Consider the lists of length six made with the symbols P, R, O, F, S, where repetition is allowed. (For example, the following is such a list: (P,R,O,O,F,S).) How many such lists can be made if the list must end in an S and the symbol O is used more than once?

Answers

Answer 1

Answer:

96

Step-by-step explanation:

COMBINATIONS & PERMUTATIONS can be confusing but they always have a solution.

Key 1:  Understand and/or rewrite the question

Consider the lists of 6 items (out of the 5 letters P,R,O,F, and S; where O is used twice).

NOTE: When they say O is used more than once, don't forget that each list must not exceed 6 items in total. So, O is used twice. Simple!

How many such lists can be made if each list must end in an S?

NOTE: This instruction requires that S doesn't move. It won't change position, and it won't be involved in the rearrangement!

Key 2:  Solve the mysteries

Now, S won't move and O is doubled. These rules put a form of restriction on the "n" which is the total number of items involved in the operation. We are supposed to create lists of 6 items but the reality is - only 5 are moving. Recall also that the original number of items involved in the operation is 5.

In this case, n = 5

Then we have 4 items rotating - P, R, O and F - with 1 repeated.

What this means is that for every list starting with the first O, the different arrangements apply to the second O as well.

There is no distinction such as O₁ and O₂. O is O!

Let k = the extra O

(n - k)  =  5 - 1  = 4

So each of these 4 letters has 4! (4 factorial) arrangements, that is (4 x 3 x 2 x 1) = 24 arrangements

Multiply 24 by 4 to get 96


Related Questions

find two factors of the first number such that their product is the first number and their sum is the second number.

70,17

Answers

9514 1404 393

Answer:

  7, 10

Step-by-step explanation:

It often works well to look at the factor pairs that form the product.

  70 = 1×70 = 2×35 = 5×14 = 7×10

The sums of these are 71, 37, 19, 17. The last pair of factors is the one of interest:

  7 and 10.

a.
What is 46.7% of
4/5?

Answers

Answer:

0.3736

Step-by-step explanation:

46.7 percent of  [tex]\frac{4}{5}[/tex] is 0.3736.

What is the percentage?A percentage is a figure or ratio stated as a fraction of 100 in mathematics. Although the abbreviations "pct," "pct," and occasionally "pc" are also used, the percent sign, " percent ", is frequently used to signify it. A % is a number without dimensions and without a standard measurement.What is a fraction?A number is stated as a quotient in mathematics when the numerator and denominator are divided. Both are integers in a simple fraction. A fraction appears in the numerator or denominator of a complex fraction. The numerator of a proper fraction is less than the denominator.Solution  -

To find 46.7% of [tex]\frac{4}{5}[/tex].

So,

[tex]\frac{46.7}{100}[/tex] × [tex]\frac{4}{5}[/tex]

[tex]\frac{0.467}{100}[/tex] × [tex]\frac{4}{5}[/tex]

⇒ [tex]0.3736[/tex]

Therefore,  46.7% of  [tex]\frac{4}{5}[/tex] is 0.3736.

Know more about percentages here:

https://brainly.com/question/24304697

#SPJ2

Complete the input-output table:

x 3x + 7

0
4
8
14

Answers

Step-by-step explanation:

When x = 0,

3x + 7

= 3 ( 0 ) + 7

= 0 + 7

= 7

When x = 4,

3x + 7

= 3 ( 4 ) + 7

= 12 + 7

= 19

When x = 8,

3x + 7

= 3 ( 8 ) + 7

= 24 + 7

= 31

When x = 14,

3x + 14

= 3 ( 14 ) + 14

= 14 ( 3 + 1 )

= 14 ( 4 )

= 56

SOMEONE HELP PLEASE ASAP PLES DONT LEAVE UR ANSWER AS AN IMAGE SOMETIMES I CANT SEE IMAGES. THANK YOU VERY MUCH! WILL MARK BRAINLIEST :)))

Answers

9514 1404 393

Answer:

  x = -2/5 or -1

Step-by-step explanation:

The last two terms of the expression on the left can be factored also.

  (5x+2)² +3(5x+2) = 0

And the common factor can be factored out:

  (5x+2)(5x +2+3) = 0

  5(5x +2)(x +1) = 0

Solutions to the equation make the factors zero:

  5x +2 = 0   ⇒   x = -2/5

  x +1 = 0   ⇒   x = -1

The values of x that are solutions to the equation are x = -2/5 and x = -1.

_____

Once you realize that (5x+2) is a factor, you know one solution is x = -2/5. The rest is just fluff to find the second solution. It is not required in order to answer the question.

the angle between two lines is 60 degree. if the slope of one of them is 1. find the slope of other line​

Answers

Answer:

-3.73

Step-by-step explanation:

solution:

Given:

Angle between two lines=60⁰

slope of first line=1

Or, tanA=1

Or, A= tan inverse (1)

so, A=45⁰

so, angle of inclination of first line=45⁰

Now,

angle of inclination of second line= A+ 60⁰

= 45⁰+60⁰

=105⁰

so, slope of second line = tan105.

= -3.73

The gross domestic product (GDP) of the United States is defined as

Answers

The gross domestic product (GDP) of the United States is defined as the market value of all final goods and services produced within the United States in a given period of time.

Answer:

the market value of all final goods and services produced within the United States in a given period of time.

Russell is doing some research before buying his first house. He is looking at two different areas of the city, and he wants to know if there is a significant difference between the mean prices of homes in the two areas. For the 33 homes he samples in the first area, the mean home price is $168,300. Public records indicate that home prices in the first area have a population standard deviation of $37,825. For the 32 homes he samples in the second area, the mean home price is $181,900. Again, public records show that home prices in the second area have a population standard deviation of $25,070. Let Population 1 be homes in the first area and Population 2 be homes in the second area. Construct a 95% confidence interval for the true difference between the mean home prices in the two areas.

Answers

Answer:

The 95% confidence interval for the true difference between the mean home prices in the two areas is (-$29156.52, $1956.52).

Step-by-step explanation:

Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

First area:

33 homes, mean of $168,300, standard deviation of $37,825. Thus:

[tex]\mu_1 = 168300[/tex]

[tex]s_1 = \frac{37825}{\sqrt{33}} = 6584.5[/tex]

Second area:

33 homes, mean of $181,900, standard deviation of $25,070. Thus:

[tex]\mu_2 = 1819000[/tex]

[tex]s_2 = \frac{25070}{\sqrt{32}} = 4431.8[/tex]

Distribution of the difference:

[tex]\mu = \mu_1 - \mu_2 = 168300 - 181900 = -13600[/tex]

[tex]s = \sqrt{s_1^2+s_2^2} = \sqt{6584.5^2 + 4431.8^2} = 7937[/tex]

Confidence interval:

[tex]\mu \pm zs[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].  

The lower bound of the interval is:

[tex]\mu - zs = -13600 - 1.96*7937 = -29156.52 [/tex]

The upper bound of the interval is:

[tex]\mu + zs = -13600 + 1.96*7937 = 1956.52[/tex]

The 95% confidence interval for the true difference between the mean home prices in the two areas is (-$29156.52, $1956.52).

What is the other dimension of the rectangular cross section that is perpendicular to the base (the face that is shaded) and passes through the midpoints of the 10 cm edges?

________ centimeters by 18 centimeters
PLZ PLZ HELP
A rectangular prism with length of 10 centimeters, width of 8 centimeters, and height of 18 centimeters.
A. 2
B. 8
C. 10
D. 18

Answers

The answer is… D. 18

A survey sampled men and women workers and asked if they expected to get a raise or promotion this year. Suppose the survey sampled 200 men and 200 women. If 98 of the men replied Yes and 72 of the women replied Yes, are the results statistically significant so that you can conclude a greater proportion of men expect to get a raise or a promotion this year?

a. State the hypothesis test in terms of the population proportion of men and the population proportion of women.
b. What is the sample proportion for men? For women?
c. Use α= 0.01 level of significance. What is the p-value and what is your conclusion?

Answers

Answer:

a)

The null hypothesis is: [tex]H_0: p_M - p_W = 0[/tex]

The alternative hypothesis is: [tex]H_1: p_M - p_W > 0[/tex]

b) For men is of 0.49 and for women is of 0.36.

c) The p-value of the test is 0.0039 < 0.01, which means that the results are statistically significant so that you can conclude a greater proportion of men expect to get a raise or a promotion this year.

Step-by-step explanation:

Before solving this question, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

Men:

98 out of 200, so:

[tex]p_M = \frac{98}{200} = 0.49[/tex]

[tex]s_M = \sqrt{\frac{0.49*0.51}{200}} = 0.0353[/tex]

Women:

72 out of 200, so:

[tex]p_W = \frac{72}{200} = 0.36[/tex]

[tex]s_W = \sqrt{\frac{0.36*0.64}{200}} = 0.0339[/tex]

a. State the hypothesis test in terms of the population proportion of men and the population proportion of women.

At the null hypothesis, we test if the proportion are similar, that is, if the subtraction of the proportions is 0, so:

[tex]H_0: p_M - p_W = 0[/tex]

At the alternative hypothesis, we test if the proportion of men is greater, that is, the subtraction is greater than 0, so:

[tex]H_1: p_M - p_W > 0[/tex]

b. What is the sample proportion for men? For women?

For men is of 0.49 and for women is of 0.36.

c. Use α= 0.01 level of significance. What is the p-value and what is your conclusion?

From the sample, we have that:

[tex]X = p_M - p_W = 0.49 - 0.36 = 0.13[/tex]

[tex]s = \sqrt{s_M^2+s_W^2} = \sqrt{0.0353^2 + 0.0339^2} = 0.0489[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{s}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error, so:

[tex]z = \frac{0.13 - 0}{0.0489}[/tex]

[tex]z = 2.66[/tex]

P-value of the test and decision:

The p-value of the test is the probability of finding a difference above 0.13, which is the p-value of z = 2.66.

Looking at the z-table, z = 2.66 has a p-value of 0.9961.

1 - 0.9961 = 0.0039.

The p-value of the test is 0.0039 < 0.01, which means that the results are statistically significant so that you can conclude a greater proportion of men expect to get a raise or a promotion this year.

A certain species of virulent bacteria is being grown in a culture. It is observed that the rate of growth of the bacterial population is proportional to the number present. If there were 3000 bacteria in the initial polulation and the number doubled after the first 60 minutes, how many bacteria will be present after 2 hours

Answers

Answer:

12000 bacteria

Step-by-step explanation:

Recall that

60 minutes = 1 hour

Given that the rate of growth of the bacterial population is proportional to the number present.

If there were 3000 bacteria in the initial population and the number doubled after the first 60 minutes

Then after 60 minutes, the number of bacteria present would be

= 3000 * 2

= 6000

In another 60 minutes, the number would have doubled again, thus the number present then would be

= 6000 * 2

= 12000

Hence after 120 minutes, the number of bacteria present is 12000. 120 minutes is same as 2 hours

A certain manufacturing process yields electrical fuses of which, in the long run
15% are defective. Find the probability that in a random sample of size n=10, fuses
selected from this process, there will be
(i) No defective fuse
(ii) At least one defective fuse
(iii) Exactly two defective fuses
(iv) At most one defective fuse

Answers

Answer:

i) 0.1969 = 19.69% probability that there will be no defective fuse.

ii) 0.8031 = 80.31% probability that there will be at least one defective fuse.

iii) 0.2759 = 27.59% probability that there will be exactly two defective fuses.

iv) 0.5443 = 54.43% probability that there will be at most one defective fuse.

Step-by-step explanation:

For each fuse, there are only two possible outcomes. Either it is defective, or it is not. The probability of a fuse being defective is independent of any other fuse, which means that the binomial probability distribution is used to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

15% are defective.

This means that [tex]p = 0.15[/tex]

We also have:

[tex]n = 10[/tex]

(i) No defective fuse

This is [tex]P(X = 0)[/tex]. So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{10,0}.(0.15)^{0}.(0.85)^{10} = 0.1969[/tex]

0.1969 = 19.69% probability that there will be no defective fuse.

(ii) At least one defective fuse

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

We already have P(X = 0) = 0.1969, so:

[tex]P(X \geq 1) = 1 - 0.1969 = 0.8031[/tex]

0.8031 = 80.31% probability that there will be at least one defective fuse.

(iii) Exactly two defective fuses

This is P(X = 2). So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 2) = C_{10,2}.(0.15)^{2}.(0.85)^{8} = 0.2759[/tex]

0.2759 = 27.59% probability that there will be exactly two defective fuses.

(iv) At most one defective fuse

This is:

[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]. So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{10,0}.(0.15)^{0}.(0.85)^{10} = 0.1969[/tex]

[tex]P(X = 1) = C_{10,1}.(0.15)^{1}.(0.85)^{9} = 0.3474[/tex]

Then

[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.1969 + 0.3474 = 0.5443[/tex]

0.5443 = 54.43% probability that there will be at most one defective fuse.

a plane can fly 450 miles in the same time it takes a car to go 150 miles. if the car travels 100 mph slower than the plane, find the speed (in mph) of the plane​

Answers

Answer:

The speed of the plane is 150 miles per hour, while the speed of the car is 50 miles per hour.

Step-by-step explanation:

Since a plane can fly 450 miles in the same time it takes a car to go 150 miles, if the car travels 100 mph slower than the plane, to find the speed (in mph) of the plane the following calculation must be performed:

450 to 150 is equal to 3: 1, that is, the plane travels three times the distance of the car.

Therefore, since 100/2 x 3 equals 150, the speed of the plane is 150 miles per hour, while the speed of the car is 50 miles per hour.

Select the correct answer.
A basketball team played 15 games and won 80% of them. If the team expects to play 30 games in by all, how many more games must it win to
finish the season with a 90% winning percentage?
A.12
B.14
C.15
D.27

Answers

The answer is d 27 games
Yes, to confirm the answer is option D, 27. I got the same calculations as well. Hope this helps!

QUESTION 20
The patient's weight is 245 lbs. If the patient loses 1 kg every week for 5 weeks:
a. How much will the patient weight in pounds?
b. How much will the patient weight in kilograms?

Answers

.Answer:

The answer is below

Step-by-step explanation:

The patient loses 1 kg every week for 5 weeks.

1 kg = 2.2 lbs

Therefore the patient loses 2.2 lbs every week for 5 weeks.

a) The weight of the patient after 5 weeks = 245 lbs. - (5 weeks)(2.2 lbs per week)

The weight of the patient after 5 weeks = 245 lbs. - 11 lbs. = 234 lbs.

b) The weight of the patient after 5 weeks = 245 lbs. - 11 lbs. = 234 lbs.

1 kg = 2.2 lbs.

234 lbs. = 234 lbs. * 1 kg per 2.2 lbs. = 106.36 kg

Find the value of the variable y, where the sum of the fraction 2/y-3 and 6/y+3 is equal to the quotient.

PLEASE HELPPPPPPP NEED ASAPPPPPPP WILL GIVE BRAINLIEST TO FIRST CORRECT ANSWERRRRRR

Answers

Answer:

Here we need to solve:

[tex]\frac{2}{y - 3} + \frac{6}{y + 3 } = \frac{\frac{2}{y-3}}{\frac{6}{y + 3} }[/tex]

The sum of the fractions is equal to the quotient between the fractions.

Notice that the two values:

y = 3

y = -3

make the denominator equal to zero, so those values are restricted.

We can simplify the right side to get:

[tex]\frac{2}{y - 3} + \frac{6}{y + 3 } = \frac{\frac{2}{y-3}}{\frac{6}{y + 3} } = \frac{2*(y + 3)}{6*(y - 3)} = 3*\frac{y + 3}{y - 3}[/tex]

Now we can multiply both sides by (y - 3)

[tex](y - 3)*(\frac{2}{y - 3} + \frac{6}{y + 3 }) = 3*(y + 3)\\2 + 6*\frac{y -3}{y + 3} = 3*(y + 3)[/tex]

Now we can multiply both sides by (y + 3)

[tex](2 + 6*\frac{y -3}{y + 3})*(y + 3) = 3*(y + 3)*(y + 3)[/tex]

[tex]2*(y + 3) + 6*(y - 3) = 3*(y + 3)*(y + 3)\\\\2*y + 6 + 6*y - 18 = 3*(y^2 + 2*y*3 + 9)\\\\8*y - 12 = 3*y^2 + 6*y + 33\\\\0 = 3*y^2 + 6*y + 33 - 8*y + 12\\\\0 = 3*y^2 - 2*y + 45[/tex]

First, let's see the determinant of that quadratic equation:

[tex]D = (-2)^2 - 4*3*45 = -536[/tex]

We can see that it is negative, thus, there are no real solutions of the equation.

Thus, there is no value of y such that the origina equation is true,

Answer:

y=15

Step-by-step explanation:

what's a divisor a dividend and a quotient

Answers

Quotient is the correct answer

If f(x) = x
2−3x+1
x−1
find f(-1) and f(-3)

Answers

Answer:

f(-1) = 2-3(-1) +1

= 7

f(-3)= 2-3(-3)+1

= 12

f(-1) = -1-1

= -2

f(-3) = -3-1

= -4

URGENT!!!!!! 15 POINTDS

Answers

Answer:

Option C

Step-by-step explanation:

thankful that there are graphing tools. see screenshot

I’m pretty sure it’s c

15. What is the solution to k+(-12) = 42? (1 point)
k=-54
k=-30
k= 30
k=54

Answers

Answer:

k = 54

Step-by-step explanation:

k + (-12) = 42

Remove parenthesis and addition sign

k - 12 = 42

Add 12 to both sides

K = 54

[tex]\boxed{\large{\bold{\textbf{\textsf{{\color{blue}{Answer}}}}}}:)}[/tex]

k+(-12)=42

k-12=42

k=42+12

k=54

Hi please somebody help me with this equation with explanation thank you

Answers

Answer:

[tex]{ \tt{ \frac{1}{24} m - \frac{2}{3} = \frac{3}{4} }} \\ \\ { \tt{ \frac{1}{24} m = \frac{17}{12} }} \\ m = 34[/tex]

Step 1: Find a common denominator

---The common denominator here is 24. So, we need to transform all of the fractions to have a denominator of 24.

1/24m - 16/24 = 18/24

Step 2: Solve

1/24m - 16/24 = 18/24

1/24m = 34/24

m = 34/24 x 24/1

m = 34

Hope this helps!

Look at the figure below: an image of a right triangle is shown with an angle labeled y degrees If sin y° = s divided by 8 and tan y° = s divided by t, what is the value of cos y°?
cos y° = 8s
cos y° = 8t
cos y°= t / 8
cos y°=8 / t

Answers

Answer:

Cos y = t / 8

Step-by-step explanation:

Using the hints given in the question, the omitted tribagke will look like the triangle attached on the picture ;

From trigonometry :

Sin y = opposite / hypotenus

Sin y = s / 8

Opposite side = s ; hypotenus = 8

Tan y = opposite / Adjacent

Tan y = s / t

Adjacent side = t

Then ;

Cos y = Adjacent / hypotenus

Hence,

Cos y = t / 8

Answer:

the answer is :

cos y°= t / 8

Step-by-step explanation:

I promise! I got this right, and.....you are welcome.

Help me! Thanks! Show work too! Please!

Answers

Answer:

(2, 79) (12, 24)

24-79/12-2=-55/10

m=-0.55

24=-6,6+b

30.6=b

y=-0.55x+30.6

Step-by-step explanation:

you multiply

using the equation to represent your answer

Domain and range problem Help

Answers

Answer:

Range y≤-1

Domain all reals

Step-by-step explanation:

The range is the output values (y)

Y is less than or equal to -1

y≤-1

The domain is the values that the input can take

the arrows on the ends of the graph tells us x can take all real numbers

The range is the span of y-values. What is the smallest possible y-value and what is the largest possible y-value?

For this problem, the y-values start at -1 and decrease infinitely. Therefore, the range is y <= -1.

The domain is the span of x-values. What is the smallest possible x-value and what is the largest possible x-value?

For this problem, the parabola will keep expanding horizontally (or to the left and right). Therefore, the range is all real numbers.

Hope this helps!

Use the figure to find y.

Answers

Tanθ =sin /cos

tan θ = 5/2 / y

tan (30°) = 5/2 /y

[tex]y = \frac{5 \sqrt{3} }{2} [/tex]

y=4.33

At Joe's Restaurant, 80 percent of the diners are new customers (N), while 20 percent are returning customers (R). Fifty percent of the new customers pay by credit card, compared with 70 percent of the regular customers. If a customer pays by credit card, what is the probability that the customer is a new customer?

Answers

Answer:

0.7407 = 74.07% probability that the customer is a new customer.

Step-by-step explanation:

Conditional Probability

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

In this question:

Event A: Pays by credit card

Event B: New customer.

Probability of a customer paying by credit card:

50% of 80%(new customers).

70% of 20%(regular customers). So

[tex]P(A) = 0.5*0.8 + 0.7*0.2 = 0.54[/tex]

Probability of a customer paying by credit card and being a new customer:

50% of 80%, so:

[tex]P(A \cap B) = 0.5*0.8 = 0.4[/tex]

What is the probability that the customer is a new customer?

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.4}{0.54} = 0.7407[/tex]

0.7407 = 74.07% probability that the customer is a new customer.

Why lines e and f must be parallel

Answers

Answer: B, same side interior angle theorem
The rule is that the two inner angles on the same side of the transversal should add up to 180 degrees

PLEASE HELP

Identify the 15th term of the arithmetic sequence in which a. = 10 and ao = 20.

Answers

Answer:

The 15th term is 160

Step-by-step explanation:

The details are not clear. So, I will make the following assumptions

[tex]d = 10[/tex] ---- common difference

[tex]a_1 = 20[/tex] ---- first term

Required

The 15th term

This is calculated as:

[tex]a_{n} = a + (n - 1) * d[/tex]

Substitute 15 for n

[tex]a_{15} = a + (15 - 1) * d[/tex]

[tex]a_{15} = a + 14 * d[/tex]

Substitute values for d and a

[tex]a_{15} = 20 + 14 * 10[/tex]

[tex]a_{15} = 20 + 140[/tex]

[tex]a_{15} = 160[/tex]

HELP PLEASE BE CORRECT

Answers

Answer:

12

Step-by-step explanation:

Scale factor of 4

CD = 3

3 · 4 = 12

Length of C'D' is 12 units

Answer:

12 units

Step-by-step explanation:

The original segment CD = 3 units

Scale factor is 4.

3 x 4 = 12

2. Express the number 1750 as a product of prime factors of the form:
p * qr * s

Answers

9514 1404 393

Answer:

  1750 = 2 · 5³ · 7

Step-by-step explanation:

It is often helpful to start with divisibility rules when finding prime factors of a small composite number.

The least-significant digit is even, so we know 2 is a factor.

  1750/2 = 875

The least significant digit is 5, so we know 5 is a factor.

  875/5 = 175

  175/5 = 35

  35/5 = 7

7 is a prime number, so we're done.

The factorization is ...

  1750 = 2 · 5³ · 7

A survey is created to measure dietary habits. The survey asks questions about each meal and snack consumed for each day of the week. The survey seems like a good representation of measuring dietary habits. This survey would be considered to have high ______ validity.

Answers

Answer:

Face validity

Step-by-step explanation:

In quantitative research in mathematics, we have four major types of validity namely;

- Content Validity

- Construct validity

- Criterion validity

- Face validity.

Now;

> Construct validity seeks to find out if the tool used in measurement is a true representation of what is really going to be measured.

> Content Validity seeks to find out whether a test covers every part of a particular subject being tested.

> Face validity seeks to find out how true a test is by looking at it on the surface.

> Criterion validity seeks to find out the relationship of a particular test to that of another test.

Now, in this question, we are told that The survey seems like a good representation of measuring dietary habits after just asking questions about each meal and snack they consumed for the week. Thus, it is a face validity because it just appears true on the surface to be a good representation but we don't know if it is effective until we go deep like content validity

Other Questions
translate this into an expression: the quotient of a number, x, and 8, could you please explain it to me? . A customer surveys the stock of gluten-freebreads sold in three different grocery stores.At each grocery store, the customer countsthe number of different gluten-free breadsand compares it to the number of breadsthat are not gluten-free. The table belowshows the results of this survey. hurry PLEASE i'm unsure of this Whats are the main events that happen in monster by Walter dean Myers? 4. What is harder for the astronomer to measure: A galaxy's redshift (indicating recessional velocity) or its distance from Earth? Why? Explain your answer. If the angles of a pentagon are x 2x 3x 4x 5x .Find the value of X Which of the following best describes how animals and plants react to the spread of disease in a certain environment? The number of predators increases. The number of prey increases. They may struggle to survive. They move to new locations. Our school is over at 2:00pm. transitive or intransitive Which nucleus completes the following equation?39 17 CI-> 0 -1 e+? The number of dollars in x quarters A customer's stock value seems to be rising exponentially. The equation for the linearized regression line that models this situation is log(y) = 0 30x +0 296, where x represents number of weeks. Which of the following is the best approximation of the number of weeks that will pass before the value of the stock reaches $200? A. 9.3 B. 12.1 C. 6.7 D. 4.8 Which piecewise function represents the graph? Describe some of the major changes in the American economy during the 1990s and 2000s. Which change has had the greatest positive or negative effect, and why? Who has gained the most and who has lost the most? Which expression is equivalent to (4x^(3)y^(5))(3x^(5)y)^(2) In your opinion what is the most important section in the story the importance of being earnest? And why? L'avion vlent juste d'arriver senegal? 2x+3x+3.(-1) =5x.x+5x .1 A lion chases an antelope, which narrowly escapes being eaten. Whichenergy conversion saved the antelope's life? uno de los ngulos interiores de un triangulo mide 100 grados y la diferencia de los otros 2 es de 25 grados Cunto mide el Angulo menor? Really need help help me