Step-by-step explanation:
[tex] {7}^{2n + 1} \div 49 = {7}^{3} [/tex]
[tex] {7}^{2n + 1} \div {7}^{2} = {7}^{3} [/tex]
[tex] {7}^{2n + 1 - 2}= {7}^{3} [/tex]2n-1=32n=4n=2TIME REMAINING
54:56
Bob and Carl each rented the same kind of moving truck from EZ Move. There was a flat rental fee plus a charge per mile that the truck was driven. Bob’s cost for his truck was $112.96 for 138 miles. Carl’s cost for his truck was $142.78 for 209 miles. Which equation can be used to represent the cost of the rental truck?
Round to the nearest hundredth if necessary.
y = 71 x minus 29.82
y = 25 x minus 66
y = 0.42 x + 71
y = 0.42 x + 55
Answer:
[tex]y = 0.42x+55[/tex]
Step-by-step explanation:
Given
Let:
[tex]x \to miles[/tex]
[tex]y \to amount[/tex]
[tex](x_1,y_1) = (138,112.96)[/tex] ---- Bobs'
[tex](x_2,y_2) = (209,142.78)[/tex] --- Carl
Required
The equation
First, calculate the slope (m)
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{142.78 - 112.96}{209 - 138}[/tex]
[tex]m = \frac{29.82}{71}[/tex]
[tex]m = 0.42[/tex]
The equation is calculated using:
[tex]y = m(x - x_1) + y_1[/tex]
So, we have:
[tex]y = 0.42(x - 138) + 112.96[/tex]
[tex]y = 0.42x - 57.96 + 112.96[/tex]
[tex]y = 0.42x+55[/tex]
A fair coin is tossed 5000 times. What can you say about getting the outcome of exactly 2500 tails
Step-by-step explanation:
You can't expect to get exactly 2500 out of 5000 tosses more than a few times . You will come pretty close, but that's only good in horseshoes.
Of course I'm answering this on the basis of a computer language and not actually performinig this a million tmes, each part of a million consisting of 5000 tosses.
Simulations and not completely unbiased, but based on experience, 5000 is a very small number and getting 2500 more than a couple of times is unlikely
The probability of flipping a coin
coming up heads and tails is 1/2.
________⚛⚛⚛⚛⚛_________So, toss 5000 times 5000/2= 2500
heads: 2500
tails : 2500
d. Pic
d. Z-a
PART II. ACTIVITIES
. Encircle the letter of the correct answer.
1. It contains two related data. It has horizontal axis and vertical axis.
a. Pie Graph
b. Bar Graph c. Line Graph
2. What do you call the horizontal axis of the line graph?
a. w-axis
b. x-axis
c. y-axis
3. What do you call the vertical axis of the line graph?
a. w-axis
b. x-axis
c. y-axis
4. Which of the following is not a step in making line graph?
a. Put a title on the line graph.
b. Connect the points with a line.
Draw the line for the x-axis and the z-axis.
d. Plot the points that correspond to each variable in the table,
5. It is shown just above the table or a line graph.
b. body
d. z-a
a, title
c. table
d. n
3. Directions: Study the line graph below. Encircle the letter of the corr
29. In the 2010-2011 NBA regular season, the Los Angeles Lakers won 7 more than twice as many games as they lost. The Lakers played 82 games. How many wins and losses did the team have?
Answer:
Loss 25 Games & Win 57 Games
Step-by-step explanation:
According to question,we have
The Los Angeles Lakers won 7 more than twice as many games as they lost.
Assume Total Loss=L & Thus Total Win = 2L + 7Total Win + Total Loss = Total Games Played
2L + 7 + L = 82
3L = 82-7
3L = 75 ⇔ L = 25
Thus, Total Loss=25 Games & Thus Total Win = 57 Games
Tasha needs 75 liters of a 40% solution of alcohol. She has a 20% and a 50% solution available. How many liters of the 20% and how many liters of the 50% solutions should she mix to make the 40% solution?
Answer:
25 liters of 20%
50 liters of 50%
Step-by-step explanation:
x = liters of 50%
75 - x = liters of 20%
50x + 20(75 - x) = 40(75)
50x + 1500 - 20x = 3000
30x = 1500
x = 50
75 - x = 25
a binomial distribution
has 30% rate of SUCCESS.
there are 6 triats. what
is probability that there
will be exactly 2 Successes
Answer:
0.324
Step-by-step explanation:
Given that :
Success rate = 30%
p = 30% = 0.3
q = 1 - p = 1 - 0.3 = 0.7
Number of trials, n = 6
Probability of having exactly 2 successes ; x = 2
P(x = 2)
Usibgbtge binomial probability relation :
P(x = x) = nCx * p^x * q^(n-x)
P(x = 2) = 6C2 * 0.3^2 * 0.7^4
P(x = 2) = 15 * 0.3^2 * 0.7^4
P(x = 2). = 0.324135
P(x = 2) = 0.324
11 Roger has m toy cars. Don has twice as many cars as Roger. Larry has five more cars than Roger. Write down an expression, in terms of m, to complete each statement. Don has cars H Larry has cars
Step-by-step explanation:
Roger has m toy cars.→ Number of cars Roger has = m
Don has twice as many cars as Roger.→ Number of cars Don has = 2(Cars Roger has)
→ Number of cars Don has = 2m
Larry has five more cars than Roger.→ Number of cars Larry has = 5 + (Cars Roger has)
→ Number of cars Larry has = 5 + m
The strongest winds of Hurricane Isabel extended 50 miles in all directions from the center.
What is the area of the hurricane in square miles? Leave your answer in terms of Pi
Answer:
20
Step-by-step explanation:
your mom
(6,1) (7, 2) (8, 2) (9, 1) is this a function
Answer:
Function
Step-by-step explanation:
This is a function
Each input goes to only one output
write cos2x as sinx
please help with this
Answer:
[tex]\cos(2\, x) = 1 - 2\, (\sin(x))^2[/tex].
Step-by-step explanation:
Angle sum identity for cosine: [tex]\cos(a + b) = \cos(a) \, \cos(b) - \sin(a) \, \sin(b)[/tex].
Pythagorean identity: [tex](\cos(a))^{2} + (\sin(a))^{2} = 1[/tex] for all real [tex]a[/tex].
Subtract [tex](\cos(x))^{2}[/tex] from both sides of the Pythagorean identity to obtain: [tex](\sin(a))^{2} = 1 - (\cos(a))^{2}[/tex].
Apply angle sum identity to rewrite [tex]\cos(2\, x)[/tex].
[tex]\begin{aligned}&\cos(2\, x)\\ &= \cos(x + x) \\ &= \cos(x) \, \cos(x) - \sin(x)\, \sin(x) \\ &= (\cos(x))^{2} + (\sin(x))^{2}\end{aligned}[/tex].
[tex](\sin(a))^{2} = 1 - (\cos(a))^{2}[/tex] follows from the Pythagorean identity. Hence, it would be possible to replace the [tex](\cos(x))^{2}[/tex] in the previous expression with [tex](1 - (\sin(x))^{2})[/tex].
[tex]\begin{aligned}&(\cos(x))^{2} - (\sin(x))^{2}\\ &= \left[1 - (\sin(x))^{2}\right] - (\sin(x))^{2} \\ &= 1 - 2\, (\sin(x))^{2} \end{aligned}[/tex].
Conclusion:
[tex]\begin{aligned}&\cos(2\, x) \\ &= (\cos(x))^{2} + (\sin(x))^{2} \\ &=1 - 2\, (\sin(x))^{2}\end{aligned}[/tex]
Sam is proving the product property of logarithms.
Answer: c
Step-by-step explanation: edge 2021
COMPUTE THE PROBABILITY. If, in a typical work day, a staff member receives 34 emails, what is the probabilitythat in a 5-day work week she will receive less than 175 emails?
Factor the trinomial, or state that the trinomial is prime.
y2-9y+14
Please help
=====================================================
Explanation:
To factor this, we need to find two numbers that
A) multiply to 14 (last term)B) add to -9 (middle coefficient)Through trial and error, you would find that the two numbers are -2 and -7
-2*(-7) = 14
-2 + (-7) = -9
So that's why the given trinomial factors to (y-2)(y-7)
You can use the FOIL rule to go from (y-2)(y-7) back to y^2-9y+14 again.
If F(x)= 3x-2 and G(x)= x^2+8, what is G(F(x))?
Answer:
(3x-2)^2+8= 9x^2-12x+12
A person invests $3,500 in an account that earns 7.5% interest compounded continuously. What is the value of the investment after 4 years?
I think it's: 4,674.14$
Answer:
A = $4724.36
Step-by-step explanation:
P = $3500
r = 7.5% = 0.075
t = 4years
n = 365
[tex]A = P(1 + \frac{r}{n})^{nt}\\\\[/tex]
[tex]=3500(1 + \frac{0.075}{365})^{365 \times 4}\\\\=3500(1.00020547945)^{365\times4}\\\\= 3500 \times 1.34981720868\\\\= 4724.36023037\\\\= \$ 4724.36[/tex]
l[tex]\lim_{n \to \0} \frac{sin x}{x}[/tex]
1
Step-by-step explanation:
[tex]\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}[/tex]
Let
[tex]f(x)= \sin x[/tex]
[tex]g(x)=x[/tex]
We are going to use L'Hopital's Rule here that states
[tex]\displaystyle \lim_{x \to c}\dfrac{f(x)}{g(x)}=\lim_{x \to c}\dfrac{f'(x)}{g'(x)}[/tex]
We know that
[tex]f'(x) = \cos x[/tex] and [tex]g'(x)=1[/tex]
so
[tex]\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=\lim_{x \to 0}\dfrac{\cos x}{1}=1[/tex]
At the end of a snowstorm, Jamal had 18 inches of snow on his lawn. The temperature then increased and the snow began to melt at a constant rate of 2.5 inches per hour. Assuming no more snow was falling, how much snow would Jamal have on his lawn 5 hours after the snow began to melt? How much snow would Jamal have on his lawn after tt hours of snow melting?
Answer:
Part 1)
5.5 inches.
Part 2)
[tex]y=-2.5t+18[/tex]
Step-by-step explanation:
We can write a linear equation to model the function.
Let y represent the inches of snow and let t represent the number of hours since the end of the snowstorm.
A linear equation is in the form:
[tex]y=mt+b[/tex]
Since there was 18 inches of snow in the beginning, our y-intercept or b is 18.
Since it melts at a constant rate of 2.5 inches per hour, our slope or m is -2.5.
Substitute:
[tex]y=-2.5t+18[/tex]
This equation models how much snow Jamal will have on his lawn after t hours of snow melting.
So, after five hours, t = 5. Substitute and evaluate:
[tex]y=-2.5(5)+18=5.5\text{ inches}[/tex]
After five hours, there will still be 5.5 inches of snow.
Which of the following represents the graph of f(x) = 4X – 2?
Answer:
The bottom one.
Step-by-step explanation:
ASAP please helppp
Answer:
1.3
Step-by-step explanation:
Raise/run = slope aka distance in this situation
8/6 = 1.3
Answer:
10 units
Step-by-step explanation:
use the distance formula as thought in school
Someone help please!!
Answer:
9 (a) [tex]d = \frac{\sqrt{e}}{\sqrt{3}}[/tex]
9 (b) [tex]d = \frac{\sqrt{7k}}{\sqrt{2}}[/tex]
Step-by-step explanation:
Hope this helped!
How do I do this question?
Answer:
3rd OptionStep-by-step explanation:
[tex] \sqrt{8} + 3 \sqrt{2} + \sqrt{32} [/tex]
[tex] = 2 \sqrt{2} + 3 \sqrt{2} + 4 \sqrt{2} [/tex]
[tex] = 9 \sqrt{2} (ans)[/tex]
Consider the polygon defined by the coordinates A(−3, 5), B(3, 7), C(6, −2), and D(0, −4). Which statements are correct?
A) Area of ABCD = 60 units2
B) AB = 60 units
C) CD = 40 units
D) BC = 80 units
E) Perimeter of ABCD ≈ 31.6 units
Answer:
A,C,E
Step-by-step explanation:
the equation x^2 + y^2 + 21 = 40 + 18y. What is the radius of this cookie?
Answer:
The radius is 10
Step-by-step explanation:
Given
[tex]x^2 + y^2 + 21 = 40 + 18y.[/tex]
Required
The radius
Rewrite as:
[tex]x^2 + y^2 - 18y = 40-21[/tex]
Subtract 81 from both sides
[tex]x^2 + y^2 - 18y +81= 40-21+81[/tex]
Expand
[tex]x^2 + y^2 - 9y - 9y +81= 40-21+81[/tex]
Factorize
[tex]x^2 + y( y- 9) - 9(y -9)= 40-21+81[/tex]
Factor out y - 9
[tex]x^2 + (y- 9) (y -9)= 40-21+81[/tex]
Express as squares
[tex]x^2 + (y- 9)^2= 100[/tex]
[tex]x^2 + (y- 9)= 10^2[/tex]
The equation of a circle is:
[tex](x - a)^2 + (y- b)= r^2[/tex]
By comparison:
[tex]r^2=10^2[/tex]
[tex]r = 10[/tex]
A distribution of values is normal with a mean of 232.4 and a standard deviation of 92.2. Find the probability that a randomly selected value is between 66.4 and 241.6. P(66.4 < X < 241.6)
Answer:
P(66.4 < X < 241.6) = 0.5039 = 50.39%.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A distribution of values is normal with a mean of 232.4 and a standard deviation of 92.2.
This means that [tex]\mu = 232.4, \sigma = 92.2[/tex]
Find the probability that a randomly selected value is between 66.4 and 241.6.
This is the p-value of Z when X = 241.6 subtracted by the p-value of Z when X = 66.4.
X = 241.6
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{241.6 - 232.4}{92.2}[/tex]
[tex]Z = 0.1[/tex]
[tex]Z = 0.1[/tex] has a p-value of 0.5398
X = 66.4
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{66.4 - 232.4}{92.2}[/tex]
[tex]Z = -1.8[/tex]
[tex]Z = -1.8[/tex] has a p-value of 0.0359
0.5398 - 0.0359 = 0.5039
P(66.4 < X < 241.6) = 0.5039 = 50.39%.
To solve the equation, Lorie applies the distributive property, combines like terms, then applies the addition and subtraction properties of equality to isolate the variable term on one side of the equation and the constant term on the other side. What are the possible coefficients of x after Lorie has completed these steps?
10 (one-half x + 2) minus 5 = 3 (x minus 6) + 1
–32 and 2
–2 and 32
–2 and 2
–32 and 32
Answer:
-2 and -2
Step-by-step explanation:
A company wants to estimate, at a 95% confidence level, the proportion of all families who own its product. A preliminary sample showed that 30.0% of the families in this sample own this company's product. The sample size that would limit the margin of error to be within 0.047 of the population proportion is:
Answer:
The sample size is of 366.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is of:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
A preliminary sample showed that 30.0% of the families in this sample own this company's product.
This means that [tex]\pi = 0.3[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The sample size that would limit the margin of error to be within 0.047 of the population proportion is:
This is n for which [tex]M = 0.047[/tex]. So
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.047 = 1.96\sqrt{\frac{0.3*0.7}{n}}[/tex]
[tex]0.047\sqrt{n} = 1.96\sqrt{0.3*0.7}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.3*0.7}}{0.047}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96\sqrt{0.3*0.7}}{0.047})^2[/tex]
[tex]n = 365.2[/tex]
Rounding up:
The sample size is of 366.
A plane travels a distance of 22,000 km in a time of 3.6 hours.
What is its average speed rounded to the nearest whole number?
in km/h
Answer:
6111 km/hr
Step-by-step explanation:
Given
Distance travels by plane d=22,000 km
time taken t=3.6 hours
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
4n-6 in as a undistributed expression
Answer:
2( 2n-3)
Step-by-step explanation:
4n-6
2*2 n - 2*3
Factor out the greatest common factor
2( 2n-3)
Three potential employees took an aptitude test. Each person took a different version of the test. The scores are reported below. Kerri got a score of 80.8; this version has a mean of 62.1 and a standard deviation of 11. Cade got a score of 286.4; this version has a mean of 271 and a standard deviation of 22. Vincent got a score of 7.9; this version has a mean of 7.2 and a standard deviation of 0.7. If the company has only one position to fill and prefers to fill it with the applicant who performed best on the aptitude test, which of the applicants should be offered the job
Answer:
Kerri
calculate z scores z= (x - xbar)/stdev
Kerri = 1.7
Cade = .7
Vincent = 1
Step-by-step explanation:
Use I = PRT to solve.
Answer: 11%
Step-by-step explanation:
Since the formula for interest is:
I = PRT
where.
P = 1200
I = 99
T = 0.75
I = PRT
R = I/PT
R = 99/(1200 × 0.75)
R = 99/900
R = 11%
Therefore, the rate is 11%