Answer:
[tex]A = \left[\begin{array}{cccc}1&-1&-3&-5\\4&2&0&-2\\7&5&3&1\end{array}\right][/tex]
Step-by-step explanation:
A = (aij)
i representa a linha e j a coluna.
Tipo 3x4
Isto implica que a matriz tem 3 linhas e 4 colunas.
aij = 3i – 2j.
Primeira linha:
[tex]a_{1,1} = 3(1) - 2(1) = 1[/tex]
[tex]a_{1,2} = 3(1) - 2(2) = -1[/tex]
[tex]a_{1,3} = 3(1) - 2(3) = -3[/tex]
[tex]a_{1,4} = 3(1) - 2(4) = -5[/tex]
Segunda linha:
[tex]a_{2,1} = 3(2) - 2(1) = 4[/tex]
[tex]a_{2,2} = 3(2) - 2(2) = 2[/tex]
[tex]a_{2,3} = 3(2) - 2(3) = 0[/tex]
[tex]a_{2,4} = 3(2) - 2(4) = -2[/tex]
Terceira linha:
[tex]a_{3,1} = 3(3) - 2(1) = 7[/tex]
[tex]a_{3,2} = 3(3) - 2(2) = 5[/tex]
[tex]a_{3,3} = 3(3) - 2(3) = 3[/tex]
[tex]a_{3,4} = 3(3) - 2(4) = 1[/tex]
Matriz:
A matriz é dada por:
[tex]A = \left[\begin{array}{cccc}1&-1&-3&-5\\4&2&0&-2\\7&5&3&1\end{array}\right][/tex]
Find two positive numbers whose product is 64 and whose sum is a minimum. (If both values are the same number, enter it into both blanks.) (smaller number) (larger number)
Answer:
Both the numbers are 8.
Step-by-step explanation:
Let the two numbers are p and 64/p.
The sum is given by
[tex]S = p +\frac{64}{p}\\\\\frac{dS}{dp}= 1 - \frac{64}{p^2}\\\\\frac{dS}{dp}=0\\\\\frac{64}{p^2}=1\\\\p= \pm 8[/tex]
So, the sum is minimum for p = 8 0r - 8, so the two numbers 8.
On weekend nights, a large urban hospital has an average of 4.8 emergency arrivals per hour. Let X be the number of arrivals per hour on a weekend night at this hospital. Assume that successive arrivals are random and independent. What is the probability P(X < 3)?
Answer:
P(X < 3) = 0.14254
Step-by-step explanation:
We have only the mean, which means that the Poisson distribution is used to solve this question.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
On weekend nights, a large urban hospital has an average of 4.8 emergency arrivals per hour.
This means that [tex]\mu = 4.8[/tex]
What is the probability P(X < 3)?
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
So
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-4.8}*4.8^{0}}{(0)!} = 0.00823[/tex]
[tex]P(X = 1) = \frac{e^{-4.8}*4.8^{1}}{(1)!} = 0.03950[/tex]
[tex]P(X = 2) = \frac{e^{-4.8}*4.8^{2}}{(2)!} = 0.09481[/tex]
So
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00823 + 0.03950 + 0.09481 = 0.14254[/tex]
P(X < 3) = 0.14254
solve the inequality 4t^2 ≤ 9t-2 please show steps and interval notation. thank you!
Answer:
[0.25, 2]
Step-by-step explanation:
We have
4t² ≤ 9t-2
subtract 9t-2 from both sides to make this a quadratic
4t²-9t+2 ≤ 0
To solve this, we can solve for 4t²-9t+2=0 and do some guess and check to find which values result in the function being less than 0.
4t²-9t+2=0
We can see that -8 and -1 add up to -9, the coefficient of t, and 4 (the coefficient of t²) and 2 multiply to 8, which is also equal to -8 * -1. Therefore, we can write this as
4t²-8t-t+2=0
4t(t-2)-1(t-2)=0
(4t-1)(t-2)=0
Our zeros are thus t=2 and t = 1/4. Using these zeros, we can set up three zones: t < 1/4, 1/4<t<2, and t>2. We can take one random value from each of these zones and see if it fits the criteria of
4t²-9t+2 ≤ 0
For t<1/4, we can plug in 0. 4(0)²-9(0) + 2 = 2 >0 , so this is not correct
For 1/4<t<2, we can plug 1 in. 4(1)²-9(1) +2 = -3 <0, so this is correct
For t > 2, we can plug 5 in. 4(5)²-9(5) + 2 = 57 > 0, so this is not correct.
Therefore, for 4t^2 ≤ 9t-2 , which can also be written as 4t²-9t+2 ≤ 0, when t is between 1/4 and 2, the inequality is correct. Furthermore, as the sides are equal when t= 1/4 and t=2, this can be written as [0.25, 2]
Find the distance between the points (-5, -4) and (3, 1).
On a coordinate plane, points are at (3, 1), (negative 5, negative 4).
Step-by-step explanation:
it will help u
WILL GIVE BRAINLIEST!!!
Write as a polynomial: 14b + 1 - 6(2 - 11b)
Answer:
80b-11
Step-by-step explanation:
14b + 1 - 6(2 - 11b)
Distribute
14b+1-12+66b
Combine like terms
80b-11
Answer:
80b - 11
Step-by-step explanation:
what is the problem ?
just multiply it out and combine terms.
14b + 1 - 6(2 - 11b) = 14b + 1 - 12 + 66b = 80b - 11
A rectangular vegetable garden will have a width that is 3 feet less than the length, and an area of 54square feet. If x represents the length, then the length can be found by solving the equation: x(x-3)=54 What is the length, x, of the garden? The length is blank feet.
Answer: 9 feet
Step-by-step explanation:
From the information given, we have already been given the equation which is x(x-3)=54. Therefore we will find the value of x which will be:
x(x-3)=54
x² - 3x - 54
x² - 9x + 6x - 54
x(x - 9) + 6(x - 9)
Therefore,
(x - 9) = 0
x = 0 + 9
x = 9
The length is 9 feet
The width will be:
x - 3 = 9 - 3 = 6 feet
CAN SOMEONE HELP ME ON ANALYZING DOT PLOTS!!!
Answer:
yes
Step-by-step explanation:
but I can't see them here
A computer monitor is listed as being 22 inches. This distance is the diagonal distance across the screen. If the screen measures 12 inches in height, what is the actual width of the screen to the nearest inch?
22 inches
18.43 inches
25.05 inches
32.5 inches
Answer
The width of the screen is 18.43.
Explanation
Use the Pythagorean Theorem (a^2+b^2=c^2) to find the height.
In a right triangle, a and b are legs. In this instance, a and b would be the height and width of the computer monitor. Let's say the height is a and the width is b (you're trying to find b). The hypotenuse of a right triangle is c. For the computer monitor, c is the diagonal.
So put in everything you know to find b; 12^2+b^2=22^2.
12^2 is 144 and 22^2 is 484. Now you have 144+b^2=484. When you simplify, you get b^2=340. When you simplify again, you find that b is about 18.43.
2/9 divided by 5/6
help pleaseee
Hey there!
[tex]\mathsf{\dfrac{2}{9}\div\dfrac{5}{6}}[/tex]
[tex]\mathsf{= \dfrac{2\times6}{9\times5}}[/tex]
[tex]\mathsf{2\times 6 = \bf 12}[/tex]
[tex]\mathsf{9\times5 = \bf 45}[/tex]
[tex]\boxed{\mathsf{=\bf \dfrac{12}{45}}}[/tex]
[tex]\large\textsf{BOTH NUMBERS has the Greatest Common Factor (GCF) of 3}[/tex]
[tex]\mathsf{= \dfrac{12\div3}{45\div3}}[/tex]
[tex]\mathsf{12\div3=\bf 4}[/tex]
[tex]\mathsf{45\div3=\bf 15}[/tex]
[tex]\boxed{\mathsf{=\bf \dfrac{4}{15}}}[/tex]
[tex]\boxed{\boxed{\large\textsf{Answer: }\mathsf{\bf \dfrac{4}{15}}}}\huge\checkmark[/tex]
[tex]\large\textsf{Good luck on your assignment and enjoy your day!}\\\\\\~\frak{Amphitrite1040:)}}[/tex]
One of the factor of x² +3x+2 is x+1 then the other factor is …..
Hi there!
[tex]\large\boxed{(x + 2)}[/tex]
x² + 3x + 2
We know that x + 1 is a factor, so:
We must find another number that adds up to 3 when added to 1 and multiplies into 2 with 1. We get:
x + 2
(x + 1)(x + 2)
1 point
Use log10 3-0.4771; log10 5 0.699010810 7 0.8451; log10 11 1.0414 to approximate the value of each expression-
log10 14710910 (147)
Answer:
[tex]\log_{10}(147) = 2.1673[/tex]
Step-by-step explanation:
Given
[tex]\log_{10} 3 = 0.4771[/tex]
[tex]\log_{10} 5 = 0.6990[/tex]
[tex]\log_{10} 7= 0.8451[/tex]
[tex]\log_{10} 11 = 1.0414[/tex]
Required
Evaluate [tex]\log_{10}(147)[/tex]
Expand
[tex]\log_{10}(147) = \log_{10}(49 * 3)[/tex]
Further expand
[tex]\log_{10}(147) = \log_{10}(7 * 7 * 3)[/tex]
Apply product rule of logarithm
[tex]\log_{10}(147) = \log_{10}(7) + \log_{10}(7) + \log_{10}(3)[/tex]
Substitute values for log(7) and log(3)
[tex]\log_{10}(147) = 0.8451 + 0.8451 + 0.4771[/tex]
[tex]\log_{10}(147) = 2.1673[/tex]
1) What is the opposite of adding 5?
2) What is the opposite of subtracting 20?
3) What is the opposite of multiplying by 1/2?
4) What is the opposite of dividing by 10?
Answer:
1) subtracting 5
2) adding 20
3) dividing by 2 (multiplying by 1/2)
4) multiplying by 1/10 (dividing by 10)
Step-by-step explanation:
There are four main operations in math: adding, subtracting, multiplying, and dividing. Each of the operations has an opposite. Adding and subtracting are opposites and multiplying and dividing are opposites. This means that subtracting can undo adding and vice versa; additionally, dividing can undo multiplying or vice versa. So, to find the opposite of something switch the operation to the opposite and keep the number. However, it is important to note that with multiplying and dividing you can also find the opposite by keeping the operation while changing the number to the reciprocal.
find the missing length. the triangles are similar.
Answer:
? = 130
Step-by-step explanation:
I'm letting ? be x
Since the triangles are similar, larger outer and smaller inner, then the ratios of corresponding sides are equal.
If x is the length of side of larger then x - 70 is corresponding length of smaller.
Then
[tex]\frac{x}{x-70}[/tex] = [tex]\frac{78}{36}[/tex] ( cross- multiply )
78(x - 70) = 36x ← distribute left side
78x - 5460 = 36x ( subtract 36x from both sides )
42x - 5460 = 0 ( add 5460 to both sides )
42x = 5460 ( divide both sides by 42 )
x = 130
A photograph has a length that is inches longer than its width, x. So its area is given by the expression square inches. If the area of the photograph is square inches, what is the width of the photograph?
The width of the photograph is blank inches.
Answer:
width is also "inches"
Step-by-step explanation:
(3x^3)^2 write without exponent
Answer:
9*x*x*x*x*x*x.
Step-by-step explanation:
(3x^3)^2
= 3^2 * x^(3*2)
= 3^2 * x^6
= 9*x*x*x*x*x*x
X S2.0.2
A rocket is fired upward with an initial velocity v of 80 meters per second. The quadratic function S(t) = -52 + 80t can be used to find
the heights of the rocket, in meters, at any time t in seconds. Find the height of the rocket 8 seconds after it takes off. During the
course of its flight, after how many seconds will the rocket be at a height of 290 meters?
9514 1404 393
Answer:
320 m after 8 seconds5.6 seconds, 10.4 seconds to height of 290 mStep-by-step explanation:
To find the height at 8 seconds, evaluate the formula for t=8.
S(t) = -5t^2 +80t
S(8) = -5(8^2) +80(8) = -320 +640 = 320
The height of the rocket is 320 meters 8 seconds after takeoff.
__
To find the time to 290 meters height, solve ...
S(t) = 290
290 = -5t^2 +80t
-58 = t^2 -16t . . . . . . . divide by -5
6 = t^2 -16t +64 . . . . . complete the square by adding 64
±√6 = t -8 . . . . . . . . . take the square root
t = 8 ±√6 ≈ {5.551, 10.449}
The rocket is at 290 meters height after 5.6 seconds and again after 10.4 seconds.
una fuerza constante F de magnitud igual a 3lb se aplica al bloque que se muestra en la figura. F tiene la misma dirección que el vector a= 3i + 4j. determine el trabajo realizado en la dirección de movimiento si el bloque se mueve de P1 (3, 1) a P2 (9, 3). Suponga que la distancia se mide en pies.
Gieo 120 hạt giống của một loại cây thấy có 15 hạt nảy mầm. Với độ tin cậy 95% hãy tìm ước lượng khoảng cho tỷ lệ nảy mầm của loại hạt giống đó.
Mn giúp mình với ạ
Answer:
sorry can't understand the language
Assume the population is bell-shaped. Between what two values will approximately 95% of the population be
Answer:The 95% Rule states that approximately 95% of observations fall within two ... about 95% will be within two standard deviations of the mean, and about 99.7% will be ... Suppose the pulse rates of 200 college men are bell-shaped with a mean of 72 ... 1.2 - Samples & Populations ... 3.5 - Relations between Multiple Variables.
Step-by-step explanation:
1. In the spring of 2017, the Consumer Reports National Research Center conducted a survey of 1007 adults to learn about their major health-care concerns. The survey results showed that 574 of the respondents lack confidence they will be able to afford health insurance in the future. Develop a 90% confidence interval for the population proportion of adults who lack confidence they will be able to afford health insurance in the future.
Answer:
The correct answer is "1668". A further solution is provided below.
Step-by-step explanation:
According to the question,
Estimated proportion,
[tex]\hat{p} = \frac{574}{1007}[/tex]
[tex]=0.57[/tex]
Margin of error,
E = 0.02
Level of confidence,
= 90%
= 0.90
Critical value,
[tex]Z_{0.10}=1.65[/tex]
Now,
⇒ [tex]0.02=1.65\times \sqrt{\frac{0.57\times 0.43}{n} }[/tex]
[tex]0.0004=2.7225\times \frac{0.2451}{n}[/tex]
[tex]n=\frac{2.7225\times 0.2451}{0.0004}[/tex]
[tex]=1668.21[/tex]
or,
[tex]n \simeq 1668[/tex]
In your office desk drawer you have 10 different flavors of fruit leather. How many distinct flavor groupings can you make with your fruit leather stash?
the graph function f(x) is illustrated in figure below (-2,1) ,(-1,2) ,(1,2) ,(2,3) .Use the transformation techniques to graph the following functions
a) y=f(x)-2
b) y=f(-x)
Answer:
a) y = f(x) - 2 (x, y) ⇒ (x, y - 2)b) y = f(-x) (x, y) ⇒ (-x, y)a) y=f(x)-2
(-2, 1) → (-2, 1 - 2) = (-2, -1)(-1, 2) → (-1, 2 - 2) = (-1, 0)(1, 2) → (1, 2 - 2) = (1, 0)(2, 3) → (2, 3 - 2) = (2, 1)b) y=f(-x)
(-2, 1) → (-(-2), 1) = (2, 1)(-1, 2) → (-(-1), 2) = (1, 2)(1, 2) → (-1, 2)(2, 3) → (-2, 3)What is 75% as a fraction
Answer:
[tex]\frac{75}{100}[/tex]
Step-by-step explanation:
Linda found that the cost to get a swimming pool installed in her backyard is a linear function of the pool's area. A swimming pool with an area of 1,000 square feet can be installed for $50,000, whereas the installation of an 800 square foot swimming pool costs $35,000. Select the correct graph that models the given relationship.
Answer:
$35,000
Step-by-step explanation:
if $50,000 is to install an area of 1,000 square feet swimming pool and $35,000 can be used to install an 800 square foot swimming pool I think the best graph model is 800 square feet for $35,000 for a cost cut of $15,000 is a good bargain
Find the value of x pls help
9514 1404 393
Answer:
x = 36°
Step-by-step explanation:
The exterior angle is equal to the sum of the remote interior angles. A linear pair is supplementary. So, you can find x either of two ways:
2x = x + (180 -4x) ⇒ 5x = 180 ⇒ x = 36
Or ..
4x = x + (180 -2x) ⇒ 5x = 180 ⇒ x = 36
The value of x is 36°.
Find the Taylor series for f(x) centered at the given value of a. (Assume that f has a power series expansion. Do not show that Rn(x)→0 . f(x)=lnx, a=
Answer:
Here we just want to find the Taylor series for f(x) = ln(x), centered at the value of a (which we do not know).
Remember that the general Taylor expansion is:
[tex]f(x) = f(a) + f'(a)*(x - a) + \frac{1}{2!}*f''(a)(x -a)^2 + ...[/tex]
for our function we have:
f'(x) = 1/x
f''(x) = -1/x^2
f'''(x) = (1/2)*(1/x^3)
this is enough, now just let's write the series:
[tex]f(x) = ln(a) + \frac{1}{a} *(x - a) - \frac{1}{2!} *\frac{1}{a^2} *(x - a)^2 + \frac{1}{3!} *\frac{1}{2*a^3} *(x - a)^3 + ....[/tex]
This is the Taylor series to 3rd degree, you just need to change the value of a for the required value.
There are 92 students enrolled in an French course and 248 students enrolled in a Spanish course. Construct a ratio comparing students enrolled in a French course to students enrolled in a Spanish course. Write your answer as a decimal, rounded to the thousandths place.
Answer:
0.371
Step-by-step explanation:
The ratio comparing students enrolled in a French course to students enrolled in a Spanish course rounded to the thousandths place is 0.371.
What is the ratio?A ratio indicates how many times one number contains another. If a and b are to objects then ratio of a to the b is given as a : b.
Now it is given that,
Students enrolled in a French course = 92
Students enrolled in a Spanish course = 248
So, Ratio comparing students enrolled in a French course to students enrolled in a Spanish = Students enrolled in a French course / Students enrolled in a Spanish course
⇒ Ratio comparing students enrolled in a French course to students enrolled in a Spanish = 92/248
⇒ Ratio comparing students enrolled in a French course to students enrolled in a Spanish = 0.370967
To rounded to the thousandths place, the digit at the thousandth place is 0 and right to it is 9 which is greater than 5 so round up the place value at thousandths place.
⇒ Ratio comparing students enrolled in a French course to students enrolled in a Spanish = 0.371
Thus, the ratio comparing students enrolled in a French course to students enrolled in a Spanish course rounded to the thousandths place is 0.371.
To learn more about ratio:
https://brainly.com/question/1504221
#SPJ2
What is the value of x
Answer:
[tex]6x+3+69=180[/tex]
[tex]6x=180-72[/tex]
[tex]6x=108[/tex]
[tex]x=18[/tex]
--------------------------
hope it helps..
have a great day!!
Gloria received a 4 percent raise and is now making $24,960 a year, what was her salary before the raise?
She gets a 4% raise so her new pay is 100% + 4% of her previous pay.
104% = 1.04 as a decimal.
Divide her new pay by 1.04:
24,960 / 1.04 = 24,000
Her previous pay was $24,000
which is the correct answer ?
Answer:
11/12 cups
Step-by-step explanation:
2/3+1/4 = ( 2x4 + 3x1 )/( 3x4 ) = ( 8+3 )/12 = 11/12