMS
SUPPORT SMALL AGRICULTURAL PRODUCERS
PROMOTE GREEN ENERGY
COMBAT SHORT-LIVED CLIMATE POLLUTANTS
BET ON ADAPTATION, NOT JUST MITIGATION
A 3.25-gram bullet traveling at 345 ms-1 strikes and enters a 2.50-kg crate. The crate slides 0.75 m along a wood floor until it comes to rest.
Required:
a. What is the coefficient of dynamic friction between crate and the floor?
b. What is the average force applied by the crate on the bullet during collision if the bullet penetrates the 1.10cm into the crate?
Answer:
a) μ = 0.0136, b) F = 22.8 N
Explanation:
This exercise must be solved in parts. Let's start by using conservation of moment.
a) We define a system formed by the downward and the box, therefore the forces during the collision are internal and the momentum is conserved
initial instant. Before the crash
p₀ = m v₀
final instant. After inelastic shock
p_f = (m + M) v
the moment is preserved
p₀ = p_f
m v₀ = (m + M) v
v = [tex]\frac{m}{m + M} \ v_o[/tex]
We look for the speed of the block with the bullet inside
v = [tex]\frac{0.00325}{0.00325 + 2.50 } \ 345[/tex]
v = 0.448 m / s
Now we use the relationship between work and kinetic energy for the block with the bullet
in this journey the force that acts is the friction
W = ΔK
W = ½ (m + M) [tex]v_f^2[/tex] - ½ (m + M) v₀²
the final speed of the block is zero
the work between the friction force and the displacement is negative, because the friction always opposes the displacement
W = - fr x
we substitute
- fr x = 0 - ½ (m + M) vo²
fr = ½ (m + M) v₀² / x
the friction force is
fr = μ N
μ = fr / N
equilibrium condition
N - W = 0
N = W
N = (m + M) g
we substitute
μ = ½ v₀² / x g
we calculate
μ = ½ 0.448 ^ 2 / 0.75 9.8
μ = 0.0136
b) Let's use the relationship between work and the variation of the kinetic energy of the block
W = ΔK
initial block velocity is zero vo = 0
F x₁ = ½ M v² - 0
F = [tex]\frac{1}{2} M \frac{x}{y} \frac{v^2}{x1}[/tex]
F = ½ 2.50 0.448² / 0.0110
F = 22.8 N
pls help! George pushes a wheelbarrow for a distance of 12 meters at a constant speed for 35 seconds by applying a force of 20 newtons. What is the
power applied to push this wheelbarrow?
A. 1.2 watts
B. 3.4 watts
C. 6.9 watts
D. 13 watts
Answer:
C. 6.9 watts
Explanation:
Power = work/time
if work = force×distance...
Then... power= (force×distance)/time
Power = (20×12)/35
= 6.9 watts
What is the energy equivalent of an object with a mass of 1.05g?
Answer:
The equivalent energy of an object given its mass is calculated through the equation,
E = mc²
where c is the speed of light (3 x 10^8 m/s)
Substituting the known values,
E = (1.05 g/ 1000) (3 x 10^8 m/s)²
E = 9.45x10^13 J
Explanation:
A magnetic field of 0.276 T exists in the region enclosed by a solenoid that has 517 turns and a diameter of 10.5 cm. Within what period of time must the field be reduced to zero if the average magnitude of the induced emf within the coil during this time interval is to be 12.6 kV
Answer:
The period the field must be reduced to zero is 9.81 x 10⁻⁵ s
Explanation:
Given;
initial value of the magnetic field, B₁ = 0.276 T
number of turns of the solenoid, N = 517 turns
diameter of the solenoid, d = 10.5 cm = 0.105 m
induced emf, = 12.6 kV = 12,600 V
when the field becomes zero, then the final magnetic field value, B₂ = 0
The induced emf is given by Faraday's law;
[tex]emf = -\frac{NA\Delta B}{t} \\\\emf = -\frac{NA (B_2 -B_1)}{t} \\\\t = -\frac{NA (B_2 -B_1)}{emf}\\\\t = \frac{NA (B_1 -B_2)}{emf}\\\\where;\\\\t \ is \ the \ time \ when \ B = 0 \ \ (i.e\ B_2 = 0)\\\\A \ is \ the \ area \ of \ the \ coil\\\\A = \frac{\pi d^2}{4} = \frac{\pi (0.105)^2}{4} = 0.00866 \ m^2\\\\t= \frac{(517) \times (0.00866)\times (0.276 -0)}{12,600}\\\\t = 9.81 \times 10^{-5} \ s[/tex]
Therefore, the period the field must be reduced to zero is 9.81 x 10⁻⁵ s
From the top of the leaning tower of Pisa, a steel ball is thrown vertically downwards with a speed of 3.00 m/s. if the height of the tower is 200 m, how long will it take for the ball to hit the ground? Ignore air resistance.
Answer:
66,7 seconds
Explanation:
the formula for height/distance is : S=v.t
The power in an electrical circuit is given by the equation P= RR, where /is the current flowing through the circuit and Ris the resistance of the circuit. What is the current in a circuit that has a resistance of 100 ohms and a power of 15 watts?
[pleas ee helpppp)
I= 0.39 A
OPTION B is the correct answer.
FROM THE _____ WHOLE WATER CYCLE STARTS ALL OVER AGAIN
From the water whole water cycle starts again.
Most possibly water should be the answer.PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. How much of the sample is left after 1.98 x 10^4 seconds?
A) 8.03 x 10^16 nuclei
B) 4.01 x 10^16 nuclei
C) 2.02 x 10^16 nuclei
D) 1.61 x 10^17 nuclei
OPTION C is the correct answer.
The radioactive decay follows the first order kinetics. The number of atoms decaying at any time is proportional to the number of atoms present at that instant. The amount of sample left is 2.02 x 10¹⁶nuclei. The correct option is C.
What is half-life?The time required for the decay of one half of the amount of the species is defined as the half-life period of a radionuclide. The half-life period is a characteristic of a radionuclide. The half lives can vary from seconds to billions of years.
The isotope decay of an atom is given by the equation:
ln [A] = -kt + ln [A]₀
The rate constant, k is:
k = ln 2 / Half life
k = ln 2 / 4.96 x 10³
k = 1.40 × 10⁻⁴ s⁻¹
t = 1.98 x 10⁴
[A]₀ = 3.21 x 10¹⁷
ln [A] = -1.40 × 10⁻⁴ × 1.98 x 10⁴ + ln [3.21 x 10¹⁷] = 37.538
[A] = 2.02 x 10¹⁶ nuclei
Thus the correct option is C.
To know more about half-life, visit;
https://brainly.com/question/24710827
#SPJ3
Trong máy phát điện xoay chiều ba pha khi tổng điện áp tức thời của cuộn 1,2 là e1+e2=120V thì điện áp tức thời của cuộn 3 là
Answer:
I just noticd i dont speak this launguage
Explanation:
A 5 kg box drops a distance of 10 m to the ground. If 70% of the initial potential energy goes into increasing the internal energy of the box, determine the magnitude of the increase.
Answer:
Explanation:
From the given information:
The initial PE [tex](PE)_i[/tex] = m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = [tex]P.E_f -P.E_i[/tex]
ΔP.E = 0 - [tex](PE)_i[/tex]
ΔP.E = [tex]-P.E_i[/tex]
If we take a look at conservation of total energy for determining the change in the internal energy of the box;
[tex]\Delta P.E + \Delta K.E + \Delta U = 0[/tex]
[tex]\Delta U = -\Delta P.E - \Delta K.E[/tex]
this can be re-written as:
[tex]\Delta U =- (-\Delta P.E_i) - \Delta K.E[/tex]
Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,
[tex]\Delta U =(70\%) \Delta P.E_i-0[/tex]
[tex]\Delta U =(0.70) (490.5)[/tex]
ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J
Consider a swimmer that swims a complete round-trip lap of a 50 m long pool in 100 seconds. What is the swimmers average speed and average velocity?
Answer:
The average speed is 1 m/s
The average velocity is 0
Explanation:
Given;
length of the pool, L = 50 m
time taken for the motion, t = 100 s
The total distance = 50 m + 50 m
The total distance = 100 m
The average speed = total distance / total time
= 100 / 100
= 1 m/s
The average velocity = change in displacement / change in time
change in displacement = 50 m - 50 m = 0
The average velocity = 0 / 100
The average velocity = 0
g Is a nucleus that absorbs at 4.13 δ more shielded or less shielded than a nucleus that absorbs at 11.45 δ? _________ Does the nucleus that absorbs at 4.13 δ require a stronger applied field or a weaker applied field to come into resonance than the nucleus that absorbs at 11.45 δ?
Answer: A nucleus that absorbs at [tex]11.45\delta[/tex] is less shielded and a nucleus that absorbs at [tex]4.13\delta[/tex] will require a stronger applied field
Explanation:
While interpreting the data in NMR, the positions of signals are studied.
The nucleus/ protons having a higher value of [tex]\delta[/tex] are said to be less shielded. They are said to be upfield.
The nucleus/protons having a lower value of [tex]\delta[/tex] are said to be more shielded. They are said to be downfield.
So, a nucleus that absorbs at [tex]11.45\delta[/tex] is less shielded by the nucleus that absorbs at [tex]4.13\delta[/tex]
Also, the less shielded nucleus/protons will require a weak applied field to come into resonance than the more shielded nucleus/protons
So, a nucleus that absorbs at [tex]4.13\delta[/tex] will require a stronger applied field to come into resonance than the nucleus that absorbs at [tex]11.45\delta[/tex]
PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. What is the decay constant for this decay?
A) 1.67 x 10^-4 s^-1
B) 5.43 x 10^-4 s^-1
C) 1.40 x 10^-4 s^-1
D) 2.22 x 10^-4 s^-1
OPTION C is the correct answer.
2. The given graph shows that the object is
(a) in non-uniform motion
(b) in uniform motion
(c) at rest
(d) in an oscillatory motion.
distance
time
Answer:
(c) at rest
Explanation:
Given
See attachment for the distance time graph
Required
What does the graph illustrate?
From the graph, we can see that the line of distance is a horizontal line.
This suggests that a time increases, the distance remains unchanged
When distance remains unchanged over time, then it means the object is at rest.
Hence, (c) is correct
how do you use the coefficient to calculate the number of atoms in each molecule?
Answer:
To find out the number of atoms: MULTIPLY all the SUBSCRIPTS in the molecule by the COEFFICIENT. (This will give you the number of atoms of each element.)
Explanation:
A body is dropped from a height H. In how much time will it reach the ground?
Answer:
[tex]s = ut + \frac{1}{2} g {t}^{2} \\ t(u + \frac{1}{2} gt) = H \\ u + \frac{1}{2} gt = H \\ t = 2(H - u) \div g \\ t = \frac{(H - u)}{5} \\ u \: is \: speed \: or \: velocity[/tex]
Assume that the energy lost was entirely due to friction and that the total length of the PVC pipe is 1 meter. Use this length to compute the average force of friction (for this calculation, you may neglect uncertainties).
The question is incomplete. The complete question is :
Assume that the energy lost was entirely due to friction and that the total length of the PVC pipe is 1 meter. Use this length to compute the average force of friction (for this calculation, you may neglect uncertainties).
Mass of the ball : 16.3 g
Predicted range : 0.3503 m
Actual range : 1.09 m
Solution :
Given that :
The predicted range is 0.3503 m
Time of the fall is :
[tex]$t=\sqrt{\frac{2H}{g}}$[/tex]
[tex]v_1t= 0.35[/tex] ...........(i)
[tex]v_0t= 1.09[/tex] ...........(ii)
Dividing the equation (ii) by (i)
[tex]$\frac{v_0t}{v_1t}=\frac{1.09}{035} = 3.11$[/tex]
∴ [tex]v_0=3.11 \ v_1[/tex]
Now loss of energy = change in the kinetic energy
[tex]$W=\frac{1}{2} m [v_0^2-v_1^2]$[/tex]
[tex]$W=\frac{1}{2} \times (16.3 \times 10^{-3}) \times [v_0^2-\left(\frac{v_0}{3.11}\right)^2]$[/tex]
[tex]$W=7.307\times 10^{-3} \ v_0^2$[/tex]
If f is average friction force, then
(f)(L) = W
(f) (1) = [tex]$7.307\times 10^{-3} \ v_0^2$[/tex]
(f) = [tex]$7.307\times 10^{-3} \ v_0^2$[/tex]
The Average force of friction is ( F ) = 7.307 * 10⁻³ v₀²
Given data:
Predicted range ( v₁t ) = 0.3503 m
Actual range ( v₀t ) = 1.09 m
mass = 16.3 g
First step : Determine the value of V₀
[tex]t = \sqrt{\frac{2H}{g} }[/tex] , v₁t = 0.3503 , ( v₀t ) = 1.09 m
To obtain the value of V₀
Divide ( v₀t ) by ( v₁t ) = 1.09 / 0.3503 = 3.11 v₁
∴ V₀ = 3.11 v₁
Next step : Determine the average force of friction ( f )
given that loss of energy results in a change in kinetic energy
W = [tex]\frac{1}{2} m ( vo^{2} - v1^{2} )[/tex]
= 1/2 * 16.3 * 10⁻³ * [ v₀² - [tex](\frac{v_{0} }{3.11} )^{2}[/tex] ]
∴ W = 7.307 * 10⁻³ v₀²
Average force of friction = W / Actual length
= 7.307 * 10⁻³ v₀² / 1
∴ Average force of friction ( F ) = 7.307 * 10⁻³ v₀²
Hence we can conclude that the average force of friction is 7.307 * 10⁻³ v₀²
Learn more about average force of friction : https://brainly.com/question/16207943
Your question has some missing data below are the missing data related to your question
Mass of the ball : 16.3 g
Predicted range : 0.3503 m
Actual range : 1.09 m
Space debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed in m/s of a satellite in an orbit 980 km above the Earth's surface.
Answer:
564
Explanation:
The following 1H NMR absorptions were obtained on a spectrometer operating at 200 MHz and are given in Hz downfield from TMS. Convert the absorptions to δ units. a) 416 Hz = δ b) 1.97×103 Hz = δ c) 1.50×103 Hz = δ
Answer:
For (a): The chemical shift is [tex]2.08\delta[/tex]
For (b): The chemical shift is [tex]9.85\delta[/tex]
For (c): The chemical shift is [tex]7.5\delta[/tex]
Explanation:
To calculate the chemical shift, we use the equation:
[tex]\text{Chemical shift in ppm}=\frac{\text{Peak position (in Hz)}}{\text{Spectrometer frequency (in MHz)}}[/tex]
Given value of spectrometer frequency = 200 MHz
For (a):Given peak position = 416 Hz
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{416Hz}{200MHz}\\\\\text{Chemical shift in ppm}=2.08\delta[/tex]
For (b):Given peak position = [tex]1.97\times 10^3 Hz[/tex]
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{1.97\times 10^3Hz}{200MHz}\\\\\text{Chemical shift in ppm}=9.85\delta[/tex]
For (c):Given peak position = [tex]1.50\times 10^3 Hz[/tex]
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{1.50\times 10^3Hz}{200MHz}\\\\\text{Chemical shift in ppm}=7.5\delta[/tex]
Calculate the Combined resistance of the Circuit voltage across each resistor Current Passing through each resistor of 6,8,12ohms
Answer:
Sorry I don't know the answer
a 1600 kg car rounds a curve of radius 71 m banked at an angle of 15, What is the magnitude of the friction force required for the car to travel at 86 km/h
Answer:
The frictional force required for the car to travel is 8,365.01 N
Explanation:
Given;
mass of the car, m = 1600 kg
radius of the curved road, r = 71 m
banking angle, θ = 15⁰
velocity of the car, v = 86 km/h = 86/3.6 = 23.89 m/s
The two forces acting on the are:
1. the parallel force to the banked plane
2. the centripetal force pushing the car up the banked plane
To keep the car traveling at 86 km/h;
frictional force + parallel force to the plane = centripetal force pushing the car up the banked plane
The parallel force to the banked plane:
F = mgsinθ
F = 1600 x 9.8 x sin(15⁰)
F = 4,057.98 N
The centripetal force pushing the car up the banked plane:
[tex]F_c= (\frac{mv^2}{r} )cos(\theta)\\\\F_c = (\frac{1600 \times 23.89^2}{71} )cos(15^0)\\\\F_c = 12,422.99 \ N[/tex]
The frictional force required for the car to travel:
[tex]F_k = F_c - F\\\\F_k = 12,422.99 \ N - 4,057.98 \ N\\\\F_k = 8,365.01 \ N[/tex]
Therefore, the frictional force required for the car to travel is 8,365.01 N
please help very easy 5th grade work giving brainliest
Answer:
the answer is option B because opposit sides of the magnets attract each other
An astronaut throws a wrench in interstellar space. How much force is required to keep the wrench moving continuously with constant velocity?
A.
a force equal to its weight on Earth
B.
a force equal to zero
C.
a force equal to half of its weight on Earth
D.
a force equal to double its weight on Earth
Answer:
0 N
Explanation:
This is a trick question, the mass of the wrench would be 0 due to it being in space and has no gravitational pull to weight it down. And since acceleration is defined as the rate and change of velocity with no respect of time and the wrench is moving at a constant velocity, that means the velocity is 0. and since F = m*a it would be F = 0 * 0 = 0 N
PLS HELP ME 100 POINTS PLS I NEED HELP QUICK PLS
For this project, you are expected to submit the following:
1. Your Student Guide with completed Student Worksheet
2. Your scale model of the solar system
Step 1: Prepare for the project.
a) Read through the guide before you begin so you know the expectations for this project.
b) If anything is not clear to you, be sure to ask your teacher.
Step 2: Conduct research on the actual sizes of the planets.
a) Do research to find the actual sizes of the Sun and the planets. This information is typically represented as diameter in kilometers (km). Recall that diameter is the length of the imaginary straight line from one side of a figure, such as a sphere, to the opposite side of the figure. This line passes through the center of the figure.
b) Record the actual diameters of the Sun and the planets in the first column of the table in the Student Worksheet.
c) Copy the link of the website you used into the space provided in the Student Worksheet.
Step 3: Determine the scaled sizes of the planets.
a) Go to a reliable website to find a solar system model calculator.
b) Decide how big you want the Sun in your model to be. For example, you could assign your Sun to be 300 mm. Input this figure in the calculator, and the calculator will determine the diameters of the eight planets for you. You want to make sure that the Sun is big enough so that the smallest planet will still be big enough to draw.
c) Record information from the calculator in the second column of the table in the Student Worksheet.
d) Copy the link of the website you used into the space provided in the Student Worksheet.
Step 4: Create a scale model of the solar system.
a) Draw and cut construction paper models of the Sun and the planets using the scaled measurements from the table.
b) Glue the models on the poster board. You can glue or tape poster boards together if necessary. Be sure to put the Sun in the center and to put the planets and a drawing of their orbits in order from nearest to farthest from the Sun.
Note: Remember that in this model, the diameter of the planets is scaled but the distance of the planets from the Sun is not. That means your model does not accurately represent the distances of the planets from the Sun so you need not worry about these measurements.
c) Label the Sun and the planets.
d) Put an attention-catching title above or below your model.
e) Write your name on the back of your poster board.
Step 5: Complete the Student Worksheet.
a) Make sure the table in the Student Worksheet is complete.
b) Answer the questions in the Student Worksheet.
c) Check to make sure you added the sources you used for this project in the Student Worksheet.
Step 6: Evaluate your project using this checklist.
If you can check each of the following boxes, you are ready to submit your project.
Did you conduct research to find the actual size of the Sun and the planets? Did you record this information in the table in the Student Worksheet?
Did you use a solar system model calculator to determine the scaled size of the Sun and planets? Did you record this information in the Student Worksheet?
Did you add the links of the websites you used for this project to the Student Worksheet?
Did you use the scaled sizes to create models of the Sun and the planets?
Did you put your model together in a way that represents the solar system (Sun in the center and planets in order from nearest to farthest from the Sun)?
Did you label each component of your model?
Did you add an attention-catching title above or below your model?
Did you write your name on the back of your poster board?
Did you complete the Student Worksheet at the end of this guide?
Step 7: Revise and submit your project.
a) If you were unable to check off all the requirements on the checklist, go back and make sure that your project is complete. Save your project before submitting it.
b) Turn in your scale model of the solar system to your teacher. Be sure that your name is on it.
c) Submit your Student Guide through the virtual classroom.
d) Congratulations! You have completed your project.
Answer
I hope this help....
Explanation:
Answer:
Hope this helps
Explanation:
The viscid silk produced by the European garden spider (Araneus diadematus) has a resilience of 0.35. If 10.0 J of work are done on the silk to stretch it out, how many Joules of work are released as thermal energy as it relaxes?
Answer: The energy released as thermal energy is 6.5 J
Explanation:
Energy stored by the spider when it relaxes is given by:
[tex]E_o=\text{Resilience}\times \text{Work}[/tex]
We are given:
Resilience = 0.35
Work done = 10.0 J
Putting values in above equation, we get:
[tex]E_o=0.35\times 10\\\\E_o=3.5J[/tex]
Energy released at thermal energy is the difference between the work done and the energy it takes to relaxes, which is given by the equation:
[tex]E_T=\text{Work done}-E_o[/tex]
Putting values in above equation, we get:
[tex]E_T=(10-3.5)=6.5J[/tex]
Hence, the energy released as thermal energy is 6.5 J
The energy released as thermal energy when 10 J of work is done to stretch silk will be 6.5 J
What is thermal energy?Thermal energy refers to the energy contained within a system that is responsible for its temperature. Heat is the flow of thermal energy.
Energy stored by the spider when it relaxes is given by:
[tex]\rm E_o=Resilience \ \times Work[/tex]
We are given:
Resilience = 0.35
Work done = 10.0 J
Putting values in above equation, we get:
[tex]\rm E_o=0.35\times 10[/tex]
[tex]E_o=3.5\ J[/tex]
Energy released at thermal energy is the difference between the work done and the energy it takes to relaxes, which is given by the equation:
[tex]E_T=\rm Work done -E_o[/tex]
Putting values in above equation, we get:
[tex]E_T=(10-3.5)=6.5\ J[/tex]
Hence, the energy released as thermal energy is 6.5 J
To know more about thermal energy follow
https://brainly.com/question/19666326
Lighting is the movement of?
Explanation:
Movement:refers to the changing in the lights whether it be a change in intensity, color or direction of origin.