cooks are needed to prepare for a large party. Each cook can bake either 5 Large cakes or 14 small cakes per hour . The kitchen is available for 3 hours and 29 large cakes and 260 cakes need to be baked . How many cooks are required to bake the required number of cakes during the time the kitchen is available?​

Answers

Answer 1

it was all about equating some values

Cooks Are Needed To Prepare For A Large Party. Each Cook Can Bake Either 5 Large Cakes Or 14 Small Cakes
Answer 2

to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Let's determine the number of cooks required to bake the required number of cakes during the available time.

We have the following information:

- Each cook can bake either 5 large cakes or 14 small cakes per hour.

- The kitchen is available for 3 hours.

- We need to bake 29 large cakes and 260 cakes in total.

First, let's calculate the number of large cakes that can be baked by one cook in 3 hours:

1 cook can bake 5 large cakes/hour × 3 hours = 15 large cakes.

Next, let's calculate the number of small cakes that can be baked by one cook in 3 hours:

1 cook can bake 14 small cakes/hour × 3 hours = 42 small cakes.

Now, let's calculate the number of large cakes that can be baked by all the cooks in 3 hours:

Total number of large cakes = Number of cooks × Large cakes per cook per 3 hours

We need to bake 29 large cakes, so:

29 = Number of cooks × 15

Number of cooks = 29 / 15 ≈ 1.93

Since we can't have a fraction of a cook, we need to round up to the nearest whole number. Therefore, we need at least 2 cooks to bake the required number of large cakes.

Similarly, let's calculate the number of small cakes that can be baked by all the cooks in 3 hours:

Total number of small cakes = Number of cooks × Small cakes per cook per 3 hours

We need to bake 260 small cakes, so:

260 = Number of cooks × 42

Number of cooks = 260 / 42 ≈ 6.19

Again, rounding up to the nearest whole number, we need at least 7 cooks to bake the required number of small cakes.

Since we need to satisfy both requirements for large and small cakes, we choose the larger number of cooks required, which is 7 cooks.

Therefore, to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Learn more about work here

https://brainly.com/question/13245573

#SPJ2


Related Questions

In a genetics experiment on peas, one sample of offspring contained green peas and yellow peas. Based on those results, estimate the probability of getting an offspring pea that is green. Is the result reasonably close to the value of that was expected? 350 127 3 4 The probability of getting a green pea is approximately . (Type an integer or decimal rounded to three decimal places as needed.) Is this probability reasonably close to ? Choose the correct answer below. 3 4 A. No, it is not reasonably close. B. Yes, it is reasonably close.

Answers

Answer:

The probability of getting an offspring pea that is green is is 0.733

YES, the probability is reasonably close to the expected value of 3/4 (0.750)

Step-by-step explanation:

The formula for calculating the probability of an event is;

P = Favorable Outcome / Sample space

Let A be an event of getting an offspring green peas, B be an event of getting an offspring yellow peas and N be the total number of peas.

number of green peas in an offspring are 350

number of yellow peas in an offspring are 127

total number of peas are 477    

So in the genetic experiment, the number of times event A occurs is 350 and the number times event B occurs is 127

Now the probability of getting an offspring pea that is green is

P = number of green peas / total number of peas

p = n(A)/N

p = 350/477

p = 0.733

So YES, the probability is reasonably close to 3/4 ( 0.750 )

The probability of getting an offspring pea that is green is is 0.733.

YES, the probability is reasonably close to the expected value of 3/4 (0.750)

Solve the inequality 7a + 13 < 48.​

Answers

Hi there! :)

Answer:

[tex]\huge\boxed{a < 5}[/tex]

Given:

7a + 13 < 48

Isolate the variable "a" by subtracting 13 from both sides:

7a - 13 < 48 - 13

7a < 35

Divide both sides by 7:

7a/7 < 35/7

a < 5.

Answer:

a < 5

Step-by-step explanation:

7a + 13 < 48

Subtract 13 from each side

7a + 13-13 < 48-13

7a < 35

Divide each side by 7

7a/7  < 35/7

a < 5

A. f(x) = -x^2 - x - 4

B. f(x) = -x^2 + 4

C. f(x) = x^2 + 3x + 4

D. f(x) = x^2 + 4

Answers

Answer:

B: -x^2 + 4

Step-by-step explanation:

If the equation was [tex]f(x)=x^2[/tex], then the vertex would be at 0, and the "U" would be facing straight up. Here, the "U" is upside down, so that means the "x^2" would have to be a negative number ([tex]-x^2[/tex]) to get the upside-down "U". Then, we could see that the vertex is at positive 4, so that means that the parabola moved up 4 units, so the equation should end in +4.

Our answer is:

B: -x^2 + 4

Sean earned 20 points. Charles earned p more points than Sean. Choose the expression that shows how many points Charles earned.

Answers

The wording “Charles earned ‘p’ more points than Sean” tells us that Charles had the same number of points as Sean, plus whatever the amount that ‘p’ is.

Therefore, the expression to show how many points Charles earned would be:

p + 20

Answer:

the person above is correct if i did this correct

Step-by-step explanation:

if the numbers x+3,2x+1and x-7are in AP then find x​

Answers

Answer:

  -3

Step-by-step explanation:

If these numbers are part of an arithmetic progression, their differences are the same:

  (x -7) -(2x +1) = (2x +1) -(x +3)

  -x -8 = x -2

  -6 = 2x

  -3 = x

___

The numbers in the sequence are 0, -5, -10.

Answer:

x = -3.

Step-by-step explanation:

As it is an Arithmetic Progression the differences between successive terms are common, so:

2x + 1 - (x + 3) = x - 7 - (2x + 1)

2x - x + 1 - 3 = x - 2x - 7 - 1

x - 2 = -x - 8

2x = -8 + 2 = -6

x = -3.

Solve the following system of equations using the elimination method. x – y = 11 2x + y = 19

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

(10, -1)

▹ Step-by-Step Explanation

x - y = 11

2x + y = 19

Sum up the equations:

3x = 30

Divide 3 on both sides:

x = 10

Substitute:

10 - y = 11

y = -1

Solution:

(x, y) (10, -1)

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

HELP ASAP

What is the area of the circle shown below?

Answers

Answer:

C

Step-by-step explanation:

The area (A) of a circle is calculated as

A = πr² ( r is the radius )

Here r = 18 cm , thus

A = π × 18² = 324π ≈ 1017.9 cm² → C

Answer:

C.) 1017.9 cm²

Step-by-step explanation:

For a given circle

radius (r) = 18 cm

Now,

Area of Circle

= πr²

= 3.14 × (18)² cm

= 3.14 × 324 cm

= 1017.9 cm²

Angles One angle is 4º more than three times another. Find
the measure of each angle if

a. they are complements of each other.
b. they are supplements of each other.​

Answers

[tex] \Large{ \boxed{ \bf{ \color{purple}{Solution:}}}}[/tex]

Let the smaller angle be x

Then, Larger angle would be x + 4°

Case -1:

❍ They are complementary angles.

This means, they add upto 90°

So,

➙ x + x + 4° = 90°

➙ 2x + 4° = 90°

➙ 2x = 86°

➙ x = 86°/2 = 43°

Then, x + 4° = 47°

So, Our required answer:

Smaller angle = 43°Larger angle = 47°

Case -2:

❍ They are supplementary angles.

This means, they add upto 180°

So,

➙ x + x + 4° = 180°

➙ 2x + 4° = 180°

➙ 2x = 176°

➙ x = 176°/2 = 88°

Then, x + 4° = 92°

So, Our required answer:

Smaller angle = 88°Larger angle = 92°

✌️ Hence, solved !!

━━━━━━━━━━━━━━━━━━━━

Suppose that $2000 is invested at a rate of 2.6% , compounded semiannually. Assuming that no withdrawals are made, find the total amount after 10 years.

Answers

Answer:

$2,589.52

Step-by-step explanation:

[tex] A = P(1 + \dfrac{r}{n})^{nt} [/tex]

We start with the compound interest formula above, where

A = future value

P = principal amount invested

r = annual rate of interest written as a decimal

n = number of times interest is compound per year

t = number of years

For this problem, we have

P = 2000

r = 0.026

n = 2

t = 10,

and we find A.

[tex] A = $2000(1 + \dfrac{0.026}{2})^{2 \times 10} [/tex]

[tex] A = $2589.52 [/tex]

Compound interest formula:

Total = principal x ( 1 + interest rate/compound) ^ (compounds x years)

Total = 2000 x 1+ 0.026/2^20

Total = $2,589.52

What is the best way you learn math?

Answers

Answer:

to provide interest in the subject

As per my experience,I used to hate math and always scored less marks,the moment I was going to high school I realized the importance of math towards the future, see you'll find maths in nearly all subjects like the 3 sciences, economics, geography, business e.t.c

Why did you write this question at first?, just take some free time and think about it,the only best way to learn maths is to take maths positively as the best and most valuable subject,if you want to ace math you have to race it, challenge math like you'd challenge anyone to a game, practice math if it's your weakest point, practice is very much needed to skill maths and never be shy to ask your teachers whether you are studying online/offline. You'll need to get the shy behaviour out of you whether you like /don't like your teacher or your an average student.

Concentrate while learning math, whether there's noise in you background or not, Nothing can stop you in excelling math if you have full concentration, positiveness and the "will" to do so.

if you're next to your exams then just one thing, Start now!!

hope this helps!

Emma rents a car from a company that rents cars by the hour. She has to pay an initial fee of $75, and then they charge her $9 per hour. Write an equation for the total cost if Emma rents the car for ℎ hours. If Emma has budgeted $250 for the rental cars, how many hours can she rent the car? Assume the car cannot be rented for part of an hour.

Answers

Y = 9h + 75. She can rent the car for 19 hours. The math for determining the amount of hours she can rent the car is 250 minus 75 is 175. 175 divided by 9 is 19.44. Assuming she can’t rent for part of an hour, it would be 19.

A function y = g(x) is graphed below. What is the solution to the equation g(x) = 3?

Answers

Answer:

See below.

Step-by-step explanation:

From the graph, we can see that g(x)=3 is true only when x is between 3 and 5. However, note that when x=3, the point is a closed circle. When x=5, the point is an open circle. Therefore, the solution is between 3 and 5, and it includes 3 but not 5.

In set-builder notation, this is:

[tex]\{x|x\in \mathbb{R}, 3\leq x<5\}[/tex]

In interval notation, this is:

[tex][3,5)[/tex]

Essentially, these answers are saying: The solution set for g(x)=3 is all numbers between 3 and 5 including 3 and not including 5.

What is credit?
an arrangement in which you receive money, goods, or services now in exchange for the promise of payment later
an arrangement in which you receive goods or services in exchange for other goods and services
an arrangement in which you receive money now and pay it bulk later with fees?

Answers

An arrangement in which you receive money more and pay it back later with fees

nishan bought 7 marbles Rs.x per each. if he gave Rs.100 to the shop keeper. what is the balance he would receive?

Answers

okookkkkkhshshshhahahahhahhehwjjrbrhrjeiejrjfhfhfjrjei

where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50. (Round your answer to two decimal places.)

Answers

THIS IS THE COMPLETE QUESTION BELOW

The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.

Answer

$168.27

Step by step Explanation

Given p=90000/400+3x

With the limits of 40 to 50

Then we need the integral in the form below to find the average price

1/(g-d)∫ⁿₐf(x)dx

Where n= 40 and a= 50, then if we substitute p and the limits then we integrate

1/(50-40)∫⁵⁰₄₀(90000/400+3x)

1/10∫⁵⁰₄₀(90000/400+3x)

If we perform some factorization we have

90000/(10)(3)∫3dx/(400+3x)

3000[ln400+3x]₄₀⁵⁰

Then let substitute the upper and lower limits we have

3000[ln400+3(50)]-ln[400+3(40]

30000[ln550-ln520]

3000[6.3099×6.254]

3000[0.056]

=168.27

the average price p on the interval 40 ≤ x ≤ 50 is

=$168.27

The U.S. Dairy Industry wants to estimate the mean yearly milk consumption. A sample of 21 people reveals the mean yearly consumption to be 74 gallons with a standard deviation of 16 gallons. Assume that the population distribution is normal. (Use t Distribution Table.)
a-1. What is the value of the population mean?
16
Unknown
74
a-2. What is the best estimate of this value?
Estimate population mean
c. For a 90% confidence interval, what is the value of t? (Round your answer to 3 decimal places.)
Value of t
d. Develop the 90% confidence interval for the population mean. (Round your answers to 3 decimal places.)
Confidence interval for the population mean is and .
e. Would it be reasonable to conclude that the population mean is 68 gallons?
a) Yes
b) No
c) It is not possible to tell.

Answers

Correct question is;

The U.S. Dairy Industry wants to estimate the mean yearly milk consumption. A sample of 21 people reveals the mean yearly consumption to be 74 gallons with a standard deviation of 16 gallons.

a. What is the value of the population mean? What is the best estimate of this value?

b. Explain why we need to use the t distribution. What assumption do you need to make?

c. For a 90 percent confidence interval, what is the value of t?

d. Develop the 90 percent confidence interval for the population mean.

e. Would it be reasonable to conclude that the population mean is 68 gallons?

Answer:

A) Best estimate = 74 gallons

B) because the population standard deviation is unknown. The assumption we will make is that the population follows the normal distribution.

C) t = 1.725

D) 90% confidence interval for the population mean is (67.9772, 80.0228) gallons

E) Yes

Step-by-step explanation:

We are given;

Sample mean; x' = 74

Sample population; n = 21

Yearly Standard deviation; s = 16

A) We are not given the population mean.

So the closest estimate to the population mean would be the sample mean which is 74.

B) We are not given the population standard deviation and as such we can't use normal distribution. So what is used when population standard deviation is not known is called t - distribution table. The assumption we will make is that the population follows the normal distribution.

C) At confidence interval of 90% and DF = n - 1 = 21 - 1 = 20

From t-tables, the t = 1.725

D) Formula for the confidence interval is;

x' ± t(s/√n) = 74 ± 1.725(16/√21) = 74 ± 6.0228 = 67.9772 or 80.0228

Thus 90% confidence interval for the population mean is (67.9772, 80.0228) gallons

E) 68 gallons lies within the range of the confidence interval, thus we can say that "Yes, it is reasonable"

I NEED ALGEBRA HELP! Can you solve a system of equations using the substitution by solving one equation for x or y and then using the substitution method? x + 6y = 6 and 7x - 5y = -5

Answers

Answer:

let x be y

NOW,

X+6Y=6

Y+6Y=6

7Y=6

Y=0.87

A regression was run to determine if there is a relationship between hours of TV watched per day (x) and the number of sit-ups a person can do (y). The results were: y = a+bx b = -0.89 a = 23.65 r2 = 0.7038 If a person watches 14 hours of television a day, predict how many sit-ups he can do. What is the value of the correlation coefficient? Round to three decimal places.

Answers

Answer:

y = 11.19 ; 0.839

Step-by-step explanation:

Given the following :

relationship between hours of TV watched per day (x) and the number of sit-ups a person can do (y)

y = a + bx ; comparing with the linear regression model function

y = predicted variable

a = intercept

b = slope or gradient

x = independent variable

b = -0.89 a = 23.65 r2 = 0.7038

Therefore, if a person watches for 14 hours per day, that is x = 14, the number of sit-ups he can do will be :

y = 23.65 + (-0.89)(14)

y = 23.65 - 12.46

y = 11.19

About 11 sit-ups.

If the r^2 value = 0.7038

Then the Coefficient of regression = r

Will be the square root of r^2

r = sqrt(r^2)

r = sqrt(0.7038)

r =0.8389278 = 0.839

Explain why within any set of ten integers chosen from 2 through 24, there are at least two integers with a common divisor greater than 1 g

Answers

Step-by-step explanation:

Here are some examples of ten integers (in this case prime numbers) chosen from 2 to 24;

2, 3, 5, 7, 9, 15, 17, 19, 21, 23

Lets take for example the integers 15 and 21, they have a common divisor 3 which is greater than 1. Which implies that the number 3 can divide through 15 and 21 without a remainder, that is, 21 ÷ 3 = 7, 15 ÷ 3 = 5. Also note that 3 is a divisor of 9.

Therefore, we could right say that within any set of ten integers chosen from 2 through 24, there are at least two integers with a common divisor greater than 1.

An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?

Answers

1: 8 faces and 9 with the base 9 vertices and 16 edges

2: 3 faces and 5 with the bases 6 vertices and 9 edges

3: 3 faces and 4 with the base 4 vertices and 6 edges

Hope this can help you.

1: 8 faces and 9 with the base 9 vertices and 16 edges

2: 3 faces and 5 with the bases 6 vertices and 9 edges

3: 3 faces and 4 with the base 4 vertices and 6 edges

In what order should you evaluate problems?

Answers

Answer:

(4) → (1) → (3) → (2)

Step-by-step explanation:

Order of operations in any question are decided by the rule,

P → Parentheses

E → Exponents

D → Division

M → Multiplication

A → Addition

S → Subtract

Following the same rule order of operations will be,

- Take care of anything inside the parentheses.

- Evaluate and raise the exponents

- Multiply or divide. Make sure to do whichever one comes first from left to right.

- Add or Subtract from left to right.

Options are arranged in the order of,

(4) → (1) → (3) → (2)

Hospitals typically require backup generators to provide electricity in the event of a power outage. Assume that emergency backup generators fail 18​% of the times when they are needed. A hospital has two backup generators so that power is available if one of them fails during a power outage. Required:a. Find the probability that both generators fail during a power outage.b. Find the probability of having a working generator in the event of a power outage. Is that probability high enough for the hospital?c. Is that probability high enough for the hospital?

Answers

Answer:

a. 0.36

b. 0.1296

c. No.

Step-by-step explanation:

1. Note the probability of emergency backup generators to fail when they are needed = 18% or 0.18. Thus,

a. Probability of both emergency backup generators failing = P (G1 and G2 fails) where G represents the generators.

= P (G1 falls) x P ( G2 fails)

= 0.18 x 0.18

= 0.36

b. The probability of having a working generator in the event of a power outage = G1 fails x G2 works + G2 works x G2 fails

= 0.36 x 0.18 + 0.18 x 0.36

= 0.1296

c. Looking at the probability of any of the generators working, it is not meeting safety standards as lives could be lost if the backup generators needed to perform an emergency surgery operation fails.

The ball bearing have volumes of 1.6cm cube and 5.4cm cube . Find the ratio of their surface area.

Answers

Answer:

64 : 729

Step-by-step explanation:

Ratio of surface area

= (ratio of linear dimensions) ^2

= 1.6^2 : 5.4^2

= 256 : 2916

= 64 : 729

Suppose that 11% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked.Required:a. What is the (approximate) probability that X is at most 30?b. What is the (approximate) probability that X is less than 30?c. What is the (approximate) probability that X is between 15 and 25 (inclusive)?

Answers

Answer:

(a) The probability that X is at most 30 is 0.9726.

(b) The probability that X is less than 30 is 0.9554.

(c) The probability that X is between 15 and 25 (inclusive) is 0.7406.

Step-by-step explanation:

We are given that 11% of all steel shafts produced by a certain process are nonconforming but can be reworked. A random sample of 200 shafts is taken.

Let X = the number among these that are nonconforming and can be reworked

The above situation can be represented through binomial distribution such that X ~ Binom(n = 200, p = 0.11).

Here the probability of success is 11% that this much % of all steel shafts produced by a certain process are nonconforming but can be reworked.

Now, here to calculate the probability we will use normal approximation because the sample size if very large(i.e. greater than 30).

So, the new mean of X, [tex]\mu[/tex] = [tex]n \times p[/tex] = [tex]200 \times 0.11[/tex] = 22

and the new standard deviation of X, [tex]\sigma[/tex] = [tex]\sqrt{n \times p \times (1-p)}[/tex]

                                                                  = [tex]\sqrt{200 \times 0.11 \times (1-0.11)}[/tex]

                                                                  = 4.42

So, X ~ Normal([tex]\mu =22, \sigma^{2} = 4.42^{2}[/tex])

(a) The probability that X is at most 30 is given by = P(X < 30.5)  {using continuity correction}

        P(X < 30.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{30.5-22}{4.42}[/tex] ) = P(Z < 1.92) = 0.9726

The above probability is calculated by looking at the value of x = 1.92 in the z table which has an area of 0.9726.

(b) The probability that X is less than 30 is given by = P(X [tex]\leq[/tex] 29.5)    {using continuity correction}

        P(X [tex]\leq[/tex] 29.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{29.5-22}{4.42}[/tex] ) = P(Z [tex]\leq[/tex] 1.70) = 0.9554

The above probability is calculated by looking at the value of x = 1.70 in the z table which has an area of 0.9554.

(c) The probability that X is between 15 and 25 (inclusive) is given by = P(15 [tex]\leq[/tex] X [tex]\leq[/tex] 25) = P(X < 25.5) - P(X [tex]\leq[/tex] 14.5)   {using continuity correction}

       P(X < 25.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{25.5-22}{4.42}[/tex] ) = P(Z < 0.79) = 0.7852

       P(X [tex]\leq[/tex] 14.5) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{14.5-22}{4.42}[/tex] ) = P(Z [tex]\leq[/tex] -1.70) = 1 - P(Z < 1.70)

                                                          = 1 - 0.9554 = 0.0446

The above probability is calculated by looking at the value of x = 0.79 and x = 1.70 in the z table which has an area of 0.7852 and 0.9554.

Therefore, P(15 [tex]\leq[/tex] X [tex]\leq[/tex] 25) = 0.7852 - 0.0446 = 0.7406.

AB||CD. Find the measure of

Answers

Answer:

135 degrees

Step-by-step explanation:

3x+15 = 5x - 5 because of the alternate interior angles theorem.

20 = 2x

x = 10

3(10) + 15 = 30+15 = 45

Remember that a line has a measure of 180 degrees. So we can just subtract the angle we found from 180 degrees to get BFG.

180-45 = 135.

The length of a rectangle is increasing at a rate of 9 cm/s and its width is increasing at a rate of 7 cm/s. When the length is 12 cm and the width is 5 cm, how fast is the area of the rectangle increasing?

Answers

Answer:

129 [tex]cm^2/s[/tex]

Step-by-step explanation:

Increasing rate of length, [tex]\frac{dl}{dt}[/tex]= 9 cm/s

Increasing rate of width, [tex]\frac{dw}{dt}[/tex] = 7 cm/s

Length, l = 12 cm

Width, w = 5 cm

To find:

Rate of increase of area of rectangle at above given points.

Solution:

Formula for area of a rectangle is given as:

[tex]Area = Length \times Width[/tex]

OR

[tex]A = l \times w[/tex]

Differentiating w.r.to t:

[tex]\dfrac{d}{dt}A = \dfrac{d}{dt}(l \times w)\\\Rightarrow \dfrac{d}{dt}A = w \times \dfrac{d}{dt}l +l \times \dfrac{d}{dt}w[/tex]

Putting the values:

[tex]\Rightarrow \dfrac{dA}{dt} = 5 \times 9 + 12 \times 7\\\Rightarrow \dfrac{dA}{dt} = 45 + 84\\\Rightarrow \bold{\dfrac{dA}{dt} = 129\ cm^2/sec}[/tex]

Pregnancy length in horses. Bigger mammals tend to carry their young longer before giving birth. The length of horse pregnancies from conception to birth varies according to a roughly Normal distribution, with mean 336 days and standard deviation 3 days. Use the 68–95–99.7 rule to answer the following questions.Required:What percent of horse pregnancies are longer than 339 days?

Answers

Answer:

  16%

Step-by-step explanation:

The difference between the time of interest (339 days) and the mean (336 days) is 3 days, which is exactly 1 standard deviation.

The 68-95-99.7 rule tells you that 68% of pregnancies will be within 1 standard deviation. The remaining 32% will be evenly split between pregnancies that are longer than 339 days and ones that are shorter than 333 days. So, half of 32%, or 16%, will be longer than 339 days.

Salaries of 42 college graduates who took a statistics course in college have a​ mean, ​, of . Assuming a standard​ deviation, ​, of ​$​, construct a ​% confidence interval for estimating the population mean .

Answers

Answer:

The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Step-by-step explanation:

The complete question is:

Salaries of 42 college graduates who took a statistics course in college have a​ mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard​ deviation, σ of ​$10​,016 construct a ​99% confidence interval for estimating the population mean μ.

Solution:

The (1 - α)% confidence interval for estimating the population mean μ is:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

The critical value of z for 99% confidence interval is:

[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]

Compute the 99% confidence interval for estimating the population mean μ as follows:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

     [tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]

Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

The rate of change in sales S is inversely proportional to time t (t > 1), measured in weeks. Find S as a function of t when the sales after 2 and 4 weeks are 162 units and 287 units, respectively.

Answers

Answer:

S = 250/t

Step-by-step explanation:

If the rate of change of sales is inversely proportional to the time t, this is expressed mathematically as ΔS ∝ 1/Δt

ΔS = k/Δt where k is the constant of proportionality

If ΔS = S₂-S₁ and Δt = t₂-t₁

S₂-S₁ = k/ t₂-t₁

If the sales after 2 and 4 weeks are 162 units and 287 units respectively, then when S₁  = 162, t₁ = 2 and when   S₂ = 287, t₂ = 4.

On substituting this values into the given functions, we will have;

287 - 162 = k/4-2

125 = k/2

cross multiplying

k = 125* 2

k = 250

Substituting k = 250 into the function ΔS = k/Δt

ΔS = 250/Δt

S = 250/t

Hence the value of S as function of t when the sales after 2 and 4 weeks are 162 units and 287 units, respectively is expressed as S = 250/t

Three-fourths (x minus 8) = 12

Answers

Answer:

x=24

Step-by-step explanation:

3/4(x-8)=12

3/4x-24/4=12

3/4x=18

18 dived by 3/4

x=24

your welcome :)

Other Questions
What makes America different from other nations? A uniform horizontal beam with a length of 8m and weigh of 200N is attached to a wall by a pin connection ..Its far end is supported by the cable tha makes an angle of 53.0 with the beam. If 600N person stands 2m from the wall , find the tension in the cable as well as the magnitude and direction of the force exerted by the wall on the beam. MATHEMATICSSECTION A (VERY SHORT ANSWERS)1. Which of the following is irrational?a V25V12b. Vsc.V32. V768 in its simplest form is:dve16a.16 V3b. 64 V3 c.4 V3d. 8 V33. The simplest rationalisation factor of 27 is:a. b. 73c. 27d. 34. If x=2 and y = 3, then the value of xy + yt is:a. 15b. 17c. 19d. 21a25. The value of [ 8-43 + 22/12 is:b. 2 ch d. 46. If p(x) = x2 3x + 2, then what is the value of p(0) + p(2).7. Find the value of k, if (2x - 1) is a factor of the polynomial 6x2 + kx - 2.8. Expand (x - y)9. If x11 + 101 is divided by (x + 1), then what remainder do we get?10. Find the value of x2 + 3, if(x - 5) = 13SECTION B (SHORT ANSWERS11. Express 0.123 in the form where p and q are integers and qf097-612. Rationalise the denominator of + 613. Find the value of x if&2x14. If x2 + = 7 then find x3 +15. If x + y + z = 10 and x2 + y2 + z = 40 find xy + y2 + zx and x3 + y + z3 - 3xyz16. Factorize 8x3 - (2x - y)38116 A physical inventory on December 31 shows 3500 units on hand. Bonita sells the units for $15 each. The company has an effective tax rate of 20%. Bonita uses the periodic inventory method. The weighted-average cost per unit is According to control theory everyone is propelled towards deviance, but that two control systems work against these motivations to deviate. How some people in the Pakistan feel that if criminals were given job skills while in prison, then those particular criminals would not repeat their criminal behavior? Explain. How many ways can you arrange your 3 statistics books, 2 math books, and 1 computer science book on your bookshelf if (a) the books can be arranged in any order If you had a business what would it be? Please submit ... - name of the business - logo for the business - why this business? - where in your community would this business take place? - would this business be beneficial in your community? PLEASE help me solve this question! This is really URGENT! No nonsense answers please. Inhibition of perceptual/attentional processes and inhibition of motor processes have both been proposed as possible mechanisms for which phenomenon? In a recent survey of drinking laws, a random sample of 1000 women showed that 65% were in favor of increasing the legal drinking age. In a random sample of 1000 men, 60% favored increasing the legal drinking age. Test the claim that the percentage of men and women favoring a higher legal drinking age is different at (alpha 0.05). The braking distance, D, of a car is directly proportional to the square of its speed, v. When d=5, v=10Find d when v=70 What's the difference between Murder and killer? Water floats on a liquid called "carbon tetrachloride." The two liquids do not mix. A light ray passing from water into carbon tetrachloride has an incident angle of 45.0 and an angle of refraction of 40.1. If the index of refraction of water is 1.33, what is the index of refraction of carbon tetrachloride? How many months does it take for $700 to double at simple interest of 14%? It will takenumber.months to double $700, at simple interest of 14%. Solve for x in x-3x+2=0 What is the volume of the following rectangular prism? Which best describes how the excerpt appeals to readers' emotions? The excerpt provides facts about the tree, which impresses readers' scientific minds. The excerpt describes how the tree traveled to London, which excites the readers' sense of adventure. The excerpt compares the tree to a person, which makes readers feel sympathetic toward the tree. The excerpt explains how to skin a tree, which makes readers feel awed at the height of the tree find the area of the figure pictured below. 3.8ft 8.3ft 7.4ft 3.9ft The function fix) = (x - 4)(x - 2) is shown.What is the range of the function?8all real numbers less than or equal to 3all real numbers less than or equal to -1all real numbers greater than or equal to 3all real numbers greater than or equal to - 16216214COL408G D todos los dias despues de estudiar juego con mis hermanos