Answer:
The given molecules are:
CH2Br2
CH3NH2
LiF
C3H8
CF4.
Which compound consists of the hydrogen bond as the strongest intermolecular force.
Explanation:
The hydrogen bond is the electrostatic force of attraction that exists between the covalently bonded H-atom of one molecule and a high electronegative atom (N, O, F) of another molecule.
For example, H-bonding in water is represented below:
Among the given molecules,
CH2Br2 does not have H-bond because there is no either N or O or F atom in it.
In LiF also there is no H-atom and no hydrogen bond.
C3H8 also does not have H-bond in it.
CF4 also does not have H-atom or hydrogen bond in it.
The answer is CH3NH2(methylamine).
It has an intermolecular hydrogen bond in it as shown in the attachment.
The dashed line represents the H-bond.
Define pure substance. How is it classified on the basid of chemical properties?
Answer:
if it is pure, the substances is either an element or a compound. if a substance is not chemically pure, it is either a heterogeneous mixture or a homogeneous mixture. if its composition is uniform throughout, it is a homogeneous.
Calculate the number of milliliters of 0.587 M NaOH required to precipitate all of the Fe3 ions in 197 mL of 0.654 M FeCl3 solution as Fe(OH)3. The equation for the reaction is: FeCl3(aq) 3NaOH(aq) Fe(OH)3(s) 3NaCl(aq)
Answer: The number of milliliters of 654 mL for 0.587 M NaOH required to precipitate all of the [tex]Fe^{3+}[/tex] ions in 197 mL of 0.654 M [tex]FeCl_{3}[/tex] solution as [tex]Fe(OH)_{3}[/tex].
Explanation:
The reaction equation is as follows.
[tex]FeCl_{3}(aq) + 3NaOH(aq) \rightarrow Fe(OH)_{3}(s) + 3NaCl(aq)[/tex]
Therefore, moles of [tex]Fe(OH)_{3}[/tex] are calculated as follows.
Moles = Molarity of [tex]Fe(OH)_{3}[/tex] [tex]\times[/tex] Volume (in L)
= 0.654 M [tex]\times[/tex] 0.197 L
= 0.128 mol
Now, according to the given balanced equation 1 mole of [tex]FeCl_{3}(aq)[/tex] reacts with 3 moles of NaOH(aq). Hence, moles of [tex]Fe(OH)_{3}[/tex] reacted are calculated as follows.
3 [tex]\times[/tex] 0.128 mol = 0.384 moles of NaOH
As moles of NaOH present are as follows.
Moles of NaOH = Molarity of NaOH [tex]\times[/tex] Volume (in L)
0.384 mol = 0.587 M [tex]\times[/tex] Volume (in L)
Volume (in L) = 0.654 L (1 L = 1000 mL) = 654 mL
Thus, we can conclude that the number of milliliters of 654 mL for 0.587 M NaOH required to precipitate all of the [tex]Fe^{3+}[/tex] ions in 197 mL of 0.654 M [tex]FeCl_{3}[/tex] solution as [tex]Fe(OH)_{3}[/tex].
Star
Planet
*
As the planet makes one completer revolution around the star, starting at the position shown the gravitational attraction between the star
and the planet will
A Continually decrease
3 Decrease, then increase
increase then decrease
Romain the same
RI
12.20 AM
618/2001
Answer:
according to the path shown in the figure it will start decreasing then again it will start increasing when the path will be nearer to the star.
Reason is gravitation force is indirectly proportional to the distance.
So, option B. decrease then increase is correct
Write the empirical formula for at least four ionic compounds that could be formed from the following ions:
a). PO3−4
b). NH+4
c). Fe3+
d). ClO−3
Answer:
a. Na₃PO₄
b. NH₄Cl
c. FeCl₃
d. KClO₃
Explanation:
a. Sodium tetraoxophosphate(V) Na₃PO₄
3Na⁺ + PO₄³⁻ → Na₃PO₄
b. Ammonium Chloride NH₄Cl
NH₄⁺ + Cl⁻ → NH₄Cl
c. Iron(III)chloride
Fe³⁺ + Cl⁻ → FeCl₃
d. Potassium trioxochlorate(V) KClO₃
K⁺ + ClO₃⁻ → KClO₃
This reaction was at equilibrium when 0.2 atm of iodine gas was pumped into the container, what happened to the equilibrium and the partial pressures of the gases
Answer:
Q was < K. Partial pressure of hydrogen decreased, iodine increased
Explanation:
After iodine was added the Q was [Select] K so the reaction shifted toward the Products [Select] ,The partial pressure of hydrogen [Select], Iodine [Select] |,and hydrogen iodide Decreased
Based on the equilibrium:
H2(g) + I2(g) ⇄ 2HI(g)
K of equilibrium is:
K = [HI]² / [H2] [I2]
Where [] are concentrations at equilibrium
And Q is:
Q = [HI]² / [H2] [I2]
Where [] are actual concentrations of the reactants.
When the reaction is in equilibrium, K=Q.
But as [I2] is increased, Q decreases and Q was < K
The only concentration that increases is [I2], doing partial pressure of hydrogen decreased, iodine increased
In the presence of excess iodide ions, the iodine formed by reaction of iodide with NBS will react further to form triiodide ions. What does the triiodide combine with to form the blue color of the endpoint
Answer:
Starch.
Explanation:
When the triiodide combine with starch, it forms dark blue colour. Amylose in starch is responsible for the occurrence of a deep blue color when the iodine is combine with the starch. The iodine molecule goes inside of the amylose coil which makes a linear triiodide ion complex that goes into the coil of the starch that leads to an intense blue-black color in the end so we can say that starch turns the colour into blue.
which type of chemical bond would be formed between two elements having electron configuration of 1s2 2s2 2p6 3s2 and 1s2 2s2 2p4
What should the coefficient for the diatomic oxygen (O2) be when this equation is correctly balanced
3
And then for Fe it should be 4 and for the products it should be 2!!
A substance with two oxygen atoms is combined with a substance with one oxygen atom to form one product. What is true of the product?
There will be no oxygen in the product. Some of the oxygen will evaporate into the air.
In the reaction represented by the equation: N2 + 3H2 → 2NH3, what is the conversion factor of nitrogen to ammonia? Explain by using law of definite proportion
Answer:
10/3
Explanation:
Hope this helps
Answer:
The compound formula for the ammonia is
N
H
3
. It is a colorless gas. It is the result of the chemical reaction between nitrogen and hydrogen gas. The chemical reaction between the gases is shown below:
N
2
+
3
H
2
→
2
N
H
3
cuáles son las características de la luz y en qué consisten
Answer:
Cuáles son las características de la luz y en qué consisten?
Explanation:
La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética
If 4.00 moles of O2 occupies a volume of 5.0 L at a particular temperature and pressure, what volume will 3.00 moles of oxygen gas occupy under the same condition?
Answer: Volume occupied by 3.00 moles of oxygen gas under the same condition is 3.75 L.
Explanation:
Given: [tex]n_{1}[/tex] = 4.00 moles, [tex]V_{1}[/tex] = 5.0 L
[tex]n_{2}[/tex] = 3.00 moles, [tex]V_{2}[/tex] = ?
Formula used is as follows.
[tex]\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}[/tex]
Substitute the values into above formula as follows.
[tex]\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}\\\frac{5.0 L}{4.00 mol} = \frac{V_{2}}{3.00 mol}\\V_{2} = 3.75 L[/tex]
Thus, we can conclude that volume occupied by 3.00 moles of oxygen gas under the same condition is 3.75 L.
At a fixed volume, a four-fold increase in the temperature of a gas will lead to _______ in pressure.
Question 2 options:
A)
no change
B)
a two-fold decrease
C)
a four-fold decrease
D)
a four-fold increase
Answer:
D) a four-fold increase
Explanation:
According to Gay-Lussac's law, which states that the pressure of a given amount of gas is directly proportional to the temperature at a constant volume, the pressure increases with an increase in temperature.
According to this question, at a fixed volume, a four-fold increase in the temperature of a gas will lead to a four-fold increase in the pressure as well.
Nitric acid (HNO3) reacts with ammonia (NH3) in aqueous solution. Use your knowledge of nitric acid to decide what type of reaction arrow(s) to use. $$ Part 2 (1 point) Sulfuric acid (H2SO4) reacts with ammonia in aqueous solution. Use your knowledge of sulfuric acid to decide what type of reaction arrow(s) to use. $$
Answer:
Both reactions are acid-base reactions
Explanation:
An acid base reaction is a reaction that occurs between an acid and a base. This reaction often leads to the formation of a salt in the process. The nature of the salt depends on the type of acid and base that reacted in the process.
Both HNO3 and H2SO4 are strong acids. However, ammonia is a weak base. The acid base reaction between ammonia and these strong acids is shown below;
HNO3(aq) + NH3(aq) ------>NH4NO3(aq)
H2SO4(aq) + 2NH3(aq) ----> (NH4)2SO4(aq)
what's the ph of 0.0000067 m hcl solution
Answer:
[tex]pH = - log[H {}^{ + } ] \\ = - log(0.0000067) \\ pH = 5.17[/tex]
1) 7.269 moles of oxygen gas are used in combusting butane (C H..). How many moles of carbon dioxide
gas are produced? You must start with a balanced chemical equation. Start with a balanced equation
Explanation:
C4H10 + 13/2O2 ---------> 4CO2 + 5H2O
so u can work out the amount of moles by doing
moles=mass/mr
mr of C4H10 is 12 × 4 + 10 =58
=7.269/58
= 0.125moles
Then u can use the molar ratio which is
6.5:4
0.125 ÷6.5 × 4 = 0.0769moles
hope this helps:)
The information below describes a redox reaction.
Ag+ (aq) + Al(s) — Ag(s) + Al3+ (aq)
Ag+ (aq) + -> Ag(s)
Al(s)->A3+ (aq) + 3e-
What is the coefficient of silver in the final, balanced equation for this reaction?
Answer:
Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
Explanation:
Oxidation: Al°(s) => Al⁺³(aq) + 3e⁻
Reduction: 3Ag⁺(aq) + 3e⁻ => 3Ag°(s)
_________________________________________
Net Rxn: Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
One mole of neutral aluminum atoms (Al°(s)) undergo oxidation delivering 3 moles of electrons to 3 moles silver ions (3Ag⁺³(aq)) that are reduced to 3 moles of neutral silver atoms (3Ag°(s)) in basic standard state 25°C; 1atm.
A balanced equation obeys the law of conservation of mass. According to the law of conservation of mass, mass can neither be created nor be destroyed. The coefficient of silver is 3.
What is a balanced equation?A balanced chemical equation can be defined as the chemical equation in which the number of reactants and products on both sides of the equation are equal. The amount of reactants and products on both sides of the equation will be equal in a balanced chemical equation.
The numbers which are used to balance the chemical equation are called the coefficients. The coefficients are the numbers which are added in front of the formula.
The balanced chemical equation for the given redox reaction is given as:
Al (s) + 3 Ag⁺ (aq) → Al³⁺ (aq) + 3Ag (s)
Thus the coefficient of silver is 3.
To know more about balanced equation, visit;
https://brainly.com/question/29769009
#SPJ7
HELP!!! i will give brainliest!!
Different chemical elements have different chemical symbols, and this is determined by their atomic structure. Look at the two chemical symbols in the image. Compare and contrast the atomic symbols and the atomic structure of fluorine and oxygen.
Answer:
Explanation:
fluorine have gained one electron that is why the sign is -1. they both have different number of protons. They have different neutron numbers. F have 10 and O have 8.
hope this helps :)
Acetylide ions react with aldehydes and ketones to give alcohol addition products.
a. True
b. False
Answer:
a
Explanation:
HELPP
There are 9.23 x 1023 molecules of water in a beaker, how many moles are there?
Answer:
Answer: There are 1.53 moles present in molecules of water in a beaker.
Explanation:
According to the mole concept, there are molecules present in 1 mole of a substance.
So, number of moles present in molecules are calculated as follows.
Thus, we can conclude that there are 1.53 moles present in molecules of water in a beaker.
Explanation:
If we have 1.23 mol of NaOH in solution and 0.85 mol of Cl2 gas is available to react, which one is the limiting reactant? Give your reason.
Answer:
NaOH is the limiting reactant.
Explanation:
Hello there!
In this case, since the reaction taking place between sodium hydroxide and chlorine has is:
[tex]NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Which must be balanced according to the law of conservation of mass:
[tex]2NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Whereas there is a 2:1 mole ratio of NaOH to Cl2, which means that the moles of the former that are consumed by 0.85 moles of the latter are:
[tex]n_{NaOH}=0.85molCl_2*\frac{2molNaOH}{1molCl_2}\\\\n_{ NaOH}=1.7molNaOH[/tex]
Therefore, since we just have 1.23 moles out of 1.70 moles of NaOH, we infer this is the limiting reactant.
Regards!
The human body contains many elements from the periodic table. It is mostly composed of oxygen and carbon, but trace
elements also have a significant role. The table gives the mass, in kilograms, of some elements found in the human body, based
on a 70.0 kg person.
Atomic number
Element
Mass (kg)
8
oxygen
45.2
6
carbon
12.6
1
hydrogen
7.0
7
nitrogen
2.2
20
calcium
1.3
15
phosphorus
0.78
19
potassium
0.25
16
sulfur
0.18
others
0.60
total
70,0
Potassium makes up what fraction of the mass of the human body?
From the question given above, the following data were obtained:
Oxygen = 45.2 Kg
Carbon = 12.6 Kg
Hydrogen = 7 Kg
Nitrogen = 2 Kg
Calcium = 1.3 Kg
Phosphorus = 0.78 Kg
Potassium = 0.25 Kg
Sulphur = 0.18 Kg
Others = 0.60 Kg
Total = 70 Kg
Fraction of potassium =?We can obtain the fraction of potassium of the mass of the body as follow:
Potassium = 0.25 Kg
Total = 70 Kg
Fraction of potassium =?Fraction of potassium = mass of potassium / Total
Fraction of potassium = 0.25 / 70
Fraction of potassium = 1/280Therefore, the fraction of potassium in the body is 1/280
Learn more: https://brainly.com/question/14760859
38. Consider the following equilibrium:
2CO(g) + O2(g) =2CO2
Keg=4.0 x 10-10
What is the value of Key for 2CO2(g) + 2COR + O2g) ?
Answer:
[tex]Key=2.5x10^{-9}[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the equilibrium constant value for the reverse reaction:
[tex]2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)[/tex]
By knowing that the equilibrium expression is actually:
[tex]Key =\frac{[CO]^2[O_2]}{[CO_2]^2} =\frac{1}{Keg}[/tex]
Thus, we plug in and solve for the inverse of Keq to obtain Key as follows:
[tex]Key =\frac{1}{4.0x10^{-10}}\\\\Key=2.5x10^{-9}[/tex]
Regards!
What is the pH of 0.6 M NaOH?
Answer:
pOH = - log[OH-]
[OH-] = 0.6M
[tex]pOH \: = - log(0.6) \\ = 0.2218487496 \\ pH \: + pOH \: = 14 \\ pH \: + 0.221848749 = 14 \\ pH = 14 - 0.221848749 \\ = 13.77815125 \\ 13.8[/tex]
Chrysanthenone is an unsaturated ketone. If Chrysanthenone has M+ = 150 and contains 2 double bond(s) and 2 ring(s); what is its molecular formula? Enter the formula in the form CH first, then all other atoms in alphabetical order; do not use subscripts. The formula is case-sensitive.
Answer:
the Molecular formula will be; C10H14O
Explanation:
Given the data in the question;
Chrysanthenone is an unsaturated ketone,
it has M+ = 150 and contains 2 double bond(s) and 2 ring(s).
molecular formula = ?
we know that ketone contain 1 oxygen and mass of oxygen is 16
so mass of the C and H remaining will be;
⇒ 150 - 16 = 134
Now we determine the number of C atoms;
⇒ 134 / 13 = 10
hydrocarbon with 10 hydrogen atom have CnH2n+2 means
⇒ ( 10 × 2 ) +2 = 22 hydrogens
But then we have 3 unsaturation meaning 6 hydrogens less and also we have ring meaning 2 more hydrogens
⇒ 22 - 6 - 2 = 14
Hence the Molecular formula will be; C10H14O
a) If we have a 4.5 L container of CH 10 gas at a temperature of 178 K and a pressure of 0.50 atm, then how many moles of CaHio do
we have?
b) How many grams of C4H1o do we have?
Answer:
a) 0.15 mol.
b) 8.95 g.
Explanation:
Hello there!
In this case, according to the given information, it is possible for us to infer this problem is solved by using the ideal gas equation:
[tex]PV=nRT[/tex]
And proceed as follows:
a) Here, we solve for the moles, n, as follows:
[tex]n=\frac{PV}{RT} \\\\n=\frac{0.50atm*4.5L}{0.08206\frac{atm*L}{mol*K}*178K} \\\\n=0.15mol[/tex]
b) for the calculation of the mass, we recall the molar mass of butane, 58.12 g/mol, to obtain:
[tex]0.15mol*\frac{58.12g}{1mol} =8.95g[/tex]
Regards!
A student sets up the following equation to convert a measurement.
(The stands for a number the student is going to calculate.)
Fill in the missing part of this equation.
Answer:
–0.13 Pa.m²
Explanation:
From the question given above, the following data were obtained:
Measurement (Pa.mm²) = –1.3×10⁵ Pa.mm²
Measurement (Pa.m²) =?
We can convert from Pa.mm² to Pa.m² by doing the following:
1 Pa.mm² = 1×10¯⁶ Pa.m²
Therefore,
–1.3×10⁵ Pa.mm² = –1.3×10⁵ Pa.mm² × 1×10¯⁶ Pa.m² / 1 Pa.mm²
–1.3×10⁵ Pa.mm² = –0.13 Pa.m²
Thus, –1.3×10⁵ Pa.mm² is equivalent to –0.13 Pa.m².
The complete equation will be:
[tex](-1.3\times 10^5 Pa.mm^2)\times 10^{-6}=(-0.13) Pa.m^2[/tex]
Explanation:
Given:
The equation to convert a measurement:
[tex](-1.3\times 10^5 Pa.mm^2)\times ? = ? Pa.m^2[/tex]
To find:
The missing part of the equation.
Solution:
[tex](-1.3\times 10^5 Pa.mm^2)\times ? = ? Pa.m^2[/tex]
On LHS the unit is in [tex]Pa. mm^2[/tex] and RHS the unit is in [tex]Pa.m^2[/tex] which means that we have to convert [tex]mm^2[/tex] to [tex]m^2[/tex]
In 1 millimeter there are 0.001 meters.
[tex]1 mm = 0.001 m\\1 mm^2=0.000001 m^2=10^{-6} m^2[/tex]
So, the complete equation will be:
[tex](-1.3\times 10^5 Pa.mm^2)\times 10^{-6}=(-0.13) Pa.m^2[/tex]
Learn more about conversions here:
brainly.com/question/24530464
brainly.com/question/17743460
cấu hình electron của nguyên tử Ca
Explanation:
Do đó cấu hình electron của canxi là: 1s2 2s2 2p6 3s2 3p6 4s2.
20ml of water is mixed with 40gm of fine powder. Calculate the concentration of the solution obtained.
Answer:
[tex]\%m=66.7\%[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the concentration of the solution obtained, by knowing 20 mL of water are the same to 20 g and therefore the mass of the solution is 40g+20g=60g.
Next, we apply the following equation to obtain the required concentration:
[tex]\%m=\frac{40g}{60g} *100\%\\\\\%m=66.7\%[/tex]
Regards!
Question:
What is the molar concentration of 1.29 mol of KCL dissolved in 350 mL of solution?
Answer:
M = 3.69 M.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the molar concentration of the 1.29 moles of KCl in 350 mL of solution by recalling the mathematical definition of molarity as the division of the moles by the volume in liters, in this case 0.350 L; thus, we proceed as follows:
[tex]M=\frac{1.29mol}{0.350L}\\\\M=3.69M[/tex]
Which gives molar units, M, or just mol/L.
Regards!