Answer:
Step-by-step explanation:
Choice A is the only one that is applicable.
Answer:
A. F(x) has 1 relative minimum and maximum.
Step-by-step explanation:
[tex]{ \bf{F(x) = 2 {x}^{3} - 2 {x}^{2} + 1 }}[/tex]
As x and F(x) tend to positive and negative infinity:
[tex]{ \sf{x→ \infin : f(x) = \infin}} \\ { \sf{x→ {}^{ - } \infin : f(x) → {}^{ - } \infin}}[/tex]
❎So, B and C are excluded.
Roots of the polynomial:
[tex]{ \sf{f(x) = 2 {x}^{3} - 2 {x}^{2} + 1}} \\ { \sf{f(x) = - 0.6 \: \: and \: \: 0.8}}[/tex]
❎, D is also excluded.
✔, A
If the outliers are not included what is the mean of the data set 76,79,80,82,50,78,79,81,82
Answer:
The answer is 80
Step-by-step explanation:
we know that
the outlier is 50, as it is not around the other numbers in the data set.
therefore
mean=[76+ 79 + 80 + 82+ 78 + 83 + 79 + 81 + 82]/9
mean=[720]/9
mean=80
Answer:
80
Step-by-step explanation:
mean=[76+ 79 + 80 + 82+ 78 + 83 + 79 + 81 + 82]/9
mean=[720]/9
mean=80
2) Find the sum of the first 50 terms of the
following series, to the nearest integer.
6, 10, 14,...
Answer:
The sum of the first 50 is 5200
Step-by-step explanation:The given sequence is a linear sequence.
So, first we calculate the common difference
d=t2-t1
d=10-6=4
The sum of the first 50 terms is then calculated using: sorry it wont let me copy and paste my explo and im lazy
Answer:
5,200
Step-by-step explanation:
6, 10, 14, ...
Sum = [ number of terms(first term+last term) ] / 2
-we know there are 50 terms
-we now the first term is 6
-we need to find the last term
last term = first term + (n-1)* difference between first and second term
last term = 6 + (50-1) * (10-6)
last term = 6 + 49*4 = 202
Sum = [ number of terms(first term+last term) ] / 2
Sum = [ 50 ( 6 + 202) ] / 2 = 5,200
QUICK! WHAT IS THIS ANSWER?
Answer:
a)2x-3y
b)4(9a-4)
Step-by-step explanation:
a)we want to expand the following expression:
[tex] \displaystyle - \frac{1}{4} ( - 8x + 12y)[/tex]
well to do so we consider distributive property thus distribute:
[tex] \displaystyle - \frac{1}{4} (- 8x )+ - \frac{1}{4}( 12y)[/tex]
reduce fraction which yields:
[tex] \displaystyle - \frac{1}{4} (- 8x )+ - \frac{1}{4}( 12y) \\ \\ \displaystyle 2x + ( - 3y)[/tex]
simplify Parentheses:
[tex] \displaystyle \boxed{ 2x - 3y}[/tex]
b)in the expression there's a common factor of 4 therefore factor it out:
[tex] \displaystyle 9.4a - 4.4 \\ \\ \displaystyle \boxed{4(9a - 4)}[/tex]
Can someone help me with this math homework please!
Answer:
10
Step-by-step explanation:
f ( 1 ) = 18
First term ( a ) = 18
f ( n + 1 ) = f ( n ) - 2
When, n = 1
f ( 1 + 1 ) = f ( 1 ) - 2
f ( 2 ) = 18 - 2
f ( 2 ) = 16
f ( 2 ) - f ( 1 )
= 16 - 18
= - 2
Common difference ( d ) = - 2
f ( 5 )
= a + 4d
= 18 + 4 ( - 2 )
= 18 - 8
= 10
25)
Jackson's current salary is $36,000 per year. Each year his salary is 1.04 times the previous yeal's salary. What
will his salary be in his 5th year?
OA) $42,214.92
OB) $42,114.91
Answer:
$43,799.50
Step-by-step explanation:
USing the formula:
A = P(1+r)ⁿ
n is the time = 5
1 + r = 1.04
P = 36,000
Substitute the values into the formula
A = 36000(1.04)⁵
A = 36,000(1.2166529024)
A = 43,799.50
Hence the value in the fifth year will e $43,799.50
Which of the following is a statement? (a) The fishes are beautiful (b) Study mathematics. (c) x is a capital of country y. (d) Water is essential for health.
Answer:
its letter a
Step-by-step explanation:
I hope you help
A random sample of 13 teenagers were surveyed for a hypothesis test about the mean weekly amount spent on convenience goods. Researchers conduct a one-mean hypothesis test, at the 1% significance level, to test whether the average spent per week on convenience goods is greater than 50 dollars.
Answer:
Please find the complete question and the graph in the attached file.
Step-by-step explanation:
On the basis of the data,
The level of importance is [tex]\alpha = 0.01[/tex]
Freedom levels [tex]= n -1 = 13 -1 = 12[/tex]
For the right-tailed test, the critical value is [tex]t_c = 2.681[/tex]
(Partially t-table permitted [tex]\alpha = 0.01 \ and\ df =12[/tex])
Find the general term of the ap whose 7th term is -1 and 16th term is 17? (pls Hurry up I will mark you Brainliest and don't reply in a silly way or I'll report you)
Answer:
The answer is -13.
Step-by-step explanation:
The formula of the nth term of an AP(arthimetic progression) is a+(n-1)d.
So the 7th term will be a+6d= -1 ---(1)
The 16th term will a+15d=17 ---(2)
Subtract (2) and (1)
a+15d-(a+6d)=17-(-1)
=a+15d-a-6d=17+1
9d=18
d=18/9
d=2.
Substitute d in eq (1)
a+6(2)= -1
a+12=-1
a= -1-12= -13
Thus the general term of the ap is -13
Which of the following statements does not prove that ABCD is a parallelogram.
Given: A(-4, 7), B(3,0), C(2,-5) and D(-5, 2).
Answer:
answer A
Step-by-step explanation:
A=(-4,7)
C=(2,-5)
midpoint = U=((-4+2)/2, (7+(-5))/2)=(-1,1))
B=(3,0)
D=(-5,2)
midpoint = V=((3+(-5))/2,(0+2)/2)=( -1,1)
Diagonals have the same middle, the quadrilater is a parallogram.
Analyze the diagram below and complete the instructions that follow.
Quadrilateral LMNO is a rectangle. Find MN.
A.
7
B.
10
C.
18
D.
27
Answer:
there is no diagram ......
El periodo de un movimiento circular uniforme es de
8 segundos. ¿Cuál es su velocidad angular?
Answer: I dont understand what your saying im sorry, I'd really like to help but I cant :(
What is the probability of rolling 2 standard dice which sum to 9?
Harry reads that a particular element has an atom with a mass of 0.000000000012 grams. What is the weight of the atom expressed in scientific notation?
A.
1.2 × 10-9 grams
B.
1.2 × 10-11 grams
C.
1.2 × 1011 grams
D.
1.2 × 1012 grams
Answer:
Since this number is small we know that the exponent will be negative.
In scientific notation the decimal must be between the first two NON zero numbers. So move the decimal and count how many positions it was moved.
1.2 x 10 ^-11
Step-by-step explanation:
Help me plss I’m lost ☺️❤️
Answer:
there is only one way to to roll a 3
1/36 = .044 = 4.4%
Step-by-step explanation:
plz help me to do this
What is the minimum perimeter of a rectangle with an area of 625 mm^2
Question 2 options:
100 mm
125 mm
156.25 mm
312.5 mm
Show your work:
Answer:
100 mm
Step-by-step explanation:
Square root the area to find the length of each side
[tex]\sqrt[]{625} =25[/tex]
Multiply 25 by 4 to get the sum of all four sides for the perimeter
25 x 4 = 100
Wendy brought 4 cakes and 2 pies for $20. The cost of a cake is twice the cost of 1 pie. A) What was the cost of one cake b)What was the cost of 1 pie?
Answer:
a. The cost of one cake is $4.
b. The cost of one pie is $2.
Step-by-step explanation:
Let the cost of cake be C.Let the cost of pie be PC = 2P .....equation 1
4C + 2P = 20 .....equation 2
Substituting eqn 1 into eqn 2, we have;
4(2P) + 2P = 20
8P + 2P = 20
10P = 20
P = 20/10
Pie, P = $2
Next, we would determine the cost of a cake;
From equation 1;
C = 2P
Substituting the value of "P" we have;
C = 2 * 2
Cake, C = $4
Therefore, we would have the following answers;
a. The cost of one cake is $4.
b. The cost of one pie is $2.
Check:
From equation 2;
4C + 2P = 20
4(4) + 2(2) = 20
16 + 4 = 20
20 = 20
Pleaseeee helppppppp
Answer:
d = 8t
Step-by-step explanation:
what is 3 over 4 divided by 1 over 6
How many real solutions exist for this system of equations?
y=x^2+4
y= 4x
ОА. .
zero
OB.
one
Ос.
two
OD
infinite
Reset
Next
Answer:
One
Step-by-step explanation:
Set each equations equal to each other
[tex] {x}^{2} + 4 = 4x[/tex]
[tex] {x}^{2} - 4x + 4[/tex]
Find the discrimant.
[tex]{ - 4 {}^{2} - 4(1)(4) } = 0[/tex]
This means there is one real solution. Since the discramnt equal 0.
The number -8 lies to the right of ___________ on the number line.
8
0
-6
-12
Answer:
-6
Step-by-step explanation:
-123456789101112131415
Jernel has to figure out the area of her square garage. She knows that one side of the garage is equal to the length of her rabbit pen. The dimensions of the rectangular rabbit pen are 13 by 10.
Answer:169
Step-by-step explanation:13 x 13 = 169
You would take the larger side of the pen (13) or else it wouldn’t fit if you chose 10.
Please helppppp!!!!!!!!
Answer:
128 cm^2
Step-by-step explanation:
The area of a trapezoid is given by
A = 1/2 (b1+b2) h
where b1 and b2 are the lengths of the bases and h is the height
A =1/2( 10+22) * 8
A = 1/2 (32)8
= 128
Answer:
A=128 cm²
Step-by-step explanation:
Hi there!
We are given a trapezoid and we want to find the area of it
The area of a trapezoid is given as [tex]\frac{a+b}{2}h[/tex], where a and b are the bases and h is the height
The bases are the parallel sides
They are the sides marked as 10 cm and 22 cm in this case
The height is the distance between the bases
In this case, it is the side marked as 8 cm
We know everything needed for the area, let's just label everything to avoid any confusion
a=10
b=22
h=8
Now substitute into the formula
A=[tex]\frac{a+b}{2}h[/tex]
A=[tex]\frac{10+22}{2}*8[/tex]
add the numbers on the numerator together
A=[tex]\frac{32}{2}*8[/tex]
Divide 32 by 2
A=16*8
multiply
A=128 cm²
Hope this helps!
What is Index Law 1?
please give a definition
Answer:
LAW 2: The second law of indices tells us that when dividing a number with an exponent by the same number with an exponent, we have to subtract the powers. In algebraic form, this rule is as follows . ... Example: In this example, the powers were multiplied together to give the answer which is 3 to the power of 6.
TRIANGLES please help!! :)
Answer:
A
Step-by-step explanation:
First, the list of congruence theorems are:
SSS
SAS
ASA
AAS
HL
SSA is not on the list, so we can cross that out
Next, ASA implies that two angles are congruent, but we only know that one pair of angles (the right angles) are congruent, so we can cross that out
After that, the angle is not connecting the congruent sides, so D is not an option
Finally, we know that the longest sides (AD / AC) are congruent to each other, one other pair of legs/sides are congruent, and the triangles are both right triangles. Therefore, we can apply HL here
Please help as soon as possible.
Answer:
C = 37.6991
Step-by-step explanation:
The equation for the circumference of a circle is given: C = π · d
where, d is the diameter of the circle.
Plug in the value of d = 12 and use the π button on the calculator.
C = π · 12
C = 37.6991
10 fracciones que generen decimales exactos 10 fracciones que generen decimales inexactos puros y 10 fraccionarios que generen decimales periódicos mixtos
Answer:
Un número decimal exacto es algo de la forma:
3.27
Para reescribir este número como una fracción, podemos ver que tiene dos dígitos luego del punto.
Entonces podemos multiplicar y dividir por 100 (misma cantidad de ceros que dígitos luego del punto decimal)
así obtenemos:
3.27*(100)/(100) = 327/100
Entonces la fracción 327/100 genera un decimal exacto.
Así, encontrar 10 fracciones es trivial, 10 ejemplos son:
7/10 = 0.7
314/100 = 3.14
27/10 = 2.7
27/100 = 0.27
2/10 = 0.2
25/100 = 0.25
31/10 = 3.1
12/10 = 6/5 = 1.2
131/10 = 13.1
142/100 = 1.42
Ahora, un decimal inexacto puro es algo de la forma:
3.33...
donde el 3 se repite infinitamente.
Tratemos de reescribir este número como una fracción:
primero debemos ver la cantidad de dígitos que se repiten, en este caso es uno solo, el 3, entonces multiplicamos por 10:
3.33*10 = 33.33...
Ahora, podemos restar el numero original:
33.333... - 3.333... = 30
Entonces tenemos que:
3.33*9 = 30
3.33 = 30/9
La fracción:
30/9 nos da in decimal inexacto puro.
Ahora que sabemos construirlas, 10 ejemplos pueden ser:
30/9 = 3.33....
1/3 = 0.33...
40/9 = 4.44...
50/9 = 5.55...
60/9 = 6.66...
70/9 = 7.77...
20/9 = 2.22...
55/9 = 6.11...
544/99 = 5.5959...
10/9 = 1.11...
Finalmente, un periódico mixto es algo de la forma:
1.2343434...
Es decir, el 34 se repite infinitamente, pero también tenemos un 2 luego del punto decimal, por lo que este número no es puramente periódico.
Para construirlos, podemos tomar una fracción exacta, como
1.1 y una periódica, como 1.11...
Si las sumamos, obtenemos:
1.1 + 1.11... = 2.211...
donde el uno se repetirá infinitamente.
Así, simplemente sumando las fracciones del primer caso con las del segundo, obtendremos decimales periódicos mixtos, por ejemplo:
7/10 + 55/9 = 613/90 = 0.7 + 6.11... = 6.8111....
7/10 + 10/9 = 163/90 = 0.7 + 1.11... = 1.811....
31/10 + 10/9 = 379/90 = 3.1 + 1.11... = 4.2111...
31/10 + 20/9 = 479/90 = 3.1 + 2.22... = 5.322...
31/10 + 30/9 = 579/90 = 3.1 + 3.33... = 6.4333...
27/10 + 20/9 = 443/90 = 2.7 + 2.22... = 4.922...
37/10 + 20/9 = 533/90 = 3.7 + 2.22... = 5.922...
4/10 + 10/9 = 136/90 = 0.4 + 1.11... = 1.511....
3/100 + 10/9 = 1027/900 = 0.03 + 1.11... = 1.14111...
4/10 + 20/9 = 236/90 = 0.4 + 2.22... = 2.622....
help asap no wrong answers----------------------
Answer:
[tex]y=-2(sin(2x))-7[/tex]
Step-by-step explanation:
1. Approach
Given information:
The graph intersects the midline at (0, -7)The graph has a minimum point at ([tex]\frac{\pi}{4}[/tex], 9).What conclusions can be made about this function:
The graph is a sine function, as its y-intercept intersects the midlineThis graph has a negative coefficient, this is because after intersecting the midlines at the y-intercept, the function has a minimum.This graph does not appear to have undergone any horizontal shift, as it intercepts the midlines with its y-interceptTherefore, one has the following information figured out:
[tex]y=-n(sin(ax))+b[/tex]
Now one has to find the following information:
amplitudemidlineperiod2. Midline
The midlines can simply be defined as a line that goes through a sinusoidal function, cutting the function in half. This is represented by the constant (b). One is given that point (0, -7) is where the graph intersects the midline. The (y-coordinate) of this point is the midline. Therefore, the midline is the following:
y = -7
2. Amplitude
The amplitude is represented by the coefficient (n). It can simply be defined by the distance from the midline to point of maximum (the highest part of a sinusoidal function) or point of minimum (lowest point on the function). Since the function reaches a point of minimum after intercepting the (y-axis) at its midlines, the amplitude is a negative coefficient. One can find the absolute value of the amplitude by finding the difference of the (y-coordinate) of the point of minimum (or maximum) and the absolute value of the midline.
point of minimum: [tex](\frac{\pi}{4},9)[/tex]
midline: [tex]y=-7[/tex]
Amplitude: 9 - |-7| = 9 - 7 = 2
3. Period
The period of a sinusoidal function is the amount of time it takes to reach the same point on the wave. In essence, if one were to select any point on the sinusoidal function, and draw a line going to the right, how long would it take for that line to reach a point on the function that is identical to the point at which it started. This can be found by taking the difference of the (x- coordinate) of the intersection point of the midline, and the (x-coordinate) of the point of minimum, and multiplying it by (4).
point of minimum: [tex](\frac{\pi}{4},9)[/tex]
midline intersection: [tex](0, -7)[/tex]
Period: [tex]4(\frac{\pi}{4}-0)=4(\frac{\pi}{4})=\pi[/tex]
However, in order to input this into the function in place of the variable (a), one has to divide this number by ([tex]2\pi[/tex]).
[tex]a=\frac{2\pi}{\pi}=2[/tex]
4. Assemble the function
One now has the following solutions to the variables:
[tex]n =-16\\a=2\\b=-7\\[/tex]
Substitute these values into the function:
[tex]y=-2(sin(2x))-7[/tex]
True or false..?
In a parallelogram, consecutive angles are supplementary.
Answer:
True
Step-by-step explanation:
Both pairs of opposite angles are congruent. parallelogram, rectangle, rhombus, square. Both pairs of opposite sides are congruent. parallelogram, rectangle, rhombus, square. All consecutive angles are supplementary. parallelogram, rectangle, rhombus, square. diagonals bisect each other. parallelogram, rectangle, rhombus, square.
Answer:
true
Step-by-step explanation:
any 2 consecutive angles are supplamentary
Someone, please help me on this one
Answer:
D
Step-by-step explanation:
(f + g)(x)
= f(x) + g(x)
= 4x² + 7x - 3 + 6x³ - 7x² - 5 ← collect like terms
= 6x³ - 3x² + 7x - 8
Answer:
D. (f + g )( x ) = 6x³ - 3x² + 7x - 8
Step-by-step explanation:
Given :-
f ( x ) = 4x² + 7x - 3.g ( x ) = 6x³ - 7x² - 5.To Find :-
( f + g ) ( x ).Solution :-
(f + g )( x ) = 4x² + 7x - 3 + 6x³ - 7x² - 5.
Arranging like terms.
(f + g )( x ) = 6x³ - 7x² + 4x² + 7x -5 - 3
Combine like terms.
(f + g )( x ) = 6x³ - 3x² + 7x - 8